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Abstract—This work presents a new dynamically configurable
compression architecture to be integrated directly into the test
access mechanism of System-on-Chip (SoC) designs using IEEE
1149 compliant interfaces. The proposed technique reduces the
test data volume without loosing the full legacy support, no
extra IO pins are needed and the additional allocated hardware
resources are negligible. Particularly, this technique is suitable
for board as well as in-field testing, which both use typically a Test
Access Mechanism (TAM) like IEEE 1149. Here, strong memory
limitations exist on the test equipment, which restrict the testing
or debugging capabilities for complex designs. Various bench-
marks for random test data, representing highly pre-compressed
test data, as well as fully-specified test data for selected industrial
circuit designs were run and discussed to evaluate this new
approach. These experiments clearly show a high test data volume
reduction. Additionally, a noticeable reduction of the overall
number of required test cycles are achieved for most of the test
cases.

I. INTRODUCTION

For several years, the design and fabrication of Integrated
Circuits (ICs) don’t pursue solely the target to produce ICs,
which only fulfill one single task but complex ICs are designed,
suitable for several comprehensive tasks at once. For this
purpose, whole SoC designs with several nested modules are
realized. Due to this increasing complexity, there is also a high
risk of physical defects accrued while manufacturing - not
only for this reason production tests are indispensable. Besides
these production tests, the high modularity of the SoC designs
strictly requires extensive board and in-field testing capabilities.
The Test Data Volume (TDV) effects the consumption of
limited memory resources within the test equipment. This
means that the number of tests is limited, which can be loaded
simultaneously to the test equipment. Thus, the test costs
increase, which typically claim a high share of the overall
production costs. Particularly, the memory resources are often
stronger limited in later phases like board and in-field testing
or while debugging, e.g. test failure analysis, which can lead
to complexity margins in the test procedures.

Several research works, e.g. [1]–[8], exist, which embed
compression hardware into the design. These approaches are
quite expensive regarding the hardware overhead and often
depend on additional IO pins. Furthermore, most of these
compression techniques require test data, which have to fulfill
certain criteria to be compressible, e.g. large number of X values.
Thus, these compression techniques are mostly not suitable for
Functional Verification (FV). FV addresses test requirements
for complex SoC designs with numerous modules, e.g. for
testing inter-module communication or power-up, initialization
or trimming sequences. In case of high modular SoC designs,
these FV test cases or the resulting FV test data respectively
tend to be extensive, which is often conflicting with the
limited memory resources. Currently, no generic compression
techniques for FV test data are available to decrease the steadily
increasing test costs to the best of our knowledge.

Generally, the overall number of top-level IO pins is limited,

which implies that only a subset of IO pins from the sub-
modules is routed to the top-level. Thus, only the top-level
pin-set is accessible in later test phases, e.g. board or in-field
testing. Due to the increasing number of modules within SoC
designs, ensuring the accessibilty of every single module is a
challenging task. To tackle this problem in those SoC designs,
Test Access Port (TAP) controllers are used as a general TAM.
Typically, a highly reduced clock frequency is applied while
transferring data via this TAP, which means that the TDV or the
number of test cycles highly affects the overall costs. Due to
presence of these TAMs, they are suitable for being combined
with the compression architecture as long as the full legacy
support of underlying access protocol is not violated and the
full legacy support is provided.

This work proposes Test Vector Transmitting using enhanced
compression-based TAP controllers (VecTHOR), a new com-
pression technique to be integrated in standardized TAP con-
trollers. VecTHOR uses a code-based compression technique,
which is able to involve fixed code-words as well as dynamically
configured code-words for handling heterogeneous test data.
Thus, this technique can be applied to reduce the TDV of
existing test sequences measurably without effecting the logical
test behavior itself. Thus, no re-verification of this test data is
required. However, this architecture is not specifically meant
for Automatic Test Pattern Generation (ATPG) test data. It is
meant to be applied for FV tests while board and in-field testing
as well as for the test failure analysis using decided debugging
equipment. Typically, all these tests access the Circuit Under
Test (CuT) via a standardized TAP controller like IEEE 1149.
Thus, all proposed modifications of the TAP controller are
completely compliant to the IEEE 1149 standard and a full
legacy support is still ensured. In fact, it is possible to control
the compression hardware completely by the default pin set.
As a result, no additional IO pins are required. Finally, a
suitable retargeting framework is drafted to complete this new
compression architecture VecTHOR.

Several experiments show that VecTHOR achieves a no-
ticeable TDV reduction on industrial as well as high entropic
test data. These experiments show that this technique allows
to reduce the overall number of required test cycles while
processing fully-specified test data as well. Furthermore, the
embedded compression hardware causes only a negligible
overhead in the design itself, which has been proven by
synthesizing the extended design.

The structure of this paper is as follows: Section II distin-
guishes this paper from related works. Furthermore, Section II
also describes the general idea and the expected benefits of
this approach. In Section III, a brief introduction into FV is
given, especially accessing a circuit for transferring test data
via test access mechanisms. Afterwards, Section IV presents
the developed extension of a reference TAP controller, suitable
to realize a decompression-based data interface, Section V
drafts an algorithm for retargeting the test sequence to take
advantage of the proposed compression technique. A collection



of experimental results is shown in Section VI. Finally,
Section VII discusses possible future work and summarizes the
drawn conclusions.

II. RELATED WORKS

Various works have been published with different approaches
focusing on the demands of ATPG, Embedded Deterministic
Test (EDT) [8] or of scan chain data compression [1], [5].
Generally, EDT techniques achieve a very high compression
ratio, which mostly scales with the share of unspecified values
(X-values) in the incoming test data. This compression ratio
varies strongly depending on the test data. For fully-specified
test data is used for instance in FV, EDT cannot be applied.
Furthermore, EDT generally requires access to designated IO
pins. Thus, in case of SoC designs embedding sub-modules with
EDT, these IO pins are mostly not accessible at the top-level.
Consequently, the access is also limited while board testing or
debugging using dedicaded debug equipment. Due to this fact,
TAP structures are still more needed in these scenarios, which
allow tunneling EDT data to a specific sub-module within the
SoC design as well.

It follows a brief overview of the published methods for
TDV compression for ATPG test data. The authors of work
[3] proposed a static encoding, which was extended by taking
advantage of a static run-length encoding [1]. This run-length
encoding allows to handle repeating bits within the test vector
efficiently. The proposed method of paper [9] uses the well-
known Huffman-Encoding or even the powerful LZ77-algorithm
[5], which is based on a dynamically growing dictionary.
However, significant more hardware resources are allocated.
The authors in [6] introduce a new way of encoding - the
Golomb-Code -, which takes advantage of previous parts of the
test sequence. Additionally, a powerful method of compressing
multiple scan chains by a dictionary-based approach was
published in [4]. In particular, [7] proposes a new compression
technique, which works independently of Don’t Care values.
Thus, no Don’t Care values have to be injected by the ATPG
tool before transmitting the test data.

Concurrent-JTAG (CJTAG) [2] was designed to accelerate
FV using TAP structures and is already realized by industrial
implementations. However, CJTAG requires highly modified
devices regarding their TAP controllers, so that the compliance
with standardized JTAG is no longer ensured. Furthermore,
two additional IO-pins must be embedded in the top-level.
CJTAG achieves the speed-up by parallelization necessitating
structural requirements for the CuT as well as for test sequences.
Additionally, the authors in [10] propose a compression
scheme for FPGA configuration bitstreams, which have to
be integrated in-between the TAP and the FPGA core. Due
to the fact that such a bitstream file is dominated by tailing
zeros characteristically, this hardware bases on a Run-Length
Encoding, which is suitable for this specialized application
field only.

Here, we focus on serial test data transfer into the CuT
via a centralized JTAG controller: It is targeted to develop
an extended TAP controller, which applies a new proposed
compression technique on incoming Data Register (DR) data.
This new proposed technique provides the full legacy support for
standardized JTAG operations without increasing the complexity
of the controller significantly. The proposed compression
architecture can be applied on any data, e.g. fully-specified FV
test data, for which most of the previously published techniques
are not applicable.

III. PRELIMINARIES

In the context of test data generation, different methodologies
can be invoked: One very common technique to generate test
vectors is ATPG. Depending on the referenced fault model,

only logical knowledge of the circuit structure is included into
this test generation process. In contrast to this methodology,
test vectors generated in the context of FV try to model real
use case scenarios, e.g. a chip initialization for the test setup,
in later application. Such a scenario can be derived out of
the circuit’s specification and probably consists of a whole
start-up sequence or even more decided functions like some
kind of coupling between devices or a protocol negotiation
for the case the CuT implements a network controller. As
initially mentioned, both ATPG and FV target the identification
of physical faults, which were potentially caused within the
production process and threatening the correct function.

Independent of the test data type, at least one communication
channel, e.g. between a SoC containing several sub-modules and
the test equipment, has to be available. Since strong limitations
regarding the number of IO pins exist, it is not possible to route
every IO pin of each sub-module to the top-level entity. For that
reason a centralized master TAP is integrated into the top-level:
Such a TAP provides an access port and is managed by the
TAP controller, which implements a specific interface protocol.
One very common protocol is implemented within a Joint
Test Action Group (JTAG) controller: This interface consists
of only five pins, which have to be accessible from outside:
TCK, TRST, TDI, TDO, TMS. This JTAG is standardized
within IEEE 1149.1 The signal Test Clock (TCK) provides
the reduced clock for test purposes and Test Reset (TRST)
implements a way to reset the TAP controller. Test Data-In
(TDI) interface pin is used to transfer data into the device. In
contrast, Test Data-Out (TDO) allows to transfer data out of
the circuit. Finally, the Test Mode Select (TMS) signal controls
the Finite State Machine (FSM) of the complete TAP controller.
Only very few IO pins are occupied by using JTAG. Every
additional pin would increase both production costs and also
the necessary design effort. In case of hierarchical SoC designs,
these capabilities can be used to access specific sub-modules.

The test data has to be converted into a bit string to be loaded
into the CuT. After this conversion has been done, all of these
bits are transferred strictly serialized via TDI into the TAP
controller. As prerequisite, the controller must be in the correct
state, whereby all state transitions are synchronized using TCK.
JTAG implements a strict separation between loading IR data,
i.e. data encoding JTAG instruction and DR data, i.e. payload
data like test data. In the IEEE 1149 standard, some JTAG
instructions are defined, e.g. bypass for daisy-chaining. Every
single instruction can be addressed by a unique opcode, which
is reserved with respect to the global instruction length.

After the complete test sequence has been transferred, the
data processing by the CuT is started. Depending on the type
of test, it is possible that all test data is stored in one exposed
Test Data Register (TDR), which is accessible by the CuT as
well. For example, this TDR can contain different bit fields,
which represent memory addresses, control signals or direct
encoded opcodes of the CuT instruction set.

IV. DECOMPRESSOR-BASED TAP-CONTROLLER

This section describes the necessary extensions, which have
to be realized for establishing VecTHOR within a custom
design using a IEEE 1149 TAP at top-level. This includes a
mechanism to activate the new compression techniques, a code-
based Dynamic Decompressing Unit (DDU) for received test
data and an instrument to configure the DDU based on the test
data to be processed, all within the TAP controller. Furthermore,
a retargeting mechanism is required to determine a suitable
configuration for the DDU as well as pre-processing test data
wrt. the current decompressor configuration. This retargeting
mechanism has to be integrated into the existing test data flow.
In particular, the following items are realized:



1) In Subsection IV-A, two further JTAG instructions are inte-
grated, which activate the data compression by compr_data
and the configuration preloading by compr_preload. There-
fore, the FSM of the underlying TAP controller has to be
extended. Additionally, a further compression technique
is developed in this work: µ-compr, which allows to take
advantage of test data previously sent.

2) A suitable decompressor unit is designed in Subsection
IV-B, i.e. for handling the substitution between compressed
and decompressed bit strings, and connects this unit with
the TDR.

3) In the next Section V, a suitable framework is established,
which is able to process an incoming test vector automat-
ically: At first, in Subsection V-A a suitable configuration
for the DDU is derived out of the test vector. Afterwards,
in Subsection V-B the incoming testdata are processed in
such a way that valuable parts of the original data are
replaced wrt. the DDU configuration.

In particular, the above mentioned µ-compr extension consists
of a partial run-length encoding of complete code-words, which
improves the compression ratio even more. Furthermore, it
reduces the number of additional needed test cycles compared
to the compr technique.

A. TAP-FSM extension
One very valuable property of this compression technique

is that all changes performed to the interface are completely
transparent towards legacy compatibility. Only two additional
opcodes 0110 and 0100 are reserved, which represent the
new JTAG instructions compr_data and compr_preload. Here,
compr_preload allows to load the determined configuration to
the DDU. If neither compr_data nor compr_preload instruction
is loaded at all, the FSM is traversed normally as shown
in Figure 1 and the processed data is not affected by any
decompression. For the case that the instruction compr_data or
compr_preload is selected, a TRST trigger or even unloading
this instruction by reselecting leads to normal operation mode
again.
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Fig. 1: FSM of IEEE 1149: TMS @ edges

The FSM of the legacy JTAG is shown in Figure 1. In
comparison, the modified FSM is visualized in Figure 2 and
contains two additional states compr_dr and compr_exit, which
can be reached while the namely compr_data instruction is
selected. In general, the transfer of compressed data can be
described by the following five steps separated by time tx:

1) After the instruction compr_data has been loaded within
the Load_IR phase, the state capture_dr is reached at
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Fig. 2: FSM of compression-based IEEE 1149: TMS @ edges

ti−2. Now, TMS is assigned to 0, so that successor state
compr_dr is selected at ti−1.

2) TDI is captured on a rising edge of TCK at time ti and
is interpreted as a chunk of the overall Compressed Data
Word (CDW). This capturing process is repeated n times up
to ti+n as long as the FSM remains within the compr_dr
state. Meanwhile, every received chunk gets stored into
an exposed Compress Register (CR). The length of this
register determines the chunk size lCR. As a sanity check,
exceeding this boundary leads to a Test Logic Reset (TLR),
i.e. lCR ≤ n is no longer valid.

3) Afterwards, to complete a CDW, TMS has to be changed
to 1 causing a state transition to compr_exit. Within
compr_exit state, the TAP-controller applies the decom-
pressor on CR data and writes the Uncompressed Data
Word (UDW) to the exposed TDR within one test cycle
ti+n+1.

4) Depending on the TMS signal at time ti+n+2, the FSM
reaches the state update_dr by leaving compr_dr phase
with TMS = 1, otherwise a further CDW can be
processed directly by driving TMS = 0, so the FSM
passes over to compr_dr again.

5) In case of using the µ-compr technique while compr_data
is selected, the transition between compr_exit and up-
date_dr with TMS = 1 at ti+n+2 has to be enriched by
evaluating the TDI signal: If TDI = 0 holds, then nothing
changes. If TDI = 1 holds, then the state compr_exit
will be passed through a loop to itself over and over again
as long as TDI = 1 ∧ TMS = 1. Every cycle iteration
decompresses the last received CDW again and writes the
mapped UDW to the exposed TDR.

Additionally, the modified FSM in Figure 2 shows that the
DDU configuration invokes both new states analogously. Thus,
all received configuration data is stored at the DDU register
instead of the exposed TDR.

B. Implementation of TAP-decompressor
Besides the required FSM extension, another important aspect

of the proposed compression architecture is the decompressor,
which realizes a mapping function Ψ(CDW c) → UDWu

between one successfully received CDW with length c with
c ≤ CS and a specific UDW with length u with u ∈ {1, 4, 8}.
Additionally, the function B(CDW c)→ β maps every CDW
to a scalar value β, which represents a metric calculated
by u − c and determines how valuable it would be to use
this replacement - so called benefit of this replacement.



CDW UDW Benefit β Dyn. configurable

∅ CDW@t− 1 - 7
0 1 0 7
1 00000000 7 7
00 1111 2 7
01 0101 2 7
10 0110 2 7
11 0 -1 7
000 01010101 5 3
001 1010 1 3
010 0000 1 3
011 10101010 5 3
100 1000 1 3
101 1001 1 3
110 0001 1 3
111 11111111 5 3

TABLE I: Exemplary weighted mapping function Ψ, CS = 3

Additionally, a mechanism has to be established, which ensures
the completeness of the mapping function Ψ. This means that
single bits, which are not directly coverable by replacements,
have to be handled individually.

Consequently, the decompressor unit receives the CDW after
the FSM reached the state compr_exit. The maximal length of
the CDW is determined by Chunk Size (CS). For instance, a
CS value of 3 offers a good trade-off between the number of
possible encodings and the hardware overhead. For that reason,
CS is assumed to be 3 in this work. In general, the underlying
technique can be scaled with higher CS easily. For every single
increment of CS, overall 2CS additional ones are available.

Using CS = 3 allows the following
3∑
i=0

2i = 15 possible CDW:

• ∅, ′0′, ′1′, ′00′, ′01′, ′10′, ′11′

• ′000′, ′001′, ′010′, ′100′, ′101′, ′110′, ′111′

Table I shows an exemplary realization of Ψ representing
the default DDU configuration, which has been used for the
experiments of Section VI. In the exemplary implementation,
it is possible to configure up to 2CS CDW dynamically. This
implementation contains two special UDW ′0′ and ′11′ with
even negative β values, which are mapped to a single bit 1 and
0 respectively. While using VecTHOR, it is possible that the
retargeting algorithm inserts a Single Bit Injection (SBI) for
covering a ’0’ or ’1’ at a specific position in the test vector,
which could not be covered otherwise. Thus, SBIs are important
to ensure the completeness of the compression technique, i.e.
this ensures that every sequence can be successfully processed.

Furthermore, the implementation also allows CDW = ∅
representing the empty CDW, which is applied for the µ-compr
technique. This technique was referenced in 5) above. µ-compr
is an extended version of the proposed compr technique and
offers an ability to reuse the last received CDW in such a
way that the UDW is repeated up to r-times internally, which
saves test cycles as well as CDW bits and therefore test data
volume. In fact, the implementation of µ-compr triggers the
two TDI-controlled state transitions by signal changes on TDI
instead of signal values as above stated. This allows to reduce
the additional overhead regarding the control data of µ-compr.

Figure 3 shows a partial block diagram of the modified TAP
controller. The output of UDWs with u = 1 is connected with
the serial memory interface and the outputs of u = 4 and
u = 8 are wired to the parallel memory interface. In particular,
the interconnections between the TDR and FL block are
marked and the data flow of the decompressor unit is partially
visualized as well. In fact, two Multiplexers (MUX) are applied
for decompressing the CDW, which is stored in the exposed
compr_reg register. One MUX serves the serial interface and
the other one the parallel interface. Both synchronized to the
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Byte index 0 1 2
Bit index 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1

Uncompressed data 0 1 0 1︸ ︷︷ ︸ 1 0 1 0︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 0 0 0 1︸ ︷︷ ︸ 0︸︷︷︸ 1︸︷︷︸
Compressed data 01 001 10 110 11 0

TABLE II: Applying compr technique on example data

test clock, reset signal and internal states of TAP controller’s
FSM, particularly shift_dr and compr_exit as described above.

Another important aspect of this method is the small
hardware overhead for the synthesized design. For this reason,
the original legacy design, the modified one supporting the
new proposed compr technique as well as the one supporting
the extended µ-compr technique have been synthesized. Due
to the fact that the legacy TAP controller allocates a small
number of resources only, the number of additional flip flops
and gates, which are required by the proposed techniques, is
quite negligible.

C. Exemplary application
Finally, the compr technique is demonstrated in Table II. Due

to the page limitation, the µ-compr and the DDU configuration
are not described here, which means that the initial Ψ is
assumed. The compr technique is applied on an uncompressed
test vector containing 18 bits. For this example, the given
exemplary mapping function Ψ in Table I is assumed as well
as the drafted retargeting scheme presented by Algorithm 2
in Section V. Every single bit of the incoming test data is
assigned to a byte and bit index. As shown, VecTHOR identifies
designated parts of the uncompressed vector and encodes them
with suitable CDWs, which are highlighted in Table II by
underbraces. Due to the fact that the overall bit number is not
completely divisible by 8 or even 4, the two last bits at position
2.0 and 2.1 have to be handled as SBIs. This example shows that
SBI enables processing every kind of test data to a sequence of
CDW replacements successfully. Finally, this compr techniques
generates a compressed bit string, which contains only 13 bit.
Accordingly, a compression ratio of nearly 28% is achieved in
this example by integrating VecTHOR into the TAP mechanism.

V. RETARGETING FRAMEWORK

The following section drafts an algorithm to configure the
DDU in subsection V-A and subsection IV-B an algorithm to
retarget existing test data wrt. to the DDU configuration.



A. Automatic DDU configuration
The algorithm 1 shows the underlying procedure for deter-

mining a suitable configuration of the DDU. At first, the original
vector Ω is serialized and processed in such a way that all
sub-sequences with length of u, i.e. a supported UDW length,
are handled separately (line 2 ff.). The occurrences of possible
UDW permutations are counted within a data container Γ.
Afterwards, the entries are post-processed by removing existing
intersections (line 5 to 15). Within this step, the benefit of all
pairwise intersections are evaluated (line 9) and the less valuable
one is removed by decreasing the corresponding counter in Γ.
Finally, Γ is sorted by decreasing number of occurrences (line
16) and the most valuable 2CS ones are emplaced in the DDU
configuration (line 17 ff.) by invoking the compr_preload.

Algorithm 1 Retargeting algorithm: configure
Require: Ω, Ψ

1: Γ := () {Empty data container for counting occurrences}
2: for all (i, j) s.t. ωi...ωj ⊆ Ω ∧ i ≤ j ∧ distance(i, j) ∈ u do
3: increaseOccurrencesCtr((ωi, ωj)) in Γ
4: end for
5: for all γ ∈ Γ do
6: (ωi, ωj) := γ
7: if ∃(ωk, ωm) ∈ Γ\{γ} s.t. i ≤ k ≤ j ∨ i ≤ m ≤ j then
8: γ̂ := (ωk, ωm)
9: if calculateGlobalBenefit(γ) ≤ calculateGlobalBenefit(γ̂)

then
10: decreaseOccurrencesCtr(γ) in Γ
11: else
12: decreaseOccurrencesCtr(γ̂) in Γ
13: end if
14: end if
15: end for
16: sortByDecreasingOccurrencesCtr(Γ)
17: for all γi ∈ Γ s.t. i ∈ [0, 2CS) do
18: emplaceInDDU(γi)
19: end for

B. Structural retargeting algorithm
Besides this DDU configuration set, a further algorithm

is required to identify valuable segments of the original test
vector wrt. to the current DDU configuration, executes their
replacements and generates a wave trace or even a complete test
bench. In general, this means that the original vector Ω must be
retargeted to a suitable vector Ω as shown in Algorithm 2. Ω
consists of data bits ω1, ..., ωU and Ω consists of compressed
data bits ω1, ..., ωC to be stored in the test equipment.

The replacements ∆ must be calculated to determine Ω:
Every single replacement δ ∈ ∆ maps to an underlying CDW
as well as the range (si : sj) within the bit vector Ω, i.e.
ωi...ωj getting replaced by δ. This set of replacements can be
directly processed into the desired Ω, which is transmitted to
the TAP controller. Initially, ∆ is calculated as follows: At first,
the set ∆̂ of all possible replacements are determined (line
1). As a following step, valuable start points InitSet, which
have a benefit β greater than zero, are extracted and sorted
by β decreasingly (line 2 f.). Afterwards, all replacements
are inserted into ∆ as long as they are not conflicting with
previously inserted ones (line 6 to 12). If the complete coverage
of all data bits ωi′ with i′ ∈ [1, U ] is not achieved yet, the
remaining gaps must be filled. For simplifying the shown
algorithm, only SBIs are invoked. This means that the uncovered
single bit ωi′ is replaced by a suitable replacement δi′ with
β ≤ 0 (line 16 f.). Subsequently, the complete coverage is
ensured, the set of replacement is sorted and converted into
the final vector containing compressed data bits Ω (line 22 to
24), which finalizes the retargeting process. In case of using µ-

Algorithm 2 Retargeting algorithm: compress
Require: Ω

1: ∆̂ := { (CDW, si, sj) | Ψ(CDW ) = ωi...ωj ⊆ Ω ∧ i ≤ j }
2: InitSet := { δ ∈ ∆̂ | B( getCDW(δ) ) > 0 }
3: InitSet := sortByDecreasingBenefit( InitSet )
4: ∆ := ∅
5: {Processing start points}
6: for all init ∈ InitSet do
7: (CDW, si, sj) := init
8: if ∃i′ ∈ [i, j] : si′ isCoveredBy( ∆ ) then
9: continue {Skip conflicting replacement}

10: end if
11: ∆ := ∆ ∪ init {Add replacement}
12: end for
13: Ω := ∅
14: {Filling existing uncovered areas in bit vec}
15: for all i′ ∈ [1, U ] : si′ isNotCoveredBy( ∆ ) do
16: δi′ := (Ψ−1(ωi′), si′ , si′)
17: Ω := Ω ∪ {δi′}
18: end for
Ensure: Every data bit is covered.
19: {Generating sequence of compressed data bit}
20: ∆ := sortByIncreasingPos( ∆ )
Ensure: Next step only in case of µ-compr.
21: ∆ := mergeConsecutiveIndenticalCDWs( ∆ )
22: for all δi ∈ ∆ do
23: Ω := Ω concat Ψ−1( getCDW ( δi ) )
24: end for
25: return Ω

compr, the merging step has to be executed just before starting
the concatenation (line 21) by substituting specific not-empty
replacements with ∅.

VI. EXPERIMENTAL RESULTS

This section describes the experimental setup and the
execution of the experiments itself. One important element
of the implementation is a TAP controller, which provides a
JTAG interface fully compliant with IEEE 1149.1 standard [11].
For modeling a real use case scenario, a TDR was appended
to this design, which provides a serial & 8-bit parallel dual
port memory interface connected to the TAP controller. This
is done in such a way that all received data is stored into the
TDR, when the standardized JTAG instruction bypass is loaded.
Additionally, a Functional Logic (FL) module was integrated
to this design as well representing an FL block in later designs.

A Verilog test bench TB was written to emulate the
underlying JTAG protocol, which allows to evaluate this
proposed compression technique for TDV reduction. The test
bench allows to serve the JTAG protocol and transfers data
into an exposed TDR. The test bench TBleg transfers all test
data by using legacy JTAG only. In contrast, TBcompr takes
advantage of the proposed compression technique.

Different use cases require heterogeneous test data through-
put. Because of this, multiple test data sizes starting with 256
bytes (N1) up to 2048 bytes (N4) were assumed. All these
test data (RTDR_N1, ..., RTDR_N4) were generated by
a pseudo-random number generator based on the Mersenne
Twister algorithm, which determines {0, 1} as elements of bit
strings. These random bit strings are characterized by a very
high entropy, so that the lower bound for compression ratio
should be determined [12], which can be achieved by VecTHOR
while processing, e.g. precompressed test data.

The results of the random test data runs are shown in Table
III. Additionally, further benchmarks were also run for fully-
specified test data for various industrial circuits containing 35k
to 378k nets, which were provided by NXP Semiconductors
as listed in Table III. Here, the average value of all patterns is
used. Generally, three different measurements are captured: leg



No. test name run-time [s] #data-cycles size [bit] data reduction [%]

∅compr ∅µ-compr leg config ∅compr ∅µ-compr leg config ∅compr ∅µ-compr compr µ-compr

1 RTDR_256 0.93 1.11 2053 31 2436 2303 2048 28 1675 1542 16.8 23.3
2 RTDR_512 1.98 2.16 4101 31 4831 4528 4096 28 3302 2999 18.7 26.1
3 RTDR_1024 4.57 4.86 8197 27 9354 8915 8192 24 6450 6011 21.0 26.3
4 RTDR_2048 9.25 9.68 16389 27 19119 17986 16384 24 13218 12085 19.2 26.1

5 p100k 2.71 2.95 5909 65 4718 4471 5902 44 3180 2933 45.4 49.6
6 p267k 8.45 9.12 17338 62 14122 13421 17332 41 9514 8814 44.9 48.9
7 p330k 8.73 9.43 18016 61 14659 13977 18012 40 9895 9214 44.8 48.6
8 p35k 1.26 1.42 2919 59 2715 2533 2912 38 1785 1603 37.4 43.6
9 p378k 7.54 8.25 15738 51 16027 15067 15732 30 10743 9783 31.5 37.6
10 p78k 1.37 1.55 3154 52 3326 3101 3148 31 2205 1980 29.0 36.1
11 p81k 1.78 1.99 4035 56 4033 3760 4030 35 2692 2420 32.3 39.1

TABLE III: Benchmarks: Processing of random & industrial circuit design test data

refers to the legacy JTAG operation mode, compr means that
the new compression instruction is invoked and µ-compr takes
advantage of the merge-compress technique. All retargeting
processes were executed on an Intel Xenon E3-1240v2 3.4
GHz processor with 32 GB system memory. The implemented
retargeting framework is written in C++.

While retargeting the various benchmark test vectors, the
following values were captured and listed within the tables
column-wise:

run-time overall time for test vector retargeting,
#data-cycles number of test cycles within data path,
size overall size of TDI in bit,
data reduction achieved test data reduction in %.

The collected data shows that random test runs require a slightly
higher amount of test cycles. An analysis has shown that this
is connected with the drafted retargeting algorithm producing
several SBIs. These SBIs are required to ensure a full coverage
of the original test vector, which is strictly necessary for both
proposed compression techniques. Contrary, the overall number
of required test cycles for processing fully-specified regular
test data were measurably reduced by up to 23.2% (p100k).

Overall, the run-time in all following retargeting processes is
very low. VecTHOR achieves a TDV reduction between 16.8%
to 21.0% even for high entropy random data by using compr
and between 23.3% to 26.3% by using µ-compr technique.
While using real test data as input data, the compression ratio
is higher: compr achieves a compression ratio of 29.0% to
45.4% and the µ-compr technique enables an even higher ratio
of 36.1% to 49.6%. Generally, it can be observed that there
is only a low variance in the compression factors, i.e. the
compression mechanism is quite robust. These experiments
shows that the µ-compr technique affects the retargeting run-
time only slightly but achieves a higher compression ratio and
lower number of overall needed test cycles than the compr
technique. In fact, VecTHOR allows to reduce almost half of
the TDV, which directly correlates with the limited memory
resources to be allocated at the test equipment.

VII. CONCLUSIONS & FUTURE WORK

This paper proposed VecTHOR: A new low-cost compression
architecture for IEEE 1149-compliant TAP controllers con-
nected with a suitable framework, which provides a retargeting
mechanism for existing test vectors. VecTHOR facilitates to
take advantage of TDV reduction by causing only a slight
increase of the design size and manageable overhead in the
overall number of test cycles.

Several experiments have proven VecTHOR’s noticeable
TDV reduction: A compression ratio of almost half of the
TDV can be achieved for fully-specified test data on industrial
designs. Furthermore, in most of the cases the overall number
of required test cycles is reduced measurable as well. An
average TDV compression ratio of more than one quarter could

be observed even for high entropy test data, which clearly
recommends the usage of VecTHOR as a low-cost compression
architecture for compliant IEEE 1149 TAP controllers.

Future work focuses on improving the effectiveness of the
underlying retargeting process, e.g. by using formal methods,
which may lead to a reduced or even lower amount of test
cycles compared to the legacy operation mode. As shown by
the extended µ-compr technique, it can be expected that an
advanced reuse of transmitted CDWs internally increases these
benefits even more. Consequently, future work could focus
on a higher interlacement of compressed data or extend the
capabilities of addressing CDWs, which were not only the direct
predecessor but n transmissions in the past. Finally, VecTHOR
could be enhanced to be applied on TDO data as well or for
being connected with a serial interface of the FL block by
embedding a timing-aware parallel-to-serial mechanism.
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