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Abstract
Arbitrary n-ary relations (n ≥ 1) can, in principle, be realized through binary relations obtained by a reification process which introduces
new individuals to which the additional arguments are linked via “accessor” properties. Modern ontologies which employ standards such
as RDF and OWL have mostly obeyed this restriction, but have struggled with it nevertheless. In (Krieger and Willms, 2015), we have
laid the foundations for a theory-agnostic extension of RDFS and OWL and have implemented in the last year an extension of Protégé,
called ×-Protégé, which supports the definition of Cartesian types to represent n-ary relations and relation instances. Not only do we
keep the distinction between the domain and the range of an n-ary relation, but also introduce so-called extra arguments which can
be seen as position-oriented unnamed annotation properties and which are accessible to entailment rules. As the direct representation
of n-ary relations abolishes RDF triples, we have backed up ×-Protégé by the semantic repository and entailment engine HFC which
supports tuples of arbitrary length. ×-Protégé is programmed in Java and is made available under the Mozilla Public License.
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1. Decription Logics, OWL, and RDF
Relations in description logics (DLs) are either unary (so-
called concepts or classes) or binary (roles or properties)
predicates (Baader et al., 2003). As the designers of OWL
(Smith et al., 2004; Hitzler et al., 2012) decided to be com-
patible with already existing standards, such as RDF (Cy-
ganiak et al., 2014) and RDFS (Brickley and Guha, 2014),
as well as with the universal RDF data object, the triple,

subject predicate object

a unary relation such as C(a) (class membership) becomes
a binary relation via the RDF type predicate:

a rdf:type C

For very good reasons (mostly for decidability), DLs usu-
ally restrict themselves to decidable function-free two-
variable subsets of first-order predicate logic. Nevertheless,
people have argued ver early for relations of more than two
arguments (Schmolze, 1989), some of them still retaining
decidability and coming up with a better memory footprint
and a better complexity for the various inference tasks (in-
cluding querying) than their triple-based relatives (Krieger,
2012; Krieger, 2014). This idea conservatively extends the
standard triple-based model towards a more general tuple-
based approach (n+ 1 being the arity of the predicate):

subject predicate object1 . . . objectn
Using a standard relation-oriented notation, we often inter-
changeably write

p(s, o1, . . . , on)

Here is an example, dealing with diachronic relations
(Sider, 2001), relation instances whose object values might
change over time, but whose subject values coincide with
each other. For example (quintuple representation),

peter marriedTo liz 1997 1999
peter marriedTo lisa 2000 2010

or (relation notation)

marriedTo(peter, liz, 1997, 1999)
marriedTo(peter, lisa, 2000, 2010)

which we interpret as the (time-dependent) statement that
Peter was married to Liz from 1997 until 1999 and to Lisa
from 2000–2010.
In a triple-based setting, semantically representing the same
information requires a lot more effort. There already exist
several approaches to achieve this (Welty and Fikes, 2006;
Gangemi and Presutti, 2013; Krieger and Declerck, 2015),
all coming up with at least one brand-new individual (intro-
duced by a hidden existential quantification), acting as an
anchor to which the object information (the range informa-
tion of the relation) is bound through additional properties
(a kind of reification). For instance, the so-called N-ary
relation encoding (Hayes and Welty, 2006), a W3C best-
practice recommendation, sticks to binary relations/triples
and uses container objects to encode the range information
(ppt1 and ppt2 being the new individuals):

peter marriedTo ppt1
ppt1 rdf:type nary:PersonPlusTime
ppt1 nary:value liz
ppt1 nary:starts ”1997”ˆˆxsd:gYear
ppt1 nary:ends ”1999”ˆˆxsd:gYear
peter marriedTo ppt2
ppt2 rdf:type nary:PersonPlusTime
ppt2 nary:value lisa
ppt2 nary:starts ”2000”ˆˆxsd:gYear
ppt2 nary:ends ”2010”ˆˆxsd:gYear

As we see from this small example, a quintuple is repre-
sented by five triples. The relation name is retained, how-
ever, the range of the relation changes from, say, Person to
the type of the container object which we call here Person-
PlusTime.

Rewriting ontologies to the latter representation is an un-
pleasant enterprise, as it requires further classes, rede-
fines property signatures, and rewrites relation instances,



as shown by the marriedTo example above. In addition, rea-
soning and querying with such representations is extremely
complex, expensive, and error-prone.
Unfortunately, the former tuple-based representation which
argues for additional (temporal) arguments is not supported
by ontology editors today, as it would require to deal with
general n-ary relations (n ≥ 2). ×-Protégé fills exactly this
gap.

2. Further Motivation
×-Protégé supports the definition of Cartesian types, com-
posed from standard OWL classes and XSD datatypes.
Given Cartesian types and by keeping the distinction be-
tween the domain D and the range R of a binary prop-
erty p, it is now possible to define m + n-ary relations
p ⊆ D1 × · · · × Dm × R1 × · · · × Rn.
The deeper reason why it is still useful to separate domain
and range arguments from one another is related to the so-
called property characteristics built into OWL, e.g., sym-
metry or transitivity. This ultimately allows us to general-
ize the corresponding entailment rules, by replacing atomic
classes with Cartesian types. For instance, entailment rule
rdfp4 for transitive properties p from (ter Horst, 2005)

p(x, y) ∧ p(y, z)→ p(x, z)

can be generalized as (m = n = o)

p(×m
i=1xi,×n

j=1yj) ∧ p(×n
j=1yj ,×o

k=1zk)
→ p(×m

i=1xi,×o
k=1zk)

×-Protégé not only keeps the distinction between the do-
main and range arguments of a relation, but also provides
further distinct annotation-like arguments, called extra ar-
guments which have been shown useful in various situa-
tions and which are accessible to entailment rules of the
above kind. Consider a binary symmetric property q which
we would like to generalize by the concept of valid time
(the time in which an atemporal statement is true), thus the
corresponding entailment rule needs to be extended by two
further temporal arguments b and e:

q(x, y, b, e)→ q(y, x, b, e)

By assuming that the temporal arguments are part of the do-
main and/or range of q, we are running into trouble as sym-
metric properties require the same number of arguments in
domain and range position. Thus, we either need to adjust
this rule, i.e.,

q(x, b, e, y, b, e)→ q(y, b, e, x, b, e)

or assume that b and e have a special “status”. We decided
for the latter and call such information extra arguments. As
an example, the former marriedTo relation (a symmetric re-
lation) is of that kind, thus having the following relation
signature (assuming a biography ontology with class Per-
son):

Person × Person × xsd:gYear × xsd:gYear
domain range 2 extra arguments

Other non-temporal examples of extra arguments might in-
volve space (or spacetime in general), using further XSD
custom types, such as point2D or point3D, in order to en-
code the position of a moving object over time (Keshavdas
and Kruijff, 2014).

More linguistically-motivated examples include the direct
representation of ditransitive and ergative verb frames, in-
cluding adjuncts (Krieger, 2014). We will present an exam-
ple of this at the end of Section 7. when defining the qua-
ternary relation obtains. Such kinds of properties are often
wrongly addressed in triple-based settings through relation
composition, applied to the second argument of the corre-
sponding binary relation. This does not work in general,
but only if the original relation is inverse functional.
As a last example, we would like to mention the direct rep-
resentation of uncertain statements in medicine or technical
diagnosis in an extension of OWL (Krieger, 2016) which is
far superior to various encodings described in (Schulz et al.,
2014) which have accepted the boundaries of RDF triples
in order to be compatible with an existing standard.

3. Protégé, ×-Protégé, and HFC
Protégé is a free, open source ontology editor, pro-
viding a graphical user interface to define and inspect
ontologies (http://protege.stanford.edu). Protégé version
4 has been designed as a modular framework through
the use of the OSGi framework as a plugin infrastruc-
ture (https://www.osgi.org/developer/). For this reason, ×-
Protégé has been implemented as an EditorKitFactory plu-
gin for Protégé, replacing the built-in OWL EditorKitFac-
tory. The EditorKit is the access point for a particular type
of model (in our case, a model based on n-tuples) to which
a GUI has access to.

×-Protégé is divided into three separate components (Fig-
ure 1, large right box). The “bottom” layer is realized by
HFC (Krieger, 2013), a bottom-up forward chainer and
semantic repository implemented in Java which is com-
parable to popular systems such as Jena and OWLIM
(http://www.dfki.de/lt/onto/hfc/). HFC supports RDFS and
OWL reasoning à la (Hayes, 2004) and (ter Horst, 2005),
but at the same time provides an expressive language for
defining custom rules, involving functional and relational
variables, complex tests and actions, and the replacement
of triples in favour of tuples of arbitrary length. The query
language of HFC implements a subset of SPARQL, but at
the same time provides powerful custom M :N aggregates
(M,N ≥ 1), not available in SPARQL.
The data read in by HFC is preprocessed and transformed
into an ×-Protégé model. Among other things, it contains
inheritance hierarchies for classes and properties which are
directly used to visualize the ontology in the graphical user
interface of ×-Protégé.
This GUI consists of several workspaces (similar to
Protégé, version 4.3), presenting the ontology itself, the
classes, the properties, and the instances. User actions re-
sult in an update of the model and HFC’s n-tuple database.

Figure 1: The three-layered structure of ×-Protégé.



In the next section, we will look into some of these
workspaces (or tabs), assuming the marriedTo example
from Sections 1. and 2.

4. Class Tab
When starting ×-Protégé the class hierarchy consists of a
unique, most general type, called Thing+ in the GUI which
subsumes every other Cartesian type and which can be for-
mally defined as

Thing+ :=

k⊔
i=1

(owl:Thing t xsd:AnyType)i

For a given ontology, k is fixed (finite, of course). Ini-
tially, Thing+ has two direct subtypes, viz., owl:Thing and
xsd:AnyType. HFC already provides a set of built-in XSD
subtypes, such as xsd:gYear (Gregorian Year) or xsd:int
(4 Byte integers), but also defines non-standard datatypes,
such as xsd:monetary. As in a pure OWL setting, owl:Thing
and xsd:AnyType are incompatible, but xsd:AnyType is
made available under Thing+ in order to define Cartesian
types, such as xsd:gYear × xsd:gYear for the two extra
arguments of the marriedTo relation (or even Person ×
xsd:gYear× xsd:gYear for the sexternary relation q in Sec-
tion 2.). This small type hierarchy is depicted in Figure 2.

Figure 2: The class hierarchy for the marriedTo example.

Note that the non-singleton Cartesian types are highlighted
using red colour and that xsd:gYear×xsd:gYear is correctly
classified as a subclass of the Cartesian type xsd:AnyType×
xsd:AnyType.

5. Property Tab
As in OWL, we distinguish between the property charac-
teristics owl:DatatypeProperty and owl:ObjectProperty. We
group these two classes under the super-property Mixed-
Property, as we do allow for further “mixed” property char-
acteristics; e.g., properties which are instantiated with an
XSD atom in first place or properties with Cartesian do-
main and range types which are a mixture of OWL classes
and XSD types (and thus are neither datatype nor object
properties). Since the quaternary relation marriedTo (bi-
nary relation plus two extra args) maps URIs onto URIs,
it is classified as an object property (remember, the extra
args neither belong to the domain nor range of a property).
However, the ternary relation hasAge (binary relation plus
one extra args) is a datatype property as it maps URIs onto
XSD ints (the extra arg is the transaction time, the time
when the birthdate was entered to HFC); cf. Figure 3.

Figure 3: The property hierarchy for the marriedTo and
hasAge relations.

Figure 4: The property signature for the marriedTo relation.

When defining a new property, a user is required to choose
the right Cartesian types to complete the property signature.
This is displayed in Figure 4 for the marriedTo relation.
Depending on the kind of property, an ontology engineer
is even allowed to associate further property characteristics
with a property under definition; see Figure 5.

Figure 5: Further potential property characteristics for the
marriedTo relation.

6. Instance Tab
We complete the overview of the workspace tabs by coming
back to Peter and his relation to Liz and Lisa (cf. Section
1.). From the instance tab, we learn about his two marriages
and that he is currently 53 years old (see Figure 6).
The symmetry of the marriedTo relation (see Figure 5) fur-
ther guarantees that Peter is listed in the instance tabs of Liz
and Liza as well.

7. N-Tuples & I/O Formats
As ×-Protégé allows us to deviate from pure binary rela-
tions, certain adjustments to the N-triples format (Carothers
and Seaborne, 2014) are necessary, especially as extra ar-
guments need to be represented. Assume a quaternary rela-
tion obtains between a person and a degree obtained from
an educational organization at a specific time:

obtains ⊆ Person × Degree × School × xsd:date
D R1 × R2 A



Figure 6: Facts about Peter.

In order to let the system know of how many arguments the
domain, the range, and the extra part of a relation is com-
posed of, we add further length-related information (infix
notation):

obtains rdfs:domain Person
obtains rdfs:range Degree School
obtains nary:extra xsd:date
obtains nary:domainArity ”1”ˆˆxsd:int
obtains nary:rangeArity ”2”ˆˆxsd:int
obtains nary:extraArity ”1”ˆˆxsd:int

Notice that the rdfs:range keyword directly above is fol-
lowed by two classes: Degree and School (= R1×R2). Not
only is this kind of representation used in the RBox of an
ontology, but also in the TBox, e.g.

Degree School rdfs:subClassOf owl:Thing owl:Thing

as
Degree × School v >×>

is the case. ABox information is also affected by this style
of representation, as, for instance

peter obtains phd stanford ”1985”ˆˆxsd:date

Besides providing such an (asymmetric) infix representa-
tion, ×-Protégé let the user decide whether a prefix repre-
sentation is more appropriate for him/her. So, for instance,
the last ABox statement above would then become

obtains peter phd stanford ”1985”ˆˆxsd:date

We finally like to stress the fact that once one decided
to go for a direct representation of additional arguments
and reason upon them, queries and rules will usually
intermix tuples of different length. For example, in a
valid time approach universal information from the TBox
and RBox of an ontology is encoded as triples, whereas
assertional knowledge will be represented as quintuples
(Krieger, 2012); see HFC rule at the end of Section 8.

8. Future Work
Since ×-Protégé already uses functionality from HFC (see
Section 3.), we would like to add further query and rule def-
inition tabs to the next major version of ×-Protégé to sup-
port the construction of HFC queries and rules (see the two
examples below).
The query support in ×-Protégé will ease the definition of
SPARQL-like queries in HFC over n-tuples, using key-
words such as SELECT, SELECTALL (for the multiply-out

mode in HFC in case equivalence class reduction is en-
abled), DISTINCT, WHERE, FILTER, and AGGREGATE.
Depending on the property signatures, ×-Protégé will then
alarm a user if too less, too many, or wrong arguments have
been specified in WHERE clauses, FILTER tests, or AG-
GREGATE functions. This helps to simply the construction
of a query such as

SELECT DISTINCT ?partner
WHERE peter marriedTo ?partner ?start ?end
FILTER GreaterEqual ?start ”1998”ˆˆxsd:gYear &

LessEqual ?end ”2005”ˆˆxsd:gYear
AGGREGATE ?noOfPartners = Count ?partner

which computes how many times Peter was married to dis-
tinct women between 1998 and 2005. The results of such
queries (viz., tables) will also be displayed in this tab.
The rule support will provide means to define, maintain,
and extend RDFS, OWL, and custom rule sets. Again, as
is the case for queries, clauses, @test, and @action sec-
tions of rules in HFC will benefit from checking for the
right number of arguments. For instance, the valid time ex-
tension of the entailment rule for transitive properties (ter
Horst, 2005) in HFC looks as follows (Krieger, 2012):

?p rdf:type owl:TransitiveProperty // triple
?x ?p ?y ?start1 ?end1 // quintuple
?y ?p ?z ?start2 ?end2
→
?x ?p ?z ?start ?end
@test // 3 LHS tests
?x != ?y
?y != ?z
IntersectionNotEmpty ?start1 ?end1 ?start2 ?end2
@action // 2 RHS actions
?start = Max2 ?start1 ?start2 // new RHS variable
?end = Min2 ?end1 ?end2 // new RHS variable

In both cases, we would also like to provide a completion
mechanism for properties and URIs, as well as for external
tests (see @test above) and value-returning functions (see
@action above), an extremely useful functionality known
from programming environments.
Our ultimate goal is thus to offer ×-Protégé as a front-end
GUI for ontology-based systems, based on HFC.

9. Download
×-Protégé version 1.0 as of Monday Feb 15, 2016
can be downloaded from https://bitbucket.org/cwillms/x-
protege/downloads/ and is made available under the
Mozilla Public License. Here, you will also find a prelimi-
nary version of the user guide.
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