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Abstract
In this paper we present a novel approach to minimally supervised synonym ex-

traction. The approach is based on the word embeddings and aims at presenting a
method for synonym extraction that is extensible to various languages.

We report experiments with word vectors trained by using both the continuous
bag-of-words model (CBoW) and the skip-gram model (SG) investigating the effects
of different settings with respect to the contextual window size, the number of dimen-
sions and the type of word vectors. We analyze the word categories that are (cosine)
similar in the vector space, showing that cosine similarity on its own is a bad indicator
to determine if two words are synonymous. In this context, we propose a new mea-
sure, relative cosine similarity, for calculating similarity relative to other cosine-similar
words in the corpus. We show that calculating similarity relative to other words boosts
the precision of the extraction. We also experiment with combining similarity scores
from differently-trained vectors and explore the advantages of using a part-of-speech
tagger as a way of introducing some light supervision, thus aiding extraction.

We perform both intrinsic and extrinsic evaluation on our final system: intrinsic
evaluation is carried out manually by two human evaluators and we use the output
of our system in a machine translation task for extrinsic evaluation, showing that the
extracted synonyms improve the evaluation metric.
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1. Introduction

The research presented here explores different methods to extract syn-
onyms from text. We try to do this using as little supervision as possible,
with the goal that the method can be applied to multiple languages.

1.1. Motivation

The initial motivation for our research comes from machine translation
(MT) evaluation. MT output to be evaluated is referred to as a hypothesis trans-
lation. A reference translation is a translation produced by a proficient human
translator. To evaluate an MT system, hypothesis translations are compared
with reference translations. This comparison is often done automatically.

While simple automatic evaluation approaches (Snover et al., 2006; Pap-
ineni et al., 2002; Doddington, 2002) are based on exact (sub-)string matches
between hypotheses and references, more recent evaluation methods are us-
ing machine learning approaches (Stanojević and Sima’an, 2014; Gupta et al.,
2015b; Vela and Tan, 2015; Vela and Lapshinova-Koltunski, 2015) to determine
the quality of machine translation. More sophisticated approaches such as
Meteor (Denkowski and Lavie, 2014; Banerjee and Lavie, 2005), Asiya (Gonzà
lez et al., 2014), and VERTa (Comelles and Atserias, 2014), incorporate lexical,
syntactic and semantic information into their scores, attempting to capture
synonyms and paraphrases, to better account for hypotheses and references
that differ in form but are similar in meaning.

Meteor computes an alignment between the hypothesis and reference to
determine to what extent they convey the same meaning. Alignments are de-
fined by what parts of the two sentences can match. Finding possible matches
is done by means of four modules (1) exact matching, (2) stemmed matching,
(3) synonym matching, and (4) paraphrase matching. Exact matching uses
string identity between tokens, stemmed matching between stemmed tokens.
Paraphrase matching employs a paraphrase database to match phrases which
may not be string identical. The synonym module does the same for words
and uses a synonym database resource. For example, the best alignment for
the hypothesis sentence 1 and the reference sentence 2 is shown in Figure 1.

(1) Hypothesis:
The practiced reviewer chose to go through it consistently.

(2) Reference:
The expert reviewers chose to go through it in a coherent manner.
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Figure 1. Meteor 1.5 alignment of hypothesis sentence 1, and reference
sentence 2

In Figure 1, exact matches are indicated by black dots. The stemming mod-
ule matched “reviewer” with “reviewers”. The paraphrase module matched
“consistently” with “in a coherent manner”, and the synonym module matched
“practiced” with “expert”.

Three of these matching modules use language-dependent resources. Para-
phrases and synonyms come from a pre-constructed lexical database, and
stemming happens with a pre-trained stemmer. For this reason, not all mod-
ules are available for all languages. Currently in Meteor 1.5, the synonym
module is only available for English. The module uses synonyms from the
lexical database WordNet (Miller, 1995). Manual construction of lexical re-
sources such as WordNet is time consuming and expensive, and needs to be
done for each different language.

By contrast, large text resources are available for many languages. In our
research we investigate whether, and if so to what extent, it is possible to au-
tomatically extract synonym resources from raw text using unsupervised or
minimally supervised methods based on the distributional hypothesis: words
that occur in the same contexts tend to have similar meanings (Harris, 1954).
In particular we use word embeddings, i.e. dense distributional word vectors
(Mikolov et al., 2013a), to compute similarity between words. We develop a
new similarity metric, relative cosine similarity, and show that this metric im-
proves the extraction of synonyms from raw text. We evaluate our method us-
ing both intrinsic and extrinsic evaluation: we use human evaluation to judge
the quality of synonyms extracted and employ the extracted synonyms in the
synonymy module of Meteor.
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1.2. Word and Synonym

In most recent works on synonym extraction the synonyms from WordNet
are used for evaluation. In WordNet, synonyms are described as “words that
denote the same concept and are interchangeable in many contexts”. In the
current work, our notion of words is merely a string of characters. Since there
is homography, i.e. one word can have different lemmas, with different mean-
ings and origins, we modifiy this notion of synonyms slightly. We think of
synonyms as words that denote the same concept and are interchangeable in
many contexts, with regard to one of their senses.

1.3. Outline

In Section 2, we will proceed to describe the distributional word vectors
we used in our experiments, and the related work in synonym extraction. In
Section 3 we describe different experiments in which we explore synonym ex-
traction using the continuous bag-of-words model and the skip-gram model.
Section 4 describes and evaluates a few methods that introduce some supervi-
sion, such as using a part-of-speech tagger. In Section 5 we do an evaluation of
a system that combines different proposed findings, for English and German.
We evaluate manually, and additionally by using the extracted synonyms for
the task of machine translation evaluation. Section 6 concludes the article by
giving a summary of the findings and possibilities for future work.

2. Related Work

2.1. Distributional Word Vectors

Distributional word vectors, or word embeddings, are word representations
that can be constructed from raw text, or a collection of documents, based
on their context. The representation of each word will be a vector of numbers,
usually real numbers. In some cases linguistic information, such as word de-
pendency information, or morphological information, is also used during the
construction process (Levy and Goldberg, 2014; Luong et al., 2013). These
word vector representations can then be used to calculate, for example, word
similarity and have a wide application domain.

In the last few years many new methods have been proposed to construct
distributional word vectors based purely on raw text (Mikolov et al., 2013a;
Pennington et al., 2014, inter alia). Some methods also use the document struc-
ture that can be present in the data (Huang et al., 2012; Liu et al., 2015a,b).
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In this work, we experiment mostly with word vectors trained using the
continuous bag-of-words model (CBoW), and the skip-gram model (SG) developed
by Mikolov et al. (2013a). It has been shown that these vectors, especially the
skip-gram model, can also encode relations between words in a consistent way
(Mikolov et al., 2013b). This means that they not only encode word similarity,
but also similarity between pairs of words. For example, the offset between the
vectors for “queen” and “king” lies very close to the offset between “woman”
and “man”, i.e. v(queen) − v(king) ≈ v(woman) − v(man).

This property has been exploited to extract hypernyms from raw text by
Fu et al. (2014) and Tan et al. (2015). The work of Fu et al. (2014) automatically
learned, in a supervised way, a piece-wise linear projection that can map a
word to its hypernym in the word vector space, for Chinese. To do this they
clustered the vector offsets (v1−v2), and then found a projection for each clus-
ter. Using this method they could successfully find hypernym pairs. Tan et al.
(2015) searched for hypernym pairs in English. They also projected a word to
its hypernym in the word vector space. However, instead of automatically
learning this projection by using a thesaurus, they concatenated the words
“is”, and “a” into an “is_a” token in the corpus, and used this as projection.
So, v(w)+v(is_a) would lie very close to the vector for the hypernym of word
w.

Both the CBoW and the SG model can be seen as a simplified feedforward
neural network, that is constructed from a word and its context. The archi-
tecture of the network is shown in Figure 2. CBoW word representations are
optimized for predicting the word from its context, the surrounding words.
SG word representations are optimized for predicting the context from the
word, i.e. given the word, predicting its surrounding words.

In Figure 2, the word is represented as w(t); the contextual window, here
of size 2 (two words to the left, and two to the right), is represented as w(t −
2), w(t − 1), w(t + 1), and w(t + 2). The final word vector is built from the
weights of the projection layer. During training, the window iterates over the
text, and updates the weights of the network. Two training methods were
described by Mikolov et al. (2013a), namely hierarchical softmax, and negative
sampling. In (hierarchical) softmax, the weights are updated based on the
maximization of log-likelihood. In negative sampling, the weights get up-
dated based on whether or not the target word is drawn from the training set,
or from a random distribution. The implementation in word2vec1 has been
shown to be quite fast for training state-of-the-art word vectors.

1https://code.google.com/p/word2vec/
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Figure 2. Continuous bag-of-words architecture on the left, and skip-gram on
the right.

Depending on the application, it can be beneficial to modify pre-trained
word vectors towards specific properties. Faruqui et al. (2015) refined a vec-
tor space using relational information, such synonymy and hypernymy, from
a lexical database. For the task of antonym detection, Ono et al. (2015) trans-
formed a pre-trained vector space by minimizing the similarity between syn-
onyms and maximizing the similarity between antonyms. Since we would
like to use as little supervision as possible, we did not resort to these particu-
lar methods.

2.2. Synonym Extraction

Many methods that have been developed for synonym extraction use three
main ideas. Firstly, the distributional hypothesis (Van der Plas and Tiede-
mann, 2006; Agirre et al., 2009; Gupta et al., 2015a; Saveski and Trajkovski,
2010; Pak et al., 2015; Plas and Bouma, 2005). Secondly, the assumption that
words that translate to the same word have the same, or a very similar, mean-
ing (Van der Plas and Tiedemann, 2006; Gupta et al., 2015a; Saveski and Tra-
jkovski, 2010; Lin et al., 2003) . And third, the use of linguistic patterns that are
typical, or atypical for synonyms to occur in (Lin et al., 2003; Yu et al., 2002).

Van der Plas and Tiedemann (2006) used both distributional word similar-
ity, and translational context for synonym extraction in Dutch. They used a
large monolingual corpus to construct a measure for distributional similarity,
which was based on grammatical relations. Furthermore, they used different
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parallel corpora, and automatic alignment, for the construction of a transla-
tional context. A contexual similarity measure is constructed to rank the best
synonym candidates. The authors remark that when only using distributional
similarity there were some word categories that show up frequently but are
not synonyms, but rather antonyms, (co)hyponyms, or hypernyms. When us-
ing the translational context, these error categories were less frequent, and
more synonyms were found. In 2010, an adaptation of the method achieved
31.71% precision at the best candidate (P@1) for high frequency words (most
frequent 1

3
of the vocabulary), 16.22% for low frequency words (least frequent

1
3
), and 29.26% for remaining middle frequency words (van der Plas et al.,

2010). Evaluation was done using a selection of 3000 words from Dutch Eu-
roWordNet (Vossen, 1998).

It is very difficult to compare different methods of synonym extraction by
only looking at their performance measures, as most papers use different ways
to evaluate their approach. They use different word frequency ranges, lan-
guage(s), textual resources, and gold standard synonyms. These can all have
a large influence on the final evaluation.

The word categories mentioned by Van der Plas and Tiedemann (2006)
seem to be a common problem when using purely distributional methods (Pak
et al., 2015; Plas and Bouma, 2005; Lin et al., 2003). However, the advantage of
using methods based on distributional properties is that the coverage is usu-
ally greater than that of manually constructed corpora, as Lin et al. (2003) also
observed. They tackle the problem of discriminating synonyms from other
strongly related words using linguistic patterns. They mention some English
patterns in which synonyms hardly occur, like “from X to Y”, and “either X
or Y”.

Rather than filtering by means of linguistic patterns, Yu et al. (2002) used
particular patterns in which synonyms occur frequently. Their application
domain was finding synonyms for gene and protein names. They found that
in MEDLINE abstracts synonyms are often listed by a slash or comma symbol.
This is probably a more domain dependent pattern. Some other patterns they
found were “also called”, or “known as”, and “also known as”.

In this work, we do not resort to a pattern based approach, as they are
language and domain dependent.

3. Synonyms in Word Vector Space

In this Section we explain different experiments we carried out to analyze
how synonyms behave in different word vector spaces. First, we analyze the
effect of contextual window size, the number of dimensions, and the type of
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word vectors on the precision of extraction, for English and German. Sec-
ondly, we look closely at the word categories that are (cosine) similar in the
vector space. Then, we look at cosine similarity and introduce relative cosine
similarity. Lastly, we examine the overlap of the most similar words in differ-
ent vector spaces.

3.1. Data and Preprocessing

For English and German we use a 150 million word subset of the NewsCrawl
corpus from the 2015 Workshop on Machine Translation2. As preprocessing
for both languages, we apply lowercasing, tokenization, and digit conflation.
In this work, we do not deal with multiword units. For example, for a separa-
ble verb in German or English (e.g. abholen / to pick up) can only be found
as one word in infinitival or past perfect form (abgeholt/picked up).

We only consider the vocabulary of words that occur at least 10 times in the
corpus to ensure that the vectors have a minimum quality. We randomly split
the vocabulary into a training, development, and testing set with proportions
8:1:1 respectively. We used vocabularies Strain, and Sdev in the experiments
to explore, and analyze the different methods described in the paper. After
all initial experiments were done, we ran the experiments again using Stest
instead of Sdev to evaluate our method. In Table 1, statistics about these vo-
cabularies are given.

Language Corpus V V≥10 SV≥10
Vtrain Strain Vdev Sdev Vtest Stest

English 150M 650.535 136.821 21.098 109.454 16.882 13.681 2.116 13.683 2.100
German 150M 2.421.840 279.325 16.304 223.458 13.056 27.933 1.599 27.933 1.649

Table 1. Dataset Statistics: V indicates the size of the full corpus vocabulary,
V≥10 indicates the vocabulary size for words with counts greater than or equal to
10. Sx indicates the number of words for which at least one synonym is known,

that also occurs in V≥10.

For evaluation, we use the synonyms from WordNet 3.0 for English, and
GermaNet 10.0 for German. In both WordNet and GermaNet words carry a
corresponding part-of-speech. In WordNet these are nouns, verbs, adjectives,
and adverbs. In GermaNet, synonyms are given for nouns, verbs, and adjec-
tives. Because a given word’s part of speech is unknown here, we consider the

2http://www.statmt.org/wmt15/translation-task.html
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synonyms of each word to be those of all the parts of speech it can potentially
have in WordNet or GermaNet.

3.2. Evaluation

We evaluate several experiments in terms of precision, recall and f-measure.
Precision (P) is calculated as the proportion of correctly predicted synonym
word pairs from all predictions. Because synonymy is symmetric, we consider
the word pair (w1, w2) equivalent to (w2, w1) during evaluation. Recall (R) is
calculated as the proportion of synonym pairs that were correctly predicted
from all synonym pairs present in WordNet, or GermaNet. In the experiments
we sometimes only search for synonyms of words from a subset of the vocab-
ulary (Strain or Stest). In this case, recall is calculated only with regard to
the synonym pairs from WordNet or GermaNet that involve a word from the
mentioned subset. F-measure is given by:

F = 2 · P · R
P + R

3.3. Quantitative Analysis of Training Parameters

In this experiment, we trained CBoW, SG, and Global Vectors (GloVe) (Pen-
nington et al., 2014) with different training parameters, and evaluated syn-
onym precision for the {1st, 2nd, 4th}-most-similar word(s), for vocabulary
Strain. With similarity we refer to cosine similarity. The hyperparameters we
varied are the contextual window size, and the number of dimensions of the
vectors. The window size varied over {2, 4, 8, 16, 32}. The number of dimen-
sions varied over {150, 300, 600, 1200}. The experiment is conducted for both
English and German, and used 150M training tokens per language. We fixed
the number of training iterations: 5 for CBoW and SG, and 25 for GloVe. For
CBoW and SG training we used negative sampling with 5 negative samples 3.

The results for the CBoW and SG vectors, for both English and German, are
shown in Tables 2, 3, 4, and 5. We excluded the results for the GloVe vectors,
as they showed lower precision than SG and CBOW, and we did not use them
in further experiments. The general trends of the GloVe vectors were that they
had higher precision for larger window sizes. The vectors with highest preci-
sion of 0.067 for English were of dimension 300, with a window size of 32. For
German, the highest precision was 0.055, and the vectors were of dimension
1200, with a window size of 32 as well.

3These are the default values given by the respective authors.

119



PBM
L
105

APRIL
2016

English CBoW
dim. 150 300 600 1200
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.077 0.076 0.072 0.066 0.058 0.084 0.083 0.079 0.072 0.068 0.086 0.086* 0.081 0.074 0.068 0.083 0.083 0.082 0.073 0.067
P-2 0.058 0.056 0.055 0.051 0.046 0.062 0.061 0.059 0.055 0.052 0.063 0.063 0.060 0.056 0.052 0.061 0.061 0.060 0.055 0.050
P-4 0.039 0.039 0.038 0.036 0.032 0.042 0.042 0.041 0.039 0.036 0.043 0.043 0.042 0.039 0.036 0.042 0.042 0.041 0.039 0.036

Table 2. Precision for different window sizes and number of dimensions, using the CBoW model, for English.

English Skip-gram
dim. 150 300 600 1200
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.069 0.062 0.055 0.048 0.044 0.069 0.062 0.053 0.048 0.044 0.066 0.059 0.046 0.043 0.039 0.061 0.051 0.039 0.034 0.030
P-2 0.050 0.045 0.040 0.037 0.034 0.050 0.046 0.039 0.036 0.033 0.049 0.044 0.035 0.032 0.030 0.045 0.039 0.029 0.026 0.024
P-4 0.034 0.032 0.028 0.026 0.024 0.034 0.032 0.028 0.025 0.024 0.033 0.030 0.025 0.023 0.021 0.031 0.026 0.020 0.018 0.017

Table 3. Precision for different window sizes and number of dimensions, using the Skip-gram model, for English.

German CBoW
dim. 150 300 600 1200
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.073 0.082 0.082 0.083 0.080 0.076 0.084 0.086 0.086 0.082 0.076 0.087 0.089* 0.088 0.080 0.076 0.083 0.086 0.085 0.081
P-2 0.052 0.057 0.057 0.058 0.056 0.054 0.060 0.062 0.061 0.059 0.054 0.060 0.062 0.062 0.059 0.053 0.059 0.062 0.060 0.058
P-4 0.034 0.036 0.038 0.038 0.037 0.036 0.039 0.041 0.040 0.039 0.035 0.039 0.041 0.041 0.040 0.035 0.039 0.041 0.040 0.039

Table 4. Precision for different window sizes and number of dimensions, using the CBoW model, for German.

German Skip-gram
dim. 150 300 600 1200
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.065 0.068 0.066 0.064 0.064 0.064 0.069 0.064 0.062 0.060 0.063 0.064 0.057 0.051 0.049 0.061 0.059 0.046 0.039 0.035
P-2 0.048 0.049 0.049 0.046 0.046 0.048 0.049 0.048 0.045 0.046 0.047 0.046 0.042 0.039 0.037 0.046 0.043 0.035 0.030 0.027
P-4 0.032 0.033 0.032 0.032 0.031 0.033 0.033 0.032 0.031 0.031 0.031 0.031 0.029 0.027 0.026 0.031 0.029 0.025 0.022 0.020

Table 5. Precision for different window sizes and number of dimensions, using the Skip-grammodel, for German.
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In general, it can be noticed from Tables 2, 3, 4, and 5 that the CBoW vectors
give higher precision than SG for both German and English. A reason for this
could be that CBoW vectors tend to be slightly more syntactical compared to
SG vectors. It could be that the syntactical constraint on synonyms, as they
are to appear in similar contexts, has enough influence for CBoW vectors to
perform better.

It can also be noticed that for English, smaller contextual windows (2 and
4) generally give better precision, for both CBoW and SG vectors. For Ger-
man, the optimal window size lies between 8 and 16 for CBoW, and around 4
for SG vectors. The difference in optimal window sizes between English and
German could be due to the difference in types of synonyms that are avail-
able. WordNet contains synonyms for nouns, verbs, adjectives and adverbs,
whereas GermaNet does not include synonyms for adverbs. It could be that
adverbs require only a small contextual window to be predicted, compared to
nouns, verbs, and adjectives. Another observation that can be made is that for
both English and German the optimal window size for SG tends to be slightly
lower than for CBoW vectors. Again, this can be due to training difficulty.
A larger window can make the training of the SG model more difficult, as a
bigger context is to be predicted from one word.

To get an impression of the performance if we would use the most-similar
words as synonyms, we calculated precision, recall and f-measure on the test
set Stest. For English, using the CBoW vectors of dimension 600 with window
size 4, precision is 0.11, recall 0.03, and f-measure is 0.05. For German, using
a CBoW model of dimension 600 with a window size of 8, precision is 0.08,
recall is 0.05, and f-measure 0.06. For both languages these scores are very
low. In the next section, we look at some frequent error categories, with the
goal to get more insight into the reason behind these low scores.

3.4. Distributionally Similar Words

Only looking at precision, calculated on WordNet or GermaNet, allows us
to compare different vector spaces with regard to finding synonyms. How-
ever, it might not reflect actual precision, due to lack of coverage of WordNet
and GermaNet. Also, it gives only few cues for possible improvements.

For this reason, we also looked more in depth at the most similar words.
For 150 randomly chosen English words from Strain we looked at the most-
similar word, as well as the 2nd-most-similar words, and categorized them.
This was done manually. Categories were made based on what was found
during the analysis. The word vectors used to create the most similar and
2nd-most-similar words were from the CBoW model of dimension 600, with
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window size 2, from the previous experiment. The results from this analysis
are shown in Table 6. The categories we found are the following:

• WordNet-Synonyms: Synonyms as given in WordNet.
• Human-judged Synonyms: Synonyms judged by a fluent, but non-native,

English speaker.
• Spelling Variants: Abbreviations, differences between American and British

spelling, and differences in hyphenations.
• Related: The two words are clearly semantically related, but not consis-

tently enough to make a separate category.
• Unrelated / Unknown: The relation between the two words is unknown.
• Names: Names of individuals, groups, institutions, cities, countries or

other topographical areas.
• Co-Hyponyms: The two words share a close hypernym.
• Inflections / Derivations: Inflections or derivations other than plural.
• Plural: The found word is the plural version of the given word.
• Frequent collocations: The two words occur frequently next to each other.
• Hyponyms: The found word is conceptually more specific.
• Contrastive: There is an opposition or large contrast between the mean-

ing of the two words.
• Hypernym: The found word is conceptually more general.
• Foreign: A non-English word.
What can be noticed from Table 6 is that the number of human-judged

synonyms is about twice as large as the number of synonyms given by Word-
Net, even though WordNet considers spelling variants also to be synonyms.
This suggests that the actual precision may lie a corresponding amount higher.
Where WordNet would give a precision of 0.12 for this set of words, the human
annotation gives 0.25. A reason for this large difference can be that resources
like WordNet are usually constructed by manually adding the synonyms for
a given word. This requires the annotator to think of all the word senses of a
word, and their synonyms. This can be a difficult task. Here, the two words
are presented and the question is whether they are synonyms. It is probably
easier to find the corresponding word senses of both words in this case.

The two biggest error categories are the related words, and unknowns.
Since both categories are rather vaguely defined, and consisting of many sub-
categories we will not go into much more detail on these. There appears some
overlap with the error types that were also found by Lin et al. (2003), Plas
and Bouma (2005) and Pak et al. (2015), namely co-hyponyms, and hyponyms.
However, contrastives and hypernyms are not as frequent in our experiment.
Some other major error categories we found are different types of inflections
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Category 1st-most-similar 2nd-most-similar Example
WordNet-Synonyms 18 7 laundry / washing
Human-Synonyms 29 20 masking / obscuring
Spelling Variants 8 4 commander / cmdr
Related 27 33 head-on / three-vehicle
Unrelated/Unknown 13 20 gat / por
Names 15 15 consort / margherete
Co-hyponyms 15 13 sunday / saturday
Inflections/Derivations 12 10 figuring / figured
Plural 11 2 tension / tensions
Frequent Collocations 7 5 dragon / lantern
Hyponyms 5 12 swimsuit / bikini
Contrastive 3 7 rambunctious / well-behaved
Hypernym 2 4 laundry / chores
Foreign 2 4 inhumation / éventualité

Table 6. Counts per category for the most similar word and second most similar
word, of 150 randomly chosen English words, in a CBoW model of dimension 600

with a window size of 2.

and derivations, and in particular plurals. This category is not a major prob-
lem for our application—machine translation evaluation—as the inflections
might already have been matched by the stem module of Meteor. Another
category that is fairly frequent involves names. The reason is probably that
names might not have many single-word synonyms. The error category of
frequent collocations can be explained by the fact that both words usually oc-
cur together, and are thus trained on a set of very similar contexts.

3.5. Relative Cosine Similarity

One idea we tested with the goal of improving precision was to only con-
sider word pairs that have very high cosine similarity. In practice this would
mean setting a threshold, and only consider those word pairs that have a co-
sine similarity higher than the threshold. Our expectation was that synonyms
are most similar compared to the other word relations. We plotted precision,
recall and f-measure on Strain against the cosine similarity threshold. This is
shown in Figure 3.

What we found however, is that even increasing the cosine similarity thresh-
old does not give an increase in precision. It does not even reach the precision
we achieved from our baseline of taking the most-similar word. This indi-
cates that cosine similarity on its own is not a good indicator for synonymy.
Still, we get higher precision with choosing the most-similar word. We man-
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Figure 3. Precision, recall, and
f-measure on Strain plotted against the

cosine similarity threshold.

Figure 4. Cosine similarity against
n-most similar position, for the
3-most-similar words, where the

most-similar word is a synonym or a
related word (dashed).

ually looked at the top 10 most-similar words of the 150 words from the pre-
vious section, and their cosine similarity. We noticed that when a synonym,
inflection or contrastive occurs in the top 10, their cosine similarity is usu-
ally much higher than that of the other words in the top 10. That is, the dif-
ference in cosine-similarity between the most-similar word, and the second-
most-similar word is very high for these categories. When we looked at this for
other categories such as co-hyponyms, unknowns, and simply related words,
this was not the case. This can be seen when we plot the cosine similarity
of the 3-most-similar words for synonyms, and related words taken from the
previous experiment.

This is plotted in Figure 4, from which two things can be noticed. Firstly,
it is hardly possible to separate the start, at position 1, of the solid lines (syn-
onyms) from the dashed lines (related words) by means of a horizontal co-
sine threshold. This corresponds to the observation we made earlier, that
a cosine similarity threshold does not increase precision. Secondly, many
solid lines tend to decrease, and many dashed lines stay relatively horizon-
tal. This indicates that, in general, the difference in cosine similarity between
synonyms and other similar words (from the top 10) is greater compared to,
say, co-hyponyms. We also found this bigger difference for inflections and
contrastives. This observation could be used to increase precision, as we can
possibly filter out some co-hyponyms, related words, and unknowns.
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To test this hypothesis, we developed a different measure to calculate sim-
ilarity. We calculate similarity relative to the top n most similar words. We
calculate relative cosine similarity between word wi and wj as in Equation 1.

rcsn(wi, wj) =
cosine_similarity(wi, wj)∑

wc∈TOPn
cosine_similarity(wi, wc)

(1)

This will give words that have a high cosine similarity compared to other
words in the top 10 most-similar words a high score. If all words in the top 10
most-similar words have almost an equal cosine similarity, they will get a
lower score. When we do the same experiment again, changing the similarity
threshold and plotting precision, recall and f-measure, using relative cosine
similarity instead, we can see that precision goes up when we increase the rcs-
threshold. This is shown in Figure 5. In Figure 6, it can also be noticed that
when we look at the relative cosine similarity for the three most-similar words
of words where the most similar word is synonym (solid), or simply a related
word (dashed), part of the synonyms is now separable from the related words
by a horizontal line, i.e. an rcs-threshold. This confirms our earlier hypothe-
sis that synonyms have a bigger difference in cosine similarity with respect to
other similar words.

We used WordNet synonyms here to calculate precision, recall and f-meas-
ure, and find the optimal rcs10-threshold. However, what can be noticed is
that the tilting point for the precision to go up lies at an rcs10-threshold of 0.10.
This is not a coincidence, as 0.10 is also the mean of the relative cosine simi-
larities for 10 words. If a word has an rcs10 higher than 0.10, it is more similar
than an arbitrary similar word. If synonyms are more similar compared to
other similar word relations, we can find this tilting point at 1

n
, where n is the

number of most-similar words we consider for calculating rcsn.
Thus relative cosine similarity gives us the flexibility to increase precision,

at the cost of recall, if needed. We can also identify the tilting point for pre-
cision to increase. For English and German this tilting point appears to lie
at approximately the same threshold value. This will be shown in the next
section, particularly in Figure 7.

3.6. Overlap of Similar Words in Different Vector Spaces

In this section, we explore whether we could use a combination of differ-
ent vector spaces, trained using different training parameters to improve the
synonym extraction. For this we analyze the most-cosine-similar words of the
vocabulary Strain in different vector spaces. We considered pairs of vector
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Figure 5. Precision, recall, and
f-measure on Strain plotted against the

relative cosine similarity threshold.

Figure 6. Relative cosine similarity
against n-most similar position, for the

3-most-similar words, where the
most-similar word is a synonym or a

related word (dashed).

spaces with different training parameters. Then, we calculated the probability
that an arbitrary word is most-cosine-similar in both vector spaces (P(both)).
We also calculated the probability that a synonym is most-cosine-similar in
both vector spaces (P(both|synonym)). We altered the dimension, window
size and model (CBoW vs. SG). We mostly considered CBoW vectors, as they
gave highest precision in previous experiments. The results of this experiment
are shown in Table 7. What can be seen in this table is that for all changes in

Constant Varies P(b) P(b|syn) P(b|syn) − P(b)
CBoW win. 2 dim. 300 & 600 0.38 0.67 0.29
CBoW dim. 600 win. 2 & 4 0.31 0.60 0.30
CBoW dim. 600 win. 4 & 8 0.32 0.60 0.28
CBoW dim. 600 win. 2 & 8 0.24 0.52 0.28
dim. 300 win. 2 CBoW & SG 0.19 0.48 0.29

Table 7. Overlap between differently trained pairs of vector spaces, for arbitrary
words, and synonyms. P(b) is the probability of a word pair being most-similar in

both vector spaces, P(b|syn) is conditioned on the word being synonym.
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parameters P(both|synonym) is considerably higher than P(both). This in-
dicates that it can be a good cue for synonymy if a word is most-cosine-similar
in differently trained vector spaces. We can also see that the general overlap
seems highest when only changing the number of dimensions, and lowest
when changing the model, and fairly constant when doubling the window
size. For all conditions, P(both|synonym) − P(both) is fairly constant. This
indicates that the cue for synonymy is almost equal for all pairs.

Because the numbers seem quite constant, it may be due to the inflections
that overlap between both vector spaces. For this reason we repeated the ex-
periment, but only considering word-pairs that have a Levenshtein distance
greater than 3, to exclude the majority of the inflections. The results are shown
in Table 8. Here we can see that the conclusion from Table 7 also holds for non-
inflections. So, it is not just the inflections that overlap.

Constant Varies P(b) P(b|syn) P(b|syn) − P(b)
CBoW win. 2 dim. 300 & 600 0.31 0.61 0.30
CBoW dim. 600 win. 2 & 4 0.23 0.55 0.32
CBoW dim. 600 win. 4 & 8 0.24 0.56 0.32
CBoW dim. 600 win. 2 & 8 0.17 0.48 0.31
dim. 300 win. 2 CBoW & SG 0.12 0.42 0.30

Table 8. Overlap between differently trained pairs of vector spaces, for arbitrary
words, and synonyms, when only considering word-pairs with a Levenshtein

distance larger than 3. P(b) is the probability of a word pair being
most-similar in both vector spaces, P(b|syn) is conditioned on the word being

synonym.

To use this observations in our earlier synonym extraction method we cal-
culate rcsm10 in each vector space m for the 10 most-cosine-similar words on
Strain in each space, and simply sum the rcs10 of the different models. The
summed relative cosine similarity between wordwi andwj is calculated in Equa-
tion 2, where TOPm

10(wi) is the set containing the 10 closest cosine-similar
words of wi in vector space m.

rcsM10 =

M∑
m

{
rcsm10(wi, wj) if wj ∈ TOPm

10(wi)

0 otherwise
(2)
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As in the previous section, we again plot precision, recall, and f-measure against
the threshold, but now using the summed rcs10 of a CBoW model, and a SG
model. We did this for both German and English. For English, the CBoW
model has 600 dimensions, and was trained with a window size of 4. The SG
model has 150 dimensions, and a window size set to 2. For German, the CBoW
model has 600 dimensions as well, and but a window size of 8. The results
are shown in Figure 7. If we compare it to the results from Figure 5, we can
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Figure 7. Precision, recall, and f-measure, on Strain for English (left) and
German (right), using the summed rcs10 score for a CBoW and SG model.

see that for English, the general precision, recall, and f-measure lies higher
using two vector spaces. Also, we can see that the tilting point now lies at
around 0.2 instead of 0.1. It lies twice as high, as we sum rcs10 of two spaces.
Also, our expectation that for different languages this tilting point lies at the
same threshold seems correct for German. The bump in both graphs around
a threshold of 0.1 shows up because some words only occur in the top-10 most
similar words in one of the two vector spaces.

When we choose the threshold that gives optimal f-measure on the Strain,
and use it to extract synonyms for Stest, we find for English a WordNet preci-
sion of 0.12, a recall of 0.05, and an f-measure of 0.07. Compared to our base-
line of only taking the most similar word, precision is 1% absolute higher,
recall is 2% higher, and f-measure 1%. For German, we find a precision of
0.12, recall of 0.07, and f-measure of 0.09. Compared to the baseline, precision
went up with 4% absolute, recall with 2%, and f-measure with 3%. From this,
we conclude that combining differently trained models helps to extract syn-
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onyms, both in precision, and recall. Also, combining the scores from the dif-
ferent vector spaces does not prevent us from finding the tilting point where
precision rises.

4. Adding Parts-of-Speech
We now look at using a part-of-speech (POS) tagger to improve the syn-

onym extraction in various ways.

4.1. Homography

The initial motivation to resort to POS-tagging is homography, i.e. one word
(here, string of non-space characters) having several word-senses. In Figure 8,
an example of homography of the words <phone> and <call> is given. The
word senses and their respective parts of speech are shown in the leaves of
the tree. The dotted link represents the synonym relation between the word-
senses of <phone> and <call> for the action of making a telephone call...

..<phone>

.

..
a speech sound

Noun

.

..
a telephone

Noun

.

..
to phone

Verb

.

..<call>

.

..
to call
Verb

.

..
to name

Verb

.

..
a cry
Noun

Figure 8. Schematic representation of the synonym relation between the
corresponding word senses of the words <phone>, and <call>.

Homography can be a problem for finding synonyms when using one vec-
tor for each word, as the vector for <phone> is trained on all the different
word-senses that occur in the corpus. In the case of <phone>, it is probably
used more frequently as the noun telephone, or as a verb for the action of call-
ing, compared to the noun meaning of a speech sound, in our news corpus.
This can make it difficult to find synonyms with regard to this less frequent
meaning.

To train vector representations for each word sense, ideally we would dis-
ambiguate each word in the corpus first, and then train the vectors on these
disambiguated meanings. To our knowledge, there is not yet the possibility
to do completely unsupervised word sense disambiguation. As can be seen
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in the example in Figure 8, some of the word senses can be separated by their
parts of speech. We experimented with this, since POS tagging is available for
many languages, and there are also options for word clustering/unsupervised
POS-tagging (Christodoulopoulos et al., 2010).

4.2. Simple Part-of-Speech Tagging

In order to separate some word senses we preprocessed both the English
and German corpora from the previous chapter with the Stanford POS tagger
(Toutanova et al., 2003), using the fastest tag-models. Afterwards, we con-
flated the POS tags to five categories: (1) nouns, (2) verbs, (3) adjectives, (4)
adverbs, and (5) the rest (no tag). An example of what the text looks like after
tagging and simplification is given in Sentence 1.

1. Every day_N , I walk_V my daily_Adj walk_N .
In the example we can see that walk_V is distinct from walk_N, which will
give us two different vectors. We chose these four tags as they correspond to
the POS tags provided in WordNet and GermaNet. In this way, we can have
a straightforward way to evaluate on the vocabulary (e.g. Strain). For each
word, we now evaluate with regard to the synonyms that have the same POS
in WordNet or GermaNet.

Another advantage of having these simple POS tags is that we can filter bad
synonyms from the 10-most cosine similar words. Synonyms are very similar
also on a grammatical level, as they are interchangeable in many contexts, so
they should be of the same part-of-speech.

Because the vocabulary has changed, and the average frequency of words
is now lower—as some words are split—we again analyze what word vector
training parameters work best. We train CBoW and Skip-gram vectors on the
tagged corpus, varying the dimensions over {150, 300, 600}, and the contextual
window size over {2, 4, 16, 32}. We calculate precision for the most-similar
and second-most-similar word for all words in Strain. The results are shown
in Tables 9, 10, 11, and 12.
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CBoW (Tagged)
dim. 150 300 600
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.079 0.080 0.073 0.067 0.060 0.084 0.085* 0.080 0.074 0.066 0.084 0.084 0.081 0.073 0.069
P-2 0.058 0.056 0.053 0.049 0.045 0.061 0.061 0.059 0.055 0.050 0.061 0.062 0.059 0.055 0.053

Table 9. Precision for different window sizes and number of dimensions, using
the CBoW model, for POS-tagged English.

Skip-gram (Tagged)
dim. 150 300 600
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.068 0.065 0.057 0.049 0.045 0.069 0.066 0.057 0.052 0.046 0.067 0.062 0.052 0.046 0.041
P-2 0.050 0.047 0.041 0.038 0.036 0.050 0.047 0.042 0.038 0.035 0.050 0.045 0.038 0.034 0.031

Table 10. Precision for different window sizes and number of dimensions, using
the Skip-gram model, for POS-tagged English.

CBoW (Tagged)
dim. 150 300 600
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.086 0.092 0.094 0.092 0.090 0.092 0.100 0.100 0.099 0.094 0.090 0.102 0.103* 0.101 0.101
P-2 0.060 0.065 0.066 0.065 0.063 0.065 0.069 0.072 0.070 0.069 0.064 0.070 0.072 0.071 0.071

Table 11. Precision for different window sizes and number of dimensions, using
the CBoW model, for POS-tagged German.

Skip-gram (Tagged)
dim. 150 300 600
win. 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32
P-1 0.084 0.085 0.086 0.082 0.080 0.085 0.085 0.083 0.077 0.077 0.082 0.079 0.072 0.066 0.065
P-2 0.059 0.061 0.061 0.059 0.058 0.061 0.063 0.059 0.057 0.056 0.058 0.059 0.053 0.049 0.047

Table 12. Precision for different window sizes and number of dimensions, using
the Skip-gram model, for POS-tagged German.

If we look at Table 9 we can see that the highest precision is obtained using
a CBoW model with a window size of 4, and 600 dimensions. If we compare
this to the best results on the non-tagged corpus, from Table 2 in Section 3, the

131



PBML 105 APRIL 2016

optimal window size has stayed the same. Also CBoW vectors still perform
better than Skip-gram vectors, and small windows work best for Skip-gram
vectors. However, the best performing number of dimensions went from 600
to 300 when adding the POS-tag for English. A possible explanation can be
that since the part-of-speech tags separate some of the word contexts, based
on grammatical properties, the same information can be encoded with less
dimensions.

For German, precision went up when adding the POS-tags. This can be
seen if we compare the precision from Tables 4 and 5 with Tables 11 and 12.
The best vectors are still CBoW vectors with 600 dimensions and a contextual
window of 8. When we tried to find the reason why German has such a in-
crease in precision compared to English, we found that it lies partially at the
level of POS-tag simplification. As in the German part-of-speech tagset, the
Stuttgart-Tübingen tagset (STTS), names are not considered as nouns. For this
reason we did not conflate them to a noun tag, and they were excluded during
evaluation. This was not the case for English. Names are one of the frequent
error categories we found in Section 3.

This highlights another use of the POS tagger, which is that we can sim-
ply exclude categories for which we don’t want to find synonyms, and maybe
even filter bad synonym candidates from the 10-most-similar words. An ex-
ample would be the frequent error category of plurals, but also other types of
inflections, which can be filtered, as they are given a different POS tag (before
tag conflation). These insights will be used in the final system, presented in
Section 5.

To compare using the simplified POS tags with the previous approaches
we also calculated precision, recall and f-measure on Stest. Compared to the
baseline of looking only at the most-similar word, we found that recall in En-
glish increased from 3% to 4%, precision did not change (11%), and f-measure
from 5% to 6%. Notably, German precision increased with 8% to 12%, recall
from 5% to 7%, and f-measure from 6% to 9%.

From these experiments we conclude that POS tags can help to improve
synonym extraction in three ways. Firstly, they can separate some of the word
senses, however this effect is minor. Secondly, they can filter words that are not
grammatically similar enough, such as plurals. And thirdly, they can exclude
synonyms in categories for which there no, or very few, synonyms, such as
names.
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5. Final System and Evaluation

In this section we describe and evaluate the final systems for English and
German that we constructed from the findings from the previous sections.

5.1. The System

For the final systems we used larger corpora than those used in the previ-
ous experiments. We used 500 million tokens from the same corpora as before,
the English and German NewsCrawl 2014 corpora from the Workshop on Ma-
chine Translation in 2015. We POS tagged the corpora using the same parser
and models as in Section 4. However, we do not simplify the POS tags, but
instead use the fine-grained tags for nouns, verbs, adjectives or adverbs. We
exclude the tags for names, as they have few to no synonyms.

It should be noted that in the German tagset there is only one tag for nouns,
which covers both singular and plural nouns. This might result in more er-
rors. For machine translation evaluation we do not expect this to have a large
negative impact, as plurals would also have been matched by Meteor in the
stemming module. However, it might result in a worse human evaluation.

For English we train CBoW vectors with 300 dimensions and a contextual
window of 4. We also train Skip-gram vectors with 300 dimensions and a
contextual window of 2. For German we train vectors with the same specifi-
cations, except for the German CBoW model we use a contextual window of
size 8, and for Skip-gram a window of size 4. We chose these parameter set-
tings as a compromise between the optimal parameters from our experiment
in Chapter 4, and our expectations with respect to introducing fine-grained
POS tags, which is that the optimal number of dimensions might decrease
slightly.

We only consider words that occur at least 20 times in the corpus. The
reasons for using a higher frequency threshold are (1) to obtain better quality
word vectors, as we aim for high precision, and (2) to maintain a vocabulary
size similar to the previous experiments, as we increased corpus size. The re-
sulting tagged English vocabulary contains 115,632 word types, and the Ger-
man vocabulary 311,664.

We then calculate the summed relative cosine similarity of both the CBoW
and the Skip-gram vectors for the full vocabulary with regard to the top-10
most cosine-similar words. We select word pairs with a summed rcs10 sim-
ilarity higher than 0.22. We choose 0.22 as it lies slightly above the expected
tilting point of 0.2. For English, we obtain 16,068 word pairs. For German
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we obtain 96,998 word pairs. It should be noted that the word pairs are also
tagged, which can be useful depending on the application.

5.2. Manual Evaluation

To evaluate the precision of the obtained synonyms, we took a random
sample of 200 word pairs for both languages. The word pairs were then anno-
tated for synonymy. The annotation categories are synonyms, non-synonyms,
or unknown. In the description the unknown category is indicated for when
an annotator does not know any of the two words. The annotators could also
indicate hesitation, but still had to give a preference for any of the three cate-
gories.

For English, annotation is done by two annotators. One annotator is a na-
tive English speaker and one a fluent non-native speaker. For German, anno-
tation is also done by two annotators, one native German speaker, and one an
intermediate non-native speaker. Annotators could access the internet to look
up synonymy, or word meanings. We discriminate several situations:

SS: Both annotators annotate synonymy
NN: Both annotators annotate non-synonymy
SU: One annotator annotates synonymy, and the other unknown
NU: One annotator annotates non-synonymy, and the other unknown
SN: One annotator annotates synonymy, and the other non-synonymy
UU: Both annotators annotate unknown

We assume that if both annotators do not know the words, there is no syn-
onymy. We can calculate a lower bound of precision (P−

syn), and an upper bound
of precision (P+

syn). For the lower bound, we only consider word pairs of cat-
egory SS as synonyms, and the rest as non-synonyms. For the upper bound,
we consider word pairs of category SS and SU as synonyms, and the rest as
non-synonyms.

We also calculate a lower and upper bound for non-synonymy (P−
¬syn, and

P+
¬syn), and the percentage of disagreement on the categories of synonym and

non-synonym (Pdisagree). This way we can get a better idea of how many clear
errors there are, and how many errors are unclear.

The results for both English and German are shown in Table 13. What can
be noticed is that for German, the precision is quite a bit lower than for English.
However, the number of found word pairs is much higher. One reason can be
that the threshold should be higher in order to get comparable precision. A
second reason can be that for English the error categories, such as plurals, are
separated by a POS tag, resulting in higher precision. In the German tagset
these are not separated. We found that 10% of the German word pairs in this
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Manual Evaluation P−
syn P+

syn P−
¬syn P+

¬syn Pdisagree PUU

English 0.55 0.59 0.15 0.21 0.16 0.05
German 0.30 0.35 0.42 0.49 0.15 0.03

Table 13. Manual evaluation of the final systems.

set are plurals. For English, there were no such cases. For our application,
these errors should not be a major problem, as plurals would otherwise have
been matched by the stemming module of Meteor.

The percentage of unknown words seems fairly small, and about the same
for both languages. Also the disagreement on synonymy seems about the
same for both languages, around 15%. The cause for disagreement could be
the difference in the language level of the speakers. Another reason could be
the subjectivity of the notion of synonymy.

5.3. Application in Machine Translation Evaluation

To see if the quality of the extracted synonyms is sufficient for the syn-
onyms to be beneficial in an application we also used them in machine trans-
lation evaluation. We use them in the synonym module of the Meteor 1.5
evaluation metric.

We use the synonyms extracted by the system described in Section 5.1. So
for German, the synonym resource will consist of the 96,998 word pairs, and
for English we use 16,068 word pairs.

Meteor weighs the scores from each matching module. For English, we use
the default weights (Denkowski and Lavie, 2014), as synonyms were already
incorporated for English. For German, we use the default weights for all other
modules, except we use the same weight for the synonym module as used for
English (0.80).

To evaluate the metric, we test if the Meteor score correlates better with
human judgments after adding our synonyms. We calculate the correlation
using the data from the metrics task of the workshop on machine translation
20144 (WMT 2014) (Macháček and Bojar, 2014).

We use the news-test reference sentences from the language pair German-
English, for English. This set consists of around 3000 segments, or sentences.
For German, we use the reference sentences from the English-German lan-
guage pair. This set consists of around 2700 segments, or sentences.

4http://www.statmt.org/wmt14/results.html
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We calculate segment-level Kendall’s τ correlation as calculated in the WMT
2014 for the following three Meteor conditions:

1. Using all four modules, with the default weights, and no synonym re-
source.

2. Using all four modules, using default weights, and with our synonyms.
3. Using all four modules, using default weights, using WordNet synonyms

(only for English).
Kendall’s τ is expected to predict the result of the pairwise comparison of two
translation systems. In WMT-2014 this is calculated using human judgments
on a ranking task of 5 systems per comparison. τ is calculated as in Equation 3,
where Concordant is the set of human comparisons for which the Meteor score
suggests the same order, and Discordant is the set of all human comparisons
for which a given metric disagrees. When the Meteor score gives the same
rankings as the human judgments, correlation will be high, and vice versa.

τ =
|Concordant|− |Discordant|

|Concordant|+ |Discordant|
(3)

We calculated the Meteor scores for hypotheses from the 13 translation
systems for the language pair German-English, and the 18 translation systems
for English-German.

We also calculated the system level correlation, which indicates to what de-
gree the evaluation metric orders the translation systems in the same order as
the human judgments do, based on the total system score that the evaluation
metric gives to each system. This is calculated as the Pearson correlation, as
described by Macháček and Bojar (2014), and in Equation 4, where H is the
vector of human scores of all systems translating in the given direction, M is
the vector of the corresponding scores as predicted by the given metric, here
Meteor. H̄ and M̄ are their means respectively.

r =

∑n
i=1(Hi − H̄)(Mi − M̄)√∑n

i=1(Hi − H̄)2
√∑n

i=1(Mi − M̄)2
(4)

Both the segment-based correlations and the system-level correlations are
shown in Table 14 for the same conditions as mentioned before. It can be seen
that for both English and German using the extracted synonyms has a positive
effect on both the segment correlation and the system correlation. It can also
be noticed that using WordNet gives the highest correlation for English.

From this we conclude that currently our method, using only raw text and
a POS tagger, does not outperform a large manually constructed synonym
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German-English τ r

Condition 1 0.323 0.915
Condition 2 0.326 0.917
Condition 3 0.334 0.927

English-German τ r

Condition 1 0.238 0.263
Condition 2 0.243 0.277
Condition 3 - -

Table 14. System level correlations (r), and segment level correlations (τ) for the
Meteor 1.5 score without synonyms (condition 1), when adding the extracted
synonyms (condition 2), and when using WordNet synonyms (condition 3).

database such as WordNet, but can be useful to extract synonyms when no
such resource is available for the target language in Meteor5.

What should be noted is that the extracted synonyms are not yet fully ex-
ploited, as Meteor ignores the POS tags that were given to the synonyms. If
two words are synonymous with respect to their part of speech, but not syn-
onymous if they are of different parts of speech, Meteor will align them in
both situations. In the case when the words are of different POS, they will be
falsely aligned by Meteor.

The improvement of the metric is greater for German than for English. This
might seem odd at first, since the German synonyms had a lower precision in
manual evaluation compared to the English synonyms. But still, they perform
better in machine translation evaluation. This can be explained by what was
already mentioned earlier, that a significant part of the German synonym er-
rors are inflections, due to the difference in POS tagset. Also, the synonyms
extracted for German are less ambiguous with respect to their part of speech.
The German language frequently employs compounding (e.g. Schwierigkeits-
grade, ‘degree of difficulty’), and grammatical case markers. This might result
in less ambiguous words. The negative effect of Meteor not using parts of
speech with synonyms could be smaller for German for this reason. Further-
more, the difference could also be explained by the difference in the number
of synonyms (∼16K for English, and ∼97K for German).

6. Conclusions & Future Work

In this article we explored different methods to extract synonyms from text.
The initial motivation was to use the extracted synonyms to improve machine
translation evaluation. We tried to extract the synonyms using as little su-

5Our German results are an indirect example of this: even though a WordNet resource (Ger-
maNet) exists, it is not available to Meteor due to licencing reasons.
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pervision as possible, with the goal that the same method can be applied to
multiple languages. We experimented with English and German.

Word vectors trained using the continuous bag-of-words model (CBoW),
and the skip-gram model (SG) proposed by Mikolov et al. (2013a) were used in
the experiments. We evaluated different hyperparameters for training these
vectors for synonym extraction. In our experiments CBoW vectors gave higher
precision and recall than SG vectors. The number of dimensions did not seem
to play a very large role. For our experiments, dimensions of 300 and 600
seemed to give best results. The optimal contextual windows size was around
4 for English and 8 for German. We hypothesized that the difference in win-
dow size can be because of the difference in the distributions of word cate-
gories of the synonyms in WordNet and GermaNet.

For English, we manually looked at frequent error categories when using
these vectors for this task. The largest well-defined error categories we found
are inflections, co-hyponyms, and names.

We found that the cosine similarity on its own is a bad indicator to de-
termine if two words are synonymous. We proposed relative cosine similarity,
which calculates similarity relative to other cosine-similar words in the cor-
pus. This is a better indicator, and can help improve precision. Also, the opti-
mal thresholds for finding synonyms for English and German using this mea-
sure are almost the same. This gives hope for easy extension of this method
to other languages, for which there is no synonym data. It would be very
interesting to see to which other languages this method can generalize.

We also experimented with combining similarity scores from differently
trained vectors, which seems to slightly increase both precision and recall.
Furthermore, we explored the advantages of using a POS tagger as a way of
introducing some light supervision. POS tags can help performance in differ-
ent ways. Firstly, it can disambiguate some of the meanings of homographs.
Secondly, it can help filter bad synonym candidates. And thirdly, it can pre-
vent extraction of synonyms for word categories that have no, or very few
synonyms, such as names. For future research, it would be interesting to ex-
amine the effect of using an unsupervised POS tagger (Christodoulopoulos
et al., 2010).

We could also investigate the use of topical word embeddings (Liu et al.,
2015a,b), or global context vectors (Huang et al., 2012). These techniques make
different vectors for each word using topical information to disambiguate some
of the different word senses.

We evaluated our final approach for both English and German. We did
a manual evaluation with two annotators per language. We also applied the
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extracted synonyms in machine translation evaluation. From the manual eval-
uation, the English synonyms had higher precision than the German ones. A
likely reason for this is that the English POS tagset better separates the fre-
quent error categories mentioned in Section 3.

When we evaluated the quality of the extracted synonyms in the task of
machine translation evaluation (with the Meteor metric) for both English and
German, the extracted synonyms increased the correlation of the metric with
human judgments, resulting in an improved evaluation metric. While our
method currently does not outperform a manually constructed synonym data-
base such as WordNet, it can be useful to extract synonyms when no such
resource is available for the target language, or domain. As the method uses
tokenized raw text and optionally a POS tagger, it is applicable to a wide range
of languages.

In the current research, we used a fixed frequency threshold, excluding
infrequent words (a large part of the vocabulary). Setting a threshold also
influences the word embedding training. For future research, it would be in-
teresting to see the impact of the frequency threshold on our method.

Moreover, currently Meteor does not fully exploit the extracted synonyms,
as it ignores their POS, which can cause false alignments. For future research
on improving Meteor, it could be interesting to incorporate POS tags to pre-
vent inappropriate generalization of synonyms.
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