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Abstract 

 
This report describes the work done by the QA group of the Multilingual Technologies Lab at DFKI 
for the 2015 edition of the TREC LiveQA track. We describe the system, issues faced and the 
approaches followed considering the time lines of the track. 
 
1. Introduction 
 
The basic functionality of a QA system is to automatically answer a given Natural Language 
question. The TREC LiveQA 2015 track posed a particularly new challenge from previous QA 
challenges (like TREC and CLEF) as the questions are taken from the Yahoo! Answers (YA) 
website and they are far from being factoid questions. We describe briefly how we tried to solve 
this problem.  
 
A major aspect of the “Live QA” character of the challenge is that one has to deal with real user 
questions that are extracted from a stream of most recent questions submitted to YA, which have 
not yet been answered by humans. Furthermore, the allowed processing time of a YA question is 
limited to 60 seconds, which restricts the development and usage of time consuming complex 
processing strategies.  
 
A number of recent published approaches in the area of community Question Answering (cQA) 
explore an existing Q-A archive (for example the YA archive) for efficient retrieval of known 
answers for new questions, cf. (Figueroa and Neumann, 2014), (Shen et al., 2015). Here, the answer 
sources (i.e., the answers associated with the questions) are given explicitly, and hence, the main 
focus lies on the mapping of new questions to known questions. We might consider this as the 
“question paraphrasing” problem of cQA. 
 
Since for the LiveQA challenge a YA archive cannot directly be used as answer, a major problem is 
to identify possible answer sources for a question, which might contain the candidate answer. This 
is in particular difficult, because YA questions can be and usually are about anything from factoid 
questions like “Who invented the xbox 360?”1, to non-factoid questions “Why is Fairy Tail Episode 
176 not out yet?”2, to very personal questions like “I hate my dad. anyone else?”3. Thus a major 
challenge is: How can we infer useful answer sources for a YA question? 
                                                             
1 https://answers.yahoo.com/question/index?qid=20090211135728AArYykb 
2 https://answers.yahoo.com/question/index?qid=20130405112159AAMsPyV 
3 https://answers.yahoo.com/question/index?qid=20080602133015AAvvyBf 



     

In our previous work on Question Answering we have successfully explored and developed a Web-
based approach (the implemented QA system was named WebQA), in which the whole Internet was 
exploited as answer source for answering different kinds of questions, e.g., factoid questions, list-
based and definition-based questions (cf. Figueroa and Neumann, 2006, 2007, 2009). The core idea 
was to use the N-best snippets returned by the search engine Bing4 as answer source pool, and to 
apply clustering and extraction methods based on Latent Semantic Analysis (LSA) combined with 
pattern matching to identify and extract exact answer strings.  
 
Thus, it was a natural first step to exploit WebQA also for answering YA questions such that in a 
first step a question classification is performed in order to select only those questions, which are 
covered by WebQA and then to call WebQA to find exact answers. This approach failed for several 
reasons: 1.) Only a small fraction of the YA questions are basically WebQA-suitable simple factoid 
questions (e.g., only 22 questions out of 910 questions from the 1k-qids.txt corpus provided by the 
track organizers), 2.) The found answer strings (whether correct or wrong) were actually too small 
compared to the answers in the YA development corpus, and finally, 3.) The runtime of WebQA for 
list-based and definition-based questions was actually too high so that we failed the speed limit of 
60 seconds. However, WebQA’s pipeline that consists of a number of subcomponents (from snippet 
identification, sentence extraction, sentence re-ranking, phrase extraction, answer validation etc.) 
has a high degree of modularity so that we decided to use relevant subcomponents of WebQA for 
building and testing our LiveWebQA system. 
 

2. System Overview 
  
Following our previous work, we assume that the Internet as a whole can serve as reliable answer 
source for basically any question. However, in contrast to our previous work, we do not assume that 
the snippets returned by WebQA are sufficient for serving as answer sources but that we have to 
inspect the whole web documents the snippets point to. The core idea of our approach is now to 
automatically learn a question-answer mapping from a subset of an available YA-archive (actually 
we used the ydata-yanswers-all-questions-v1_0 corpus that was made available to the LiveQA 
participants by the organizers; see also sec. 2.2), and to apply this mapping to YA questions and the 
whole Web documents identified by WebQA via its snippet identification and ranking step. 
 
Thus, there are 3 main components of our system (called LiveWebQA), which dealt with the 
different aspects of answering a YA question: 
 

1.) Analyzing Questions 
2.) Training  
3.) Search and score 

 
 
The major workflow is as follows (cf. also Figure 1): 
 

0. Train a Q-A map in form of a vector space from a training corpus 
1. Send the Yahoo question to the 'Retrieve Answers' module of WebQA 
2. Send the title and body to the  'Analyze Question' module 
3. Send the 'key' question to the 'Retrieve Answers' module 

                                                             
4 http://datamarket.azure.com/dataset/bing/search 



     

4. Send the 'key' question to the 'From URLs' module 
5. Send the web URLs to the 'Search and Score' module 
6. Then, identify the best 3 sentences from the searched content 
7. Pass the answer to the 'Retrieve Answers' module 

 
Finally, the found answer string is sent to the LiveQA client of the LiveQA track organizers in the 
required format. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Architecture and main information flow of LiveWebQA 
 
We will now describe the three main components in more details. 
 
 2.1 Analyzing questions 
 
To answer a YA question is in general more difficult compared to the answering of a factoid 
question. For example, in general, the essence of a YA question has to be mined from a text of 
variable length, since a YA question in general does not exist of single WH-question as, for 
example, has been the case in the previous TREC and CLEF QA challenges, but a paragraph that 
contains the main question terms more or less explicitly.  
 
More precisely, a YA question usually consists of a title and a body. Ideally, the title contains the 
main question. However, often this is not the case, because the relevant question information is 
distributed across the title and the body. This means, one has to actually identify and extract these 
question parts. Automatic text summarization is a field of research on its own right, which could be 
exploited also here. But since the text of a YA question is usually not too large (and because of time 
constraints during the development phase), we employed a heuristic to just identify the important 
question fragments based on the following intuitions: if a sentence in the question paragraph (which 
consists of the question title and body) contains a pronoun (except for first person pronouns) or a 
question key-word (like ‘who’, ‘what’, ‘how’, ‘where’, ‘why’, ‘?’), then most likely the previous 
sentence (if it exists) and the sentence itself together have useful information and should not be 
discarded.  In this way, we do not filter out sentences preceding a trivially important sentence 
(identified by 'help', '?'). Thus, from a new YA question Q, we construct a question Q’ such that Q’ 
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consists of all the direct questions and trivially important sentences of Q and the identified 
important sentences based on the above criteria preceding these direct questions. Then Q’ is used to 
search the Web using the Bing API. 
 
For example, for the YA question Q with qid=20150713141918AA2OxXt: 
 
title: GearHead mouse button too sensitive? 
 
body: I've been using a GearHead Optical 2.4 GHz Wireless Nano mouse for about a year and have had no 
problems up until very recently. The right mouse button is way too sensitive. When I open it up the button on 
the left still has its click but just resting a finger on the right button makes it rigt click. Is there a way to fix 
this or should I just buy a new mouse? 
 
If I should buy a new one, are there any that you would recommend for gaming? 
 
We compute the following reduced question Q’: 
 
GearHead mouse button too sensitive? 
The right mouse button is way too sensitive. When I open it up the button on the left still has its click but just 
resting a finger on the right button makes it rigt click. Is there a way to fix this or should I just buy a new 
mouse? If I should buy a new one, are there any that you would recommend for gaming? 
 
 
Here, the underlined sentences are the trivially important sentences and the lines captured preceding 
those are the identified important sentences. We stop to add more lines if there are no more 
pronouns in the last sentence that we add. 
 
Although the YA questions to be answered in the LiveQA track 2015 are restricted to a subset of 
the possible set of YA categories (i.e., only questions are considered from the topics Arts & 
Humanities, Beauty & Style, Computers & Internet, Health, Home & Garden, Pets, Sports, Travel), 
we do not make use of them in the question analysis module nor in other modules of our current 
LiveWebQA system. 
 
2.2 Training  
 
The core idea of the training phase is to learn a mapping from YA question patterns to YA answer 
patterns using an available YA question/answering corpus as basis. In some sense, the learned 
mapping would express useful indicators for deciding whether a YA question belongs to a certain 
question type and whether a sentence found in a Web page could serve as answer for this YA 
question type. Thus, the goal is to learn to guess whether a sentence embeds useful “YA answer 
sentence typical information” for specific embedded “YA question typical information”. 
 
Paragraph embedding is a growing field of research. The method proposed by Mikolov et al. (2013) 
has proven to get state-of-art results for text similarity tasks. However, the task of QA is usually 
harder than simple text similarity as it involves the association of a question and answer pair. We 
had a corpus of questions and answers from YA that was provided to all participants by the 
organizers of the LiveQA challenge. The corpus (called ydata-yanswers-all-questions-v1_0) 
contains 4,483,032 questions and their answers from which we used only a small subset of 42K QA 
pairs (mainly because of development time constraints). In addition of question and answer text, the 
corpus contains a small amount of meta data, i.e., which answer was selected as the best answer, 



     

and the category and sub-category that was assigned to this question. For more information about 
form and content, cf. (Surdeanu et al., 2008). 
We suspected obtaining question vectors and answer vectors from this corpus during the training 
phase and associating them may lead to over-fitting using paragraph vectors. Hence, we choose to 
follow a simpler method to get vectors. Our intuition is that the questions have patterns that can be 
used to identify the question type and answers associated also have patterns, which are specific to a 
particular question type. To obtain these generic patterns of questions and answers, we removed the 
key content words from the questions and answers. We represented a question and an answer in 
terms of the skipped (by removing rare words) tri-grams that occurred in them. Hence, each 
question and each answer is a vector whose dimension is equal to the total number of tri-grams that 
occurred in the corpus. The vectors are then weighted by computing a tfidf-like weight for each cell 
in the following way: 

 
Value in each dimension = tri-gram_term_frequency * inverse_document_frequency,  

 
where tri-gram_term_frequency is the number of times the tri-gram occurred in the relevant 
category (question or answer), and inverse_document_frequency is the log of the total number of 
question answer pairs divided by the number of times tri-gram occurred in the relevant category of 
question or answer. 
 
We ignored the tri-grams that contained just the function words by putting a frequency threshold, as 
the function word tri-grams don't give any information specific to the question. For a question-
answer corpus, we aimed to train two separate vector spaces one for the questions and one for the 
answers. These two vector spaces are mapped to each other by the co-occurrences of the question 
and answer pairs in the corpus. 
 

2.3 Search and Score: 
 
Given a new question, we find the relevant vector in our question-vector space and retrieve the k-
nearest neighbors that we have seen in the training corpus, and from this, we determine the 
associated answer vectors in the answer-vector space. We then predict the best answer-vector as the 
average of the sum of answer-vectors associated with these k-nearest neighbors. We took the value 
of k as 50 for a corpus of the 42k Yahoo question and answer pairs.  
 
After having selected the answer vector for the current question, we look up the web pages given by 
the N-best snippets found by WebQA. For each web page, we identify each sentence s and score it 
according to the following two measures: 
 

i.) pattern_quality_measure(s): Compute the  cosine similarity between the sentence and 
predicted answer vector. 

ii.) relevance_measure(s): Since we are looking through the whole web page, we need a second 
measure to pick only sentences that are relevant to the question. For this reason, we use 
the word2vec tool (cf. Mikolov et al., 2013) to compute the cosine similarity between 
the question and selected sentence. The motivation behind using word embedded vectors 
here is to weaken the surface-based restriction a direct comparison of the tri-grams 
between the question and a sentence would have. 

 
By combining both measures, we compute for each sentence s a score as follows: 

if the relevance_measure(s) < 0.8 then  



     

score(s) = pattern_quality_measure(s) * relevance_measure(s) 
else 

score(s) = 0.8 * pattern_quality_measure(s) * relevance_measure (s)  
 
The motivation behind cutting-off the score for sentences with a relevance measure >= 0.8 is that 
often these sentences would be questions similar to the asked question itself. 
 
We then retrieve the three consecutive sentences from the web pages, which have the highest sum 
of sentence scores. Such a three-sentence long paragraph is then considered as answer for the 
current YA question. In order to improve speed, we searched in each web page separately by 
creating a thread per web page, and send the best answer retrieved so far. Unfortunately, not all web 
pages were processed within the time limit of 60 seconds because of their size, and hence, the 
overall quality could be negatively affected. 
 

3. Experiments 
 
We tried with different parameters for thresholds to remove the content words in the training 
process for patterns. We finally set 300 as frequency threshold for the corpus of the 20 million 
tokens of our 42K training corpus. We tried using a much larger corpus, but the system didn't 
perform significantly better when we increased the size.  
 
To get an idea of the potential quality of the results of our approach, we manually verified the 
answers provided for a test set of the 1000 questions derived from the test corpus 1k-qids.txt during 
the development of our LiveWebQA system. We found that 20% of the times the system gave a 
useful answer. We considered a predicted answer as useful if parts of it can serve as “answer” to the 
asked question. 
 
We also automatically evaluated the results by comparing the answers predicted by our 
LiveWebQA system with the answers in the test Q&A corpus using the word2vec (bag of words) 
cosine similarity. We got 45% of the questions answered with greater than 0.7 cosine similarity 
measure. Note that this does not automatically mean, that a 0.7 similarity also means that the 
predicted answer has high accuracy, but only gives an indication of its relatedness on basis of the 
selected word embedding. The main motivations for using word2vec for our automatic evaluation 
were twofold: 1) Verifying whether two texts convey the same meaning is a sub-problem to 
Question-Answering itself. Thus, text similarity between two answers will give us a measure on the 
quality of the answer even though it doesn't tell us that both have same meaning. 2) We choose 
word2vec bag-of-models to compare the texts, as it is was easy to integrate also considering the 
time constraints we had. 
 
4. Results 
 
During the official run, overall, 1087 questions were judged by the TREC organizers and scored 
using 4-level scale: 

4: Excellent  - a significant amount of useful information, fully answers the question 
3: Good  - partially answers the question 
2: Fair   - marginally useful information 
1: Bad   - contains no useful information for the question 
-2: the answer is unreadable  (only 15 answers from all runs were judged as unreadable) 

 



     

Since we had some delay in starting our server, actually only 1058 questions were processed by our 
system. 893 of them are scored as 1 (bad); 112 as 2 (fair); 42 as 3 (good); 11 as 4 (excellent). 
 
The score of our system on the official run is given below: 
avg score 
(0-3) 

succ@1+ succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+ 

0.211 0.973 0.152 0.049 0.010 0.156 0.050 0.010 
 
 
If we compare these results with our expectations (about 20% useful answers), we are actually far 
behind them, which might indicate that our manual analysis was not sufficient or not in line with 
the official scale.  
 
Below is the official average of scores of all runs: 
  
avg score 
(0-3) 

succ@1+ succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+ 

0.465 0.925 0.262 0.146 0.060 0.284  
 

0,159 0.065 
 
Compared to our results, it means that in average the majority of questions are badly answered, but 
that the average performance of answering questions as good or excellent is higher compared to our 
result. It is clear that the overall performance in terms of precision of our system is still poor. 
However, we are now in a position to dive into the problems of our system using the evaluation 
results from this initial LiveQA track challenge, so that we are convinced to get a much better result 
next time. 
 
References 
 
Bogdan Sacaleanu, Günter Neumann and Christian Spurk: DFKI at QA@CLEF 2008. Working 
Notes for the CLEF 2008 Workshop, 17-19 September, Aarhus, Denmark. (2008) 
 
Andrew M. Dai, Christopher Olah, and Quoc V. Le. Document embedding with paragraph vectors. 
In NIPS Deep Learning Workshop (2014) 
 
Alejandro Figueroa and Günter Neumann: Language Independent Answer Prediction from the Web. 
FinTAL 2006: 423-434 (2006) 
 
Alejandro Figueroa and Günter Neumann: Mining Web Snippets to Answer List Questions. AIDM 
2007: 61-71 (2007) 
 
Alejandro Figueroa, Günter Neumann, John Atkinson: Searching for Definitional Answers on the 
Web Using Surface Patterns. IEEE Computer 42(4): 68-76 (2009)  
 
Alejandro Figueroa and Günter Neumann: Category-specific models for ranking effective 
paraphrases in community Question Answering. Expert Syst. Appl. 41(10): 4730-4742 (2014) 
 
Tomas Mikolov , Kai Chen, Greg Corrado, and Jeffrey Dean: Efficient estimation of word 
representations in vector space , CoRR, abs/1301.3781 (2013) 



     

 
Quoc V. Le and Tomas Mikolov: Distributed representations of sentences and documents. ICML 
(2014) 
 
Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza: Learning to Rank Answers on Large 
Online QA Collections.  Proc. of the 46th Annual Meeting of the Association of Computational 
Linguistics (ACL) (2008) 
 
Yikang Shen, Wenge Rong, Zhiwei Sun, Yuanxin Ouyang, Zhang Xiong: Question/Answer 
Matching for CQA System via Combining Lexical and Sequential Information. AAAI 2015: 275-
281 (2015) 


