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Abstract Cyber-physical systems are small yet powerful systems which are
embedded into their environment, adapting to its changes and at the same
controlling it, and often operating autonomously. These systems have reached
a level of complexity that opens up new application areas, but at the same
time strains the existing design flows in system development. To ameliorate
this problem, we propose a novel design flow for cyber-physical systems by
adapting model-based specification and refinement methods known from soft-
ware development. The design flow allows to start with a system specification
and its essential properties at a high level of abstraction, and gradually refines
it down to an electronic system level. Properties of higher levels can be inher-
ited during refinements to lower levels by relying on local proof obligations
only, which results in a design flow capable to keep up with the increasing
complexity of cyber-physical systems.

1 Introduction

Embedded systems have become powerful devices which play an increasingly
important role in many areas such as production, transport, medicine and lo-
gistics: they control autonomous vehicles, aeroplanes, trains and other trans-
port systems, they run production systems up to whole industrial plants, or
they can be found in medical implants. We call these cyber-physical systems:
embedded systems which are connected to the internet and thus merge the
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boundaries of the virtual and physical world, which are autonomous, and
adapt to and control their environment.

Cyber-physical systems are often employed in safety-critical situations,
where failure is not an option and their correct functioning is of paramount
importance; however, their complexity strains the currently existing design
flows in system development, and makes this correctness hard to guarantee.
This paper presents first steps towards a novel design flow for cyber-physical
systems by applying methods from model-based software engineering.

Existing design flows model the system on the so-called Electronic System
Level (ESL) using languages such as SystemC [14] or System Verilog. These
system level descriptions hide details of the precise realisation in hardware
and software while still allowing the execution and simulation of the design.
They are executable, concrete models which do not allow to state the desired
properties of the system abstractly and formally tractable. However, the ini-
tial system specification is mostly given informally in natural language which
is typically far away from the ESL. To bridge this gap in expressiveness, the
Formal Specification Level (FSL) has been proposed [4, 11]. Its aim is to close
this gap by employing formal descriptions means such as the UML to give an
abstract specification of the system. It has been used for error-detection in
early design phases [9] and to provide a notion of refinement for operations
at the FSL [5] .

The contributions of this paper are twofold: first, to develop a semantics
of the FSL which was lacking so far and enables to formulate system prop-
erties at the FSL. Second, it provides provably correct notions of refinement
guaranteeing that system properties are preserved under refinement.

This paper is structured as follows: Illustrated by a simple access control
system example, Sec. 2 introduces the specification formalisms and semantics
for the central Formal Specification Level (FSL) as well as the kind of correct-
ness properties that can be expressed and proven on that basis. Sec. 3 defines
the methods to refine an abstract system specification to more concrete spec-
ifications. The refinements are defined such that more detailed specifications
inherit properties already established at higher levels of abstraction and are
illustrated by the running example. They allow to gradually add more details
to the specification until it eventually contains all details of an executable
implementation at the Electronic System Level (Sec. 4). Sec. 5 compares the
contributions with related work and concludes the paper.

2 Introducing the FSL

As a running example, we consider an access control system which governs
the access of people to buildings connected by gates, originally modelled by
Abrial [1] using the B method [2]. We start with very high-level specifications
describing the overall behaviour.
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class Building {}

class Person {
op void pass(Building b);
ref Building [∗] aut;
ref Building [1] sit ;
}

context Person
inv P5: self.aut→includes(self.sit)

context Person::pass(b: Building):
pre pass pre1: self.aut→ includes(b)
pre pass pre2: self.sit 6=b
post pass post: self.sit =b

class Building {
ref Building [∗] #building gate;
ref Building [∗] #gate building ;
}

class Person {
op void pass(Building b);
ref Building [∗] aut;
ref Building [1] sit ;
}

context Person
inv P5: self.aut→includes(self.sit)

context Building
inv P7: not (self.gate→includes(self))

context Person
inv P10: self.aut→ forAll(b|self.aut.building→includes(b))

context Person::pass(b: Building):
pre pass pre1: self.aut→ includes(b)
pre pass pre2: self.sit.gate→ includes(b)
post pass post: self.sit =b

ACS-1 ACS-2

Fig. 1 Initial specification (ACS-1 ), and first refinement step (ACS-2 ), of our running
example. For UML class diagrams we use the textual EMFatic [13] notion from the
Eclipse Modelling Framework (EMF).

An FSL model consists of classes and operations. The operations can be
restricted by OCL constraints, which are either invariants constraining all
operations of the class, or pre-/postconditions for specific operations.

In the initial specification (ACS-1 ), the model contains only persons and
buildings (given by the two classes). Each person is authorised to enter a
number of buildings (attribute aut), and will always be in exactly one building
(attribute sit). The class invariant P5 models the requirement specification
that a person must only be in a building where they are allowed to be. The
pre- and postcondition on the enter operation specify that to enter a building,
a person has to be authorised for the building, and that he is not allowed to
enter the building he is currently in.

In a first refinement (ACS-2 ), still on a very abstract level we introduce
connections between buildings (given by a UML association). This constrains
the pass operation: persons can only go from one building in which they are
into another if they are authorised to do so, and if the buildings are connected.

Fig. 1 shows the first two steps of our example. It gives a good feel on
how system development can start at a very abstract level. At this level, it
is clear that the central safety invariant is adequate. We cannot prove it yet,
but it gives a good idea on how it could be proven: if we can show that all
operations preserve it, and that it holds in the initial states.
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2.1 Semantics

Technically, an FSL specification is given by a tuple

SP = 〈M, init,Opn, inv,pre,post,st〉

where M are the classes (specifically, the object model [7]), init is a specifi-
cation of the initial states of the system, Opn the operations, inv the class
invariants, pre the preconditions and post the postconditions of the opera-
tions, and st the state diagrams. We do not consider state diagrams in their
full UML generality (in particularly, we do not allow hierarchical states and
concurrent regions). Instead, we allow state diagrams which can be encoded
into pre- and postconditions on the class operations: if the operation f of
some class corresponds to a transition from state d to a state r (denoted
f : d → r) in the state diagram associated to that class, we encode this in
the pre- and post-conditions using an additional attribute m state as follows:
pre s: self.m state =d and post ps: self.m state =r.

The semantics of SP consists of the states given by the object model M,
and state transitions given by the operations. We add a special state STOP,
which corresponds to the system state from which no further transitions
are possible, and thus models deadlock. This amounts to a Kripke structure
[[SP ]] = 〈S,I,→〉 where S is the set of states and I the initial set of states that
satisfy init and the invariants inv. The transition relation → = {→o}o∈Opn is
a family of transitions labelled by operations; there is a transition σ1 →o σ2
iff

(i) all invariants hold in σ1 and σ2,
(ii) the preconditions of o are satisfied in σ1, and

(iii) the postconditions of o are satisfied in σ1 and σ2;
(iv) if there is no outgoing transition from σ1 by the previous clauses for

any σ2, we add a transition σ1 → STOP.
The invariants and pre-/postconditions of an operation are the constraints
of o and denoted by cons(o). For a specification SP, an execution trace is a
infinite sequence s= 〈si〉i∈N of states such that si → si+1.

2.2 Verification Properties

Given a specification such as above, we want to exhibit certain properties of
the modelled system. For example, the invariant P5 is a property we want the
system to have. We call these properties verification properties. In its sim-
plest form, a verification property is an OCL property, which is required to
hold in all states of the execution trace of a system. This corresponds to the
temporal � operator; we typically specify safety properties this way (‘Some-
thing bad never happens’). We might require that other properties only hold
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at some point in the future, corresponding to the temporal ♦ operator; these
are typically liveness properties (‘Something good will eventually happen’).
Generalising slightly further, we define verification properties as follows:

Definition 1 (Verification Property). The set of verification properties is
defined as follows. Let φ be an OCL formula without the @pre postfix, then

(i) φ is a verification property,
(ii) �φ is a verification property (‘safety’),

(iii) ♦φ is a verification property (‘liveness’),
(iv) �♦φ is a verification property (‘fairness’),
(v) ♦�φ is a verification property (‘persistence’).

The two additional verification properties are ‘fairness’ (�♦φ), which spec-
ifies that at every point in the system, φ will eventually hold, and ’persistence’
(♦�φ), which requires that φ will at some point start to hold.

Example 1. Using our running example, we illustrate below the different kinds
of verification properties. ∀b:Building . ∃b’:Building . b.gate→includes(b’) is
a verification property requiring for the initial state, that each building
is connected to at least one other building. To express that each per-
son eventually enters each building for which he has access is achieved by
∀p:Person . ♦(p.aut→includes(p.sit). To express that in each building there are
always at least two persons is achieved by ∀b:Building.�∃p,p’:Person. p!=p’
and p.sit=b and p’.sit=b.

Example 2. In the STOP state, every OCL expression (including True) eval-
uates to False. Thus, the verification formula �True holds for all systems
which do not reach the STOP state, i.e. it expresses freedom from deadlock.

3 Refinement in the FSL

In general terms, refinement is a property-preserving mapping from an ‘ab-
stract’ model to a more ‘concrete’ one. Semantically, a refinement should
restrict the possible implementations of the specification. As properties are
defined in terms of traces in the Kripke structure, to preserve properties for
each trace in the concrete model there needs to be a trace in the abstract
one.

3.1 Data Refinement

Data refinement allows to change the system state of our models. It can be
constructed by mapping all classes of operations of the abstract model to the
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[[SPA]] σ0 ∈ I .......................
o1 - σ1 ............................

o2 - σ2 ............................
o3 - σ3 . . .

[[SPC ]] τo ∈ J
?

µOpn(o1)
- τ1

?

µOpn(o2)
- τ2

?

µOpn(o3)
- τ3

?
. . .

Fig. 2 Data refinement: for each trace in [[SPC ]], we can construct one in [[SPA]].

concrete one. Such a mapping is given by a model morphism. Given two object
models M, M′, a model morphism is a tuple of maps µ= 〈µC ,µA,µO,µAssoc〉
with µC ,µA,µO,µAssoc maps between the class names, attribute names and
association names respectively, which preserve the type hierarchy, the types
of attributes and operations, and the associations and their cardinality. Given
such a model morphism, the homomorphic extension µ# maps OCL expres-
sions φ in M to OCL expressions in M′, by replacing all classes, attributes
and associations in φ with their image under µ. A model morphism becomes
a map between FSL specifications if it also preserves the initial states and,
crucially, the invariants on states as well as the pre- and postconditions of
the operations in the abstract model (translated appropriately) are implied
by the ones in the concrete model:

Definition 2 (Specification Morphism). Given two FSL specifications
SPA = 〈A, IA,OpnA, invA,preA, postA,stA〉 and SPC = 〈C, IC ,OpnC , invC ,
preC ,postC ,stC〉, a specification morphism is a tuple of maps µ = 〈µM ,µI ,
µOpn〉 where µM is a model morphism, and µI and µOpn are maps from the
initial states and operations of SPA to those of SPC , satisfying:

τ ∈ IA =⇒ µI(τ) ∈ IC (1)
consC(µOpn(o)) =⇒ µM

#(consA(o)) (2)

If all initial states and operations in SPC are in the image of µ, and the
model morphism is injective on the state, we have a data refinement from
SPA to SPC . The following lemma shows why data refinements are useful
tools: they preserve all verification properties (in fact, all LTL properties).

Lemma 1. Given two FSL specifications SPA = 〈A, IA,OpnA, invA,preA,
postA,stA〉 and SPC = 〈C, IC ,OpnC , invC ,preC ,postC ,stC〉, and a specifica-
tion morphism µ : SPA → SPC . If µM is injective, and µI and µOpn are
surjective, then all verification properties which hold in SPA hold in SPC as
well.

Proof. We first show that for any execution trace t in [[SPC ]], the Kripke
structure induced by SPC , there is a trace in [[SPA]]. This corresponds to the
fact that for any transition σ →o σ

′ in [[SPC ]] there is a transition τ →o τ
′
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in [[SPA]]. There is a transition σ →o σ
′ in [[SPC ]] only if consC(o′) holds in

σ and σ′ for some o′. Because µOpn is surjective, o′ = µOpn(o) and by (2),
µM

#(consA(o)) holds in σ and σ′. Hence there are states τ,τ ′ such that
consA(o) holds, and there is a transition τ →o τ

′ as required.
Now given any LTL property φ, φ holds for SPC if it holds for all traces in

[[SPC ]]. Assume φ holds for SPA. To show φ holds for SPC , we have to show
φ holds for all traces in SPC . But for any such trace we have shown there
exists a trace in [[SPA]], for which φ holds by assumption. �

Example 3 (Running Example). Continuing our running example, Fig. 1
shows a simple example of data refinement. The model morphism is the injec-
tion from ACS-1 to ACS-2 , and thus by construction injective; it is easy to
see that it is surjective on the operations. It remains to show that the model
morphism is a specification morphism to be able to apply Lemma 1. For
demonstration, we will show here in detail how syntactic proof obligations
are derived, and how they are proven.

From Def. 2 it follows that we need to show that consACS-1(o) =⇒
consACS-2(o)) for all operations. Since there is only one operation pass, we
have to show2

ACS2.P5 and ACS2.P7 and ACS2.P10 and
ACS2.pass pre1 and ACS2.pass pre2 and ACS2.pass post

implies ACS1.P5 and ACS1.pass pre1 and ACS1.pass pre2 and ACS1.pass post

To show this proof obligation, we break it down into four obligations using
conjunction introduction. We note that except for pass pre2 all the other
axioms are the same in ACS-1 and ACS-2 , hence three of the resulting proof
obligations are trivial, like this:

P5 and P7 and P10 and pass pre1 and ACS2.pass pre2 and pass post
implies P5

The remaining one we need to show is ACS1.pass pre2. To do so, we need to
unfold the axioms P7 and ACS2.pass pre2. (In order to avoid overcrowding,
we drop the unneeded axioms P5, P10, ACS2.pass pre1 and pass post).3

∀self@pre: Building. not (self@pre.gate→ includes(self@pre))
and self@pre.sit.gate→ includes(b)

implies self@pre.sit.gate 6=b

Note that the invariant is universally quantified over all buildings, because
that is its context (we omit the outer universal quantifiers in the conclusion).
Eliminating the quantifier in the premise and instantiating self@pre with b
results in
2 In this ad-hoc notation we replace axioms by their name, and use qualified notation
s.a to refer to axiom a from specification s.
3 For readability, we use the notation ∀a:C. p instead of the correct
allInstances(C)→forAll(a|p).
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Fig. 3 Operation Refinement of the Kripke Structure KA to KC : in each trace in KC ,
sequences of steps starting in IR, going through S′

R and ending in FR can be mapped
to one step in S.

not (b.gate→ includes(b)) and self@pre.sit.gate→ includes(b)
implies self@pre.sit.gate 6=b

This is proven by reductio ad absurdum: assume self@pre.sit.gate=b, then
the second premise reduces to b.gate→includes(b), and together with the first
premise we can derive False, thus proving self@pre.sit.gate 6=b.

3.2 Operation Refinement

Data refinement allows changes in the state space; the typical use cases are
introduction of new classes or attributes. If we want to replace an abstract
operation by more concrete ones, or if we want to move an operation from
one class to another, the restrictions of Def. 2 are too prohibitive. In this
case, we need operation refinement.

Operation refinement decomposes the state space of the refining model
SPC such that the additional states are used for the refining operations
(Fig. 3). This requires some restrictions on the refining operations, in partic-
ular in how they are allowed to be composed. We express these restrictions
as a particular form of UML state diagrams.

When refining an abstract operation f : d → r of an FSL specification,
the following LTL properties that must be proven about the refining state
machine S:
(A) the invariants inv of the FSL specification must also hold for S, hence we

need to prove � inv for S (see also the condition of case (ii) in Lemma 2);
(B) the preconditions pre(f) must hold for the initial states;
(C) the postconditions post(f) relate values in the state before and the state

after f . This can be reformulated as an LTL property for S by intro-
ducing variables in a straight forward, though technical manner. Instead
of providing a formal definition, we illustrate the construction by the
following example postcondition:

self@pre.p < self@pre.q and self@pre.q =self.q ∗ 2
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This postcondition can be reformulated to the LTL formula

∀x:Int . (x =self.q and self.p < self.q) implies ♦� x =self.q ∗ 2

Requiring S to have that property transfers the postconditions to the
refining state machine. Essentially, it means the refining state machine
S must at some point make the postcondition true such that from that
on it holds until S terminates.

We denote by cons�(f) the conjunction of the above LTL properties (A)-(C).
Additionally, the refining state machine S must be always terminating, which
can be formulated as a proof obligation about S and be proven by respective
methods from termination analysis. Finally, all traces in S must start in d
and terminate in r, which we formulate as an additional requirement to be
proven.

Definition 3 (Operation Refinement). Given an FSL specification SPA =
〈M, I,{f : d→ r}]OpnA, invA,preA,postA,stA〉 an operation refinement of
SPA wrt. f is given by a FSL specification SPC = 〈M, I,Opnc, invC ,preC ,
postC ,stC〉, new operations OpnC0 over the states TC0 such that:

(i) The states TC0 are disjoint from the states of SPA,
(ii) OpnC = OpnC0 ]OpnA, and for all o ∈ OpnA, consC(o) = consA(o)
(iii) the state machine SOpnC0 induced by OpnC0 is with initial state d

terminating with final state r, and S |= cons�(f)

Remark 1. This includes a specific case where an abstract operation f is
refined by one concrete operation g which does not preserve the types and
hence cannot be expressed by specification morphisms. In that case the proof
obligation simplifies to consC(g) =⇒ consA(f).

Lemma 2. Let SPC be an operational refinement of an operation o of an FSL
specification SPA using the operations Opn and P,Q OCL-formulas without
@pre. The following verification properties of SPA are preserved by operation
refinement to SPC :

(i) ♦P
(ii) �P if, and only if, SOpn |= �P , i.e. the refining structure satisfies �P

(iii) �♦P
(iv) ♦�P if SOpn |= P ⇒ �P (note that this is not an equivalence).

Proof. First we observe, that for each trace of τC of the concrete FSL speci-
fication SPC we can construct a trace of SPA by replacing all maximal finite
traces of the refining state machine SOpn which occur in τC by a single tran-
sition →o of the refined operation o of SPA. As a consequence all states in
τA occur in the same order in τC , except that they may be interspersed with
states from SOpn. Thus, if ♦P or �♦P hold for τA, they also hold for τC ,
which proves (i) and (iii). Assume �P holds for τA we need to know that
P also holds for all inserted states from SOpn, which is ensured by the proof
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obligation �P for the SOpn, proving (ii). Finally, assume ♦�P holds for τA;
this means that there is an infinite suffix of the trace τA for which �P holds.
Now consider a state s in τC at which a trace from SOpn starts: either it is
before the suffix, then �P will be reached later in the trace; or it is in the
suffix, then P holds for s and because P ⇒ �P holds for SOpn, the rest of
the sequence in SOpn satisfies �P , hence �P holds, proving (iv). �

Example 4 (Running Example). We now consider the refinement step from
ACS-2 to ACS-3 (see Fig. 4), which consists of moving the pass operation
from the class Person to the class Door, where it is called enter. This refinement
cannot be expressed with a specification morphism, because the refinement
step actually consists of two refinements: first, a data refinement which in-
troduces the class Door, and then an operational refinement which moves the
operation pass from the class Person to the operation enter in Door. It is thus
an example of a simple operational refinement mentioned in Remark 1. For
this refinement, we have to show that the pre- and postconditions on enter
imply those on pass. This means we have to prove that

(∀self: Door ∀p: Person. p@pre.aut→ includes(self@pre.dest) and
p@pre.sit= self@pre.org and p.sit= self.dest)

implies (∀self: Person ∀b: Building. self@pre.aut→ includes(b@pre) and
self@pre.sit.gate→includes(b@pre) and
self.sit= b)

This proof is a bit more delicate. We start by expanding the universal quantifi-
cation of the goal by substituting self: Person and b: Building with indefinite
constants p0 and b0. Conversely, in the premise the universally quantified
variable self: Door is instantiated with b0.dest dom and p:Person with p04 to
obtain the three subgoals:

(a) p0@pre.aut→includes(b0@pre.dest dom.dest)
and p0@pre.sit=b0@pre.dest dom.org and p0.sit=b0.dest dom.dest)
implies p0@pre.aut→includes(b0)

(b) p0@pre.aut→includes(b0@pre.dest dom.dest)
and p0@pre.sit=b0@pre.dest dom.org and p0.sit=b0.dest dom.dest)
implies p0@pre.sit.gate→includes(b0)

(c) p0@pre.aut→includes(b0@pre.dest dom.dest)
and p0@pre.sit=b0@pre.dest dom.org and p0.sit=b0.dest dom.dest)
implies p0.sit=b0

To show the first conjoint (a), knowing that b0@pre =b0, p0@pre.aut=p0.aut,
b0@pre.dest dom=b0.dest dom, and b0.dest dom.dest=b0 this simplifies to

(p0.aut→ includes(b0) and p0@pre.sit= b0.dest dom.org and p0.sit= b0)
implies p0.aut→ includes(b0)

4 Note that substituting self by b0.dest dom in self@pre.dest moves the suffix @pre inside
to result in b0@pre.dest dom.dest.
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class Building {
ref Building[∗]#building gate;
ref Building[∗]#gate building ;
ref Door[∗]#org org dom;
ref Door[∗]#dest dest dom;
}

class Person {
ref Building [∗] aut;
ref Building [1] sit ;
}

class Door {
op void enter(Person p);
ref Building[1]#org dom org;
ref Building[1]#dest dom dest;
}

context Person
inv P5: self.aut→includes(self.sit)

context Building
inv gate def: self.gate =self.org dom.dest

context Building
inv P7: not (self.gate→includes(self))

context Person
inv P10: self.aut→forAll(b|self.aut.building→includes(b))

context Door::enter(p: Person):
pre enter pre1: p.aut→ includes(self.dest)
pre enter pre2: p.sit =self.org
post enter post: p.sit =self.dest

Waiting

enter(d : Door, p : Person)

ACS-3

Fig. 4 Third refinement: the class Door is introduced to connect buildings, and the pass
operation is implemented by the enter operation from the new class.

which holds trivially.
Applying the same simplifications to (b) results in

(p0.aut→ includes(b0) and p0@pre.sit= b0.dest dom.org and p0.sit= b0)
implies p0@pre.sit.gate→includes(b0)

By applying p0@pre.sit=b0.dest dom.org we obtain the goal

(p0.aut→ includes(b0) and p0@pre.sit= b0.dest dom.org and p0.sit= b0)
implies b0.dest dom.org.gate→includes(b0)

Now using the invariant gate def we can further transform the goal to

(p0.aut→ includes(b0) and p0@pre.sit= b0.dest dom.org and p0.sit= b0)
implies b0.dest dom.org.org dom.dest→includes(b0)

This follows because org is inverse to org dom and further dest is inverse to
dest dom, and some further technical reasoning about the OCL semantics of
collections.5

Finally, to show the third conjoint (c) we also apply the same simplifica-
tions to obtain

(p0.aut→ includes(b0) and p0@pre.sit= b0.dest dom.org and p0.sit= b0)
implies p0.sit= b0

which holds trivially.

The final step within the FSL towards the ESL as in Fig. 6 is to refine the
enter operation in the Door class. If the person entering the door is allowed
to pass, a green light should indicate this; after the person has passed, or
5 The relevant properties are ∀d:Door . d.org.org dom→includes(d) and
∀b:Building . b.dest dom.dest→includes(b).
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class Building {
ref Building[∗]#building gate;
ref Building[∗]#gate building ;
ref Door[∗] #org org dom;
}

class Person {
op ecore.EBoolean admitted(Door q);
ref Building [∗] aut;
ref Building [1] sit ;
ref Door[0..1]#dap dap dom;
}

class Door {
attr ecore .EBoolean green;
attr ecore .EBoolean red;
op void accept(Person p);
op void refuse (Person p);
op void pass thru ();
op void off grn ();
op void off red ();
ref Building [1] #org dom org;
ref Building [1] dest ;
ref Person[0..1]#dap dom dap;
}

Waiting

Refusing(d:Door,p:Person)

refuse(d : Door, p : Person)

off_red(d : Door)

Accepting(d:Door,p:Person)

pass_thru(d : Door)

off_grn(d : Door)

accept(d : Door, p : Person)

ACS-4

Fig. 5 In this step, we refine the enter operation by introducing several new operations,
and describe their behaviour in a UML state machine (right).

at most after 30 seconds, the green light should be off again. If the person
entering is not allowed to pass, a red light should be lit for two seconds, and
the door should stay locked.

To model the relevant aspects of this behaviour (we do not model the
timing aspects here), we need to add attributes for the green and red lights,
and introduce operations such as accept, pass thru, green off which model the
desired state transitions. The state diagram modelling the desired behaviour
is on the right of Fig. 5. As new state names, we introduce Waiting, Refusing
and Accepting. We incur three proof obligations, corresponding to the pre-
and postconditions of the enter operation which have to be derived from the
conjunction of pre- and postconditions of the accept and refuse operations
and the invariants. The proofs are more elaborate than the ones we have
seen so far, but mathematically routine. We further have to prove that the
refining operations induce a state machine, which starting in state Waiting
always terminates in state Waiting.

4 Refinement from the FSL to the ESL

The ESL language we are using here is SystemC, a C++ class library which
allows a cycle-accurate model of the hardware. It provides classes to simulate
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class Users {

private:

static std:: unordered_set <Building >

aut[NUM_PERSONS ];

static Building sit[NUM_PERSONS ];

public:

static void init()

{

for (Person p= 0;

p< NUM_PERSONS; p++)

{

aut[p]=

std:: unordered_set <Building >();

sit[p]= DEFAULT_BUILDING;

}

}

static bool admitted(Person p,

Building b)

{

return (aut[p].count(b) > 0);

}

};

SC_MODULE(Door)

{

sc_in <Person > card;

sc_out <bool > green;

sc_out <bool > red;

public:

Building org;

Building dest;

private:

Person dap= NO_PERSON;

public:

SC_CTOR(Door)

{

dap= NO_PERSON;

SC_THREAD(operate);

}

void operate ()

{

while (true) {

wait(card.value_changed_event ());

dap= card.read();

if (Users:: admitted(dap , dest))

{

accept ();

wait(sc_time(TIMEOUT_GREEN , TIME_UNIT),

passed.posedge_event ());

if (passed.read())

pass_thru ();

else

off_grn ();

}

else

{

refuse ();

wait(TIMEOUT_RED , TIME_UNIT);

off_red ();

}

}

}

Fig. 6 Implementation of the example in the ESL. We show the relevant excerpts, the
actual SystemC implementation about 360 loc.

the hardware constructs; these can be mixed in with usual C++ to allow
hardware-software co-design.

In brief, the class sc module models the basic building blocks of the hard-
ware. The signals going in and out of such a block are modelled by generic
datatypes sc in<T> and sc out<T>.

To map FSL specifications to the ESL, we map classes in the FSL to either
instances of the sc module class (if they are implemented in hardware), or to
usual C++ classes (if they are implemented in software). For the former,
public attributes are mapped to signals, corresponding to the fact that they
can be read or written. Methods are mapped to function members of type
void f(); all parameter and result passing must be performed by reading and
writing to attributes (i.e. signals). An instance of sc module must have a main
thread, which must implement the state diagram of the FSL specification.6

Example 5 (Running Example: Finale). Fig. 6 shows an excerpt of the ESL
implementation. The operation admitted is implemented in software, by the
Users class (left of Fig. 6). The class Door is implemented by the Door in-
stance of sc module; Fig. 6 shows the declaration of the instance, and the
implementation of the main method operate.

At this point, we do not aim to verify formally that the SystemC code
satisfies the pre- and postconditions and preserves invariants, as formal veri-
fication of C++ is still very much a research problem in its own right. There
are various methods by which we can validate the pre- and postconditions and
invariant preservation to a certain degree, i.e. check for obvious violations or
contradictions [6, 12].
6 As we currently do not consider concurrency, there can be only one state diagram,
and hence only one main thread.
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5 Conclusions and Outlook

We have presented the first steps towards a new design flow for cyber-physical
systems in order to keep up with the rapidly increasing complexity of these
systems. It applies methods from model-based software engineering and al-
lows to start from an abstract specification which states the essential proper-
ties down to an implementation in SystemC by using refinement steps which
have been proven correct with respect to a comprehensive semantics based on
Kripke structures. It thus bridges the gap in expressiveness between system-
level modelling languages such as SystemC and initial specifications in natural
language leveraging the advantages of the UML and its existing tools without
forcing system engineers to give up their existing design flow.

We have developed two refinement operations in Sec. 3, but these should be
seen as representative. There are many more possible refinement operations
(e.g. an obvious one that comes to mind is to remove attributes), which may
be uncovered by further case studies. Also, the current approach does not
allow to handle concurrency, which is another major area for future work.

In related work, there are a number of so-called wide-spectrum languages
which cover the whole of the design flow. For example, our running exam-
ple was originally conceived by Abrial for the B language [2]. Atelier B, the
tool supporting B, covers the whole design flow (and there is a connection
to VHDL called BHDL), but it does not easily allow designers to keep their
existing work flow, and has a steeper learning curve than our UML-based
approach. The advantage of using UML is that engineers can start with a
light-weight modelling, using just a few UML diagrams (class diagrams with
OCL pre- and postconditions and invariants as in our example). Another
relevant language is Event-B, an extension of B with events, which is sup-
ported by the Rodin tool chain [3]. There is work on UML-B [10], a UML
front-end for Event-B which even supports a notion of refinement [8], which
essentially has the same aim as our approach, namely allowing the engineer
to use well-known UML concepts rather than having to learn a new specifi-
cation language, except it uses Event-B as the semantic ’back-end’; our use
of Kripke structures makes it easier to connect to a completely separate ESL
language such as SystemC.

We have implemented a prototypical tool support for our approach using
tools from the Eclipse Modelling Framework (EMF) for the UML, and the
LLVM toolset (clang) for SystemC. Our tool can automatically find the ob-
vious mappings between the refinement steps, but has no proof support for
proof obligations arising in the development. Its aim is also to be able to track
the impact of changes in the development e.g. if we find during validation
that the initial specification is not adequate.

In closing, we are confident this work will bring the benefits of model-based
software engineering into the systems development community by combin-
ing the advantages of existing industrial-scale system design flows with well-
known model-based specification and refinement concepts.
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