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Abstract

This paper shows the experimental identification of the inverse dynamics model of a KUKA iiwa lightweight robot.
We use experimental data from optimal identification experiments to evaluate and compare two different identification
approaches: a classical method using a parametrized robot dynamical model and a machine learning method. Both
methods accurately estimate the dynamics model and this paper will discuss the pros and cons of each method.

1 Motivation
The main focus of this paper is on comparing two
different estimation techniques for the motion dynamics
of a robotic arm using the same experimental data.
A ‘classical’ technique that uses a parametrized robot
dynamic model based on rigid body physics, and a
machine learning technique which does not require
the prior knowledge and thus has the potential to
further automate the identification process and to capture
otherwise unmodeled dynamics.

2 Experimental Setup
The 7-joint robotic arm shown in Figure 1 is connected
to a controller by the manufacturer. It executes a small
relay program to receive commands to be executed in the
manufacturer-specific domain and to transmit the status
data of the arm through a network connection. An
external control system generates the joint commands
and handles the status data within a component-based
software framework ROCK 1.

Figure 1: KUKA iiwa R820 lightweight robotic arm
used for the experiments

3 Dynamics Identification
An inverse model of the robot motion dynamics is the
mapping from the motion of the robot, given by the
joint positions q(t) ∈ Rn, joint velocities q̇(t) and joint
accelerations q̈(t) to the actuation torques τ(t) ∈ Rn

dependent on time t:

τ(t) = f(q(t), q̇(t), q̈(t)). (1)

Knowledge of this model is a basis for dynamic control
schemes and estimation of contact forces from joint
torques.

3.1 Classical Method
Modeling Assuming the robot consists of n rigid
bodies connected by the actuated joints, we can apply an
algorithm such as the Recursive-Newton-Euler algorithm
or the Lagrange-Formalism to derive (1) from known
physical laws for the a-priori known geometry of
the robot. This yields a theoretical model, still
including unknown dynamic parameters such as the
mass mi, the three first moments of inertia mic[x|y|z],i,
or the six second moments of inertia (inertia tensor)
I[xx|xy|xz|yy|yz|zz],i, for each body i of the robot. Since
joint friction usually cannot be neglected, we add two
additional parameters, Fc,i and Fv,i, as coefficients of
a Coulomb and viscous friction model. Expressing
the set of parameters for each link in a coordinate
system fixed to the link, results in a set of constant
inertial parameters. Moreover, we can obtain a linear
relationship, advantageous for the further processing,
between these parameters and the rest of the theoretical
model. The resulting rigid-body model thus has the form

τ(t) = Y (q(t), q̇(t), q̈(t)) θ, (2)

where θ ∈ R12n denotes the parameter vector with the n
sets of parameters θi,

θi =
(
mi micx,i micy,i micz,i Ixx,i Ixy,i Ixz,i Iyy,i Iyz,i Izz,i Fc,i Fv,i

)T
.

1http://www.rock-robotics.org



Identification For a reference trajectory sampled at t =
k Ts, k ∈ 1...K with sampling time Ts, an identification
matrix Φ,

Φ =


Y (q(Ts), q̇(Ts), q̈(Ts))

. . .
Y (q(kTs), q̇(kTs), q̈(kTs))

. . .
Y (q(KTs), q̇(KTs), q̈(KTs))

 , (3)

can be created. Using stiff position controllers, close
tracking of the reference trajectory by the robot yields
the required torques, τm(kTs). A similar procedure
as in [4] has been applied, to obtain a sufficiently
rich, periodic, band-limited excitation trajectory through
optimization of the parameters of a Fourier-Series. The
dynamic parameters θ̂ are estimated by minimization of
the squared error between measured τm and computed
torque Φ θ̂, while physical consistency is handled by
constraints such as positive masses, positive definite
inertia tensor and positive friction coefficients.

3.2 Machine Learning Method
The machine learning method uses a committee of neural
networks for learning the inverse model of the robot.
The neural networks belong to the class of networks
where the first layer is generated randomly and kept
constant, and only the output layer is optimized during
learning. Examples of such networks are Echo State
Networks (ESNs) [2] and Extreme Learning Machines
(ELMs) [1]. These types of networks can easily be used
for either off-line or on-line learning and a number of
optimization techniques can be applied for optimizing
the output weights. In our particular implementation,
we used a committee of ten ELMs. Each ELM has
500 hidden neurons and a rectifier activation function
f(a) = max(0, a), where a is the activation of a hidden
unit node. Each ELM learns the function given by
Equation (1) directly from the training data with an input
vector u(t) = [q(t), q̇(t), q̈(t), 1]T ∈ R3n+1 and an output
vector τ̂ (t). Assume that Th = {h(t1), . . . ,h(tK)} is a
set of vectors of hidden unit activations calculated from
u(t) and {τ (t1), . . . , τ (tK)} is the corresponding set of
vectors of the measured torque values used for training.
The solution to the output matrix Wo is given by

Wo = (H + βI)−1T, (4)

where β = 1−p
p , p ∈ (0, 1], H = E[hhT ] and T =

E[ττT ]. In our experiment, p = 0.5. The time
complexity for training is comparable to the classical
method.

4 Discussion
Preliminary results are shown in Figure 2. Both methods
are able to fit the measured (training) data closely. Since
the measured data is the same as the training data here, a
validation experiment is still to be carried out, where e.g.
random point-to-point motions of the robotic arm is used
to generate independent measurement data for validation.

It is clear from the paper that the classical method
requires a great deal of knowledge to apply it for system
identification. On the other hand the machine learning
method requires a sufficiently large amount of data that
has all the necessary information needed for modeling.
An estimate of the amount and quality of data required,
e.g. the performance with less optimized identifiaction
experiments, for both methods will be discussed. We plan
to include results on on-line-learning of an inverse model
for the machine learning method [3] in the full paper.
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Figure 2: Comparison of measured and model-fitted
torques. From top to bottom: joints 1 to 7.
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