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Abstract

This paper presents the multi-legged robot MANTIS which is developed within the project LIMES at the DFKI RIC and

the University of Bremen. In particular, we describe the mechanical design, the sensor setup, electronics, and computing

hardware. Furthermore we give a short introduction to the software framework for simulation-based motion behavior gen-

eration and optimization for such kinematically complex robots as well as to the online locomotion control and evaluation

approach for context-based utilization and adaptation of these behaviors. Finally, applied methodologies and experiments

allowing to assess and reduce the difference between observed and simulated behavior of the robot and its subsystems are

presented.

1 Introduction
Thus far, the field of mobile robots for space exploration

has been dominated by wheeled systems, avoiding highly

complex locomotion control and high energy consumption

on flat terrain while building on experience gained in appli-

cations on Earth. However, depending on the planned mis-

sion, the limited mobility of wheeled rovers in unstructured

terrain can outbalance their advantage on flat terrain, which

is why walking systems might at least be competitive if not

required in the first place [1]. Furthermore, future missions

will include more complex manipulation tasks than in-situ

investigation or sample collection, as for instance the build-

ing up and maintenance of infrastructure will be required

to support and sustain human presence on extraterrestrial

bodies [6].

MANTIS 1 (Figure 1) is developed with the aim to provide

high mobility and manipulation capabilities in uneven and

unstructured terrain and thus features six legs, two of which

double as arms and are equipped with grippers, enabling

the robot to perform dual-arm manipulation. The head and

end-effectors of the extremities are equipped with various

sensors to acquire data on the environment while most of

the electronics for power management, high-level process-

ing and overall robot control are housed in the rear section

of the system. MANTIS is controlled by a network of FP-

1The presented system is part of the Project LIMES (Learning In-

telligent Motions for Kinematically Complex Robots for Exploration in

Space) funded by the Space Agency of the German Aerospace Center

with federal funds of the Federal Ministry of Economics and Technology

(BMWi) in accordance with the parliamentary resolution of the German

Parliament, grant no. 50RA1218.

GAs and micro-controllers on the subsystem level whereas

the central high-level control is implemented using Rock 2

(Robot Construction Kit), a software framework based on

Orocos RTT (Real Time Toolkit).

Figure 1 The robot MANTIS in upright manipulation

posture

This paper explains the mechanical design inspired by the

praying mantis insect, provides an overview of the elec-

tronics development and describes the software architec-

ture used to control locomotion and adapt the robot’s be-

havior to its current environmental, task-dependent and in-

ternal conditions.
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2 Mechanical Design
MANTIS is designed following the main idea to create a

robot which is able to walk statically stable while ma-

nipulating with two arms based on the concept presented

in [11]. Although statically stable walking is possible on

two extremities, walking on four extremities while main-

taining ground contact with at least three of them pro-

vides higher stability, which is particularly useful when ad-

ditional forces arise during manipulation. A system like

MANTIS is well-suited for applications requiring high ma-

nipulation payloads during locomotion, e.g., clearing dis-

aster sites or setting up infrastructure in a planetary explo-

ration setting.

MANTIS possesses six extremities for locomotion, each

having six active degrees of freedom (DOF). In addition,

MANTIS is able to erect its body and free the two fore-

most extremities to use them as arms, both featuring three-

fingered hands for dual arm manipulation and a bracket to

walk on it. The main electronic compartment is located in

the the rearmost body segment, the abdomen, providing a

counterweight for the upper body and thus shifting the cen-

ter of mass towards the frame articulation. This feature fa-

cilitates switching between the locomotion and manipula-

tion postures. In the former, the actuated frame articulation

allows the shifting of the center of mass along the robot’s

longitudinal axis if both linear actuators extend or retract

simultaneously, while in the latter two types of movement

are possible: simultaneous movement of the actuators leads

to an alteration of the robots height, contrary movement al-

lows the robot to lean to the left or right.

The sensor head is actuated by three joints and contains

a stereo camera system as well as an inertia measurement

unit and a lidar sensor. The first joint is used to compen-

sate the torso’s pitch, simplifying control algorithms and

allowing intuitive teleoperation of the system. Altogether,

MANTIS has 61 active DOF used to control the movements

of its body. The system with an overall weight of 109 kg is

able to carry 40 kg of payload (see Table 1).

Table 1 MANTIS specification

Attribute Value Unit

Mass 109 kg

Payload Capacity 40 kg

Dimensions [l x b x h]

(Manipulation)

approx. 1,4 x 1,8 x 1,8 m

Dimensions [l x b x h]

(Locomotion)

approx. 2,2 x 1,8 x 0,8 m

Number of DOF 61

Operating Voltage 48 V

Quiescent Current 2.6 A

The structure is realized using cast aluminum parts and

plastic tubes reinforced with carbon fibre. The structure

of the abdomen and the lower arm of the manipulation ex-

tremities are realized with sheet metal to simplify upgrad-

ing individual parts such as computers and FPGA boards.

2.1 Arm Extremities
The arm extremities are used for both locomotion and ma-

nipulation (Figure 2). This is why each arm is equipped

with a three finger gripper to manipulate objects and a cov-

ering bracket to walk on. Each finger has two DOF and

is mounted on a force-torque (FT) sensor to enable force-

controlled grasping. The outer two fingers can be rotated

up to 180◦ around the palm. Furthermore, the whole grip-

per and the walking bracket are mounted on an FT sensor.

The grasping surfaces of the finger phalanges are equipped

with fiber-optic tactile sensors to allow a calculation of the

pressure distribution. The gripper is designed as an integral

part of the forearm, all actuators to drive the tendons for the

finger actuation are located within it.

DC/DC ConverterFT-Sensor

Finger

Walking bracket Tendon Drive

Figure 2 The arm in sectional view.

2.2 Leg Extremities
The leg extremities used for locomotion are designed to

be collapsible to reduce the required stowage space. The

leg has three DOF near the proximal mounting flange, one

knee like DOF in the middle and two DOF in the distal

ankle part (Figure 3).

Passive Adaptive Foot

Linear Actuators

FT-Sensor Presure Sensors

Figure 3 The leg in sectional view.

The lower leg consist of an active and a passive adaptive

part. The active part is used to align the foot while the

passive part is used for dealing with uneven terrain. The



adaptive characteristics are obtained with two hemispheres,

the lower sliding on and being guided by the upper. The

resulting center of rotation is below the ground so that this

configuration is inherently stable.

2.3 Actuators
MANTIS has 61 actuators to move the body, consisting of

six types of rotation actuators, three types of linear actua-

tors, one tendon drive and one servo to tilt the lidar sensor

(Figure 4 and Table 2).
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Figure 4 Actuated DOF of MANTIS, including both ro-

tational (red) and linear (green) actuators, with arrows

indicating motion axes.

Table 2 MANTIS actuator specifications

Rotational Actuators

Actuator
Type

Nominal
Torqe
[Nm]

Nominal
Speed
[rpm]

Motortyp Nominal
Voltage
[V]

Nominal
Current
[mA]

Rot. Type 1 2,5 29,4 EC 32 flat 24 500
Rot. Type 2 6,7 32,9 EC 45 flat 36 849
Rot. Type 3 36,8 43,75 ILM 50x14 48 3500
Rot. Type 4 54 21,87 ILM 50x14 48 3500
Rot. Type 5 92 21,87 ILM 70x10 48 7000
Rot. Type 6 176 13,125 ILM 70x18 48 7000

Linear Actuators

Actuator
Typ

Nominal
Force
[N]

Nominal
Speed
[mm/s]

Motortyp Nominal
Voltage
[V]

Nominal
Current
[mA]

Lin. Typ 1 804 81 EC 45 flat 24 3210
Lin. Typ 2 710 5 EC-max 30 36 970
Lin. Typ 3 1400 147 ILM70x18 48 7000

Each rotational and linear actuator is equipped with a stack

of three PCBs which consist of a power module with motor

driver, a logic board equipped with an FPGA and a connec-

tor board. All motors are commutated brushlessly and pow-

ered with direct current (BLDC). Most motors are equipped

with magnetic off-axis absolute position encoders (work-

ing according to the nonius principle) which are capable

to emulate both hall sensor signals for motor commutation

as well as quadrature encoder signals for speed estimation.

Identical magnetic absolute encoders are used to measure

the rotational position of the output shaft of every DOF.

The rotational actuators (Typ 3-6) provide a hollow shaft

to feed through power and communication wires. The ro-

tational actuators are depicted true to scale in Figure 5.

Rot. Type 1 Rot. Type 2

Rot. Type 3 Rot. Type 4

Rot. Type 5 Rot. Type 6

Figure 5 The rotational actuator types.

The smallest drive units are realized with external rotor

motors in order to achieve the highest possible number of

pole pairs and a large air gap diameter for a higher torque.

The external rotor motors provide better torque density for

this range of motors [14].

3 Electronic Design
Over the last several years in robot development, the topol-

ogy of the hardware architecture changed from centralistic

approaches to networks of heterogeneous processing units,

an approach that has several advantages. It builds the foun-

dation towards robustness against hardware failures, leads

to increased signal quality due to analog-to-digital conver-

sion right at the signal acquisition, and enables balancing of



processing load on the hardware via local pre-processing.

Since the complexity of algorithms running on embed-

ded hardware is increasing, the predominantly used term

‘low-level processing’ is often not fully applicable anymore

which is why ‘first-level processing’ is used here for these

types of electronics.

A driving aspect of shifting algorithms to controllers that

are distributed across the robot are the equally distributed

sensors. Generally, to support the possibility to design au-

tonomous behavior with rising complexity and dealing with

more than a limited set of tasks, sensors of different modal-

ities are needed almost everywhere in a robot. Figure 6
gives an overview of the distribution of MANTIS’ sensors.

In total, 88 position encoders, 14 six-axis force-torque sen-

sors, 2 IMUs, 2 HD cameras, 1 lidar, 122 temperature sen-

sors, 191 current measurement sensors, and 12 tactile sen-

sors comprising 40 sensing elements can be found in the

whole system. The overall data volume generated by this

system amounts to 629 megabytes per second (compare Ta-
ble 3).

Absolut Encoder (IC-Haus MH)
Absolut Encoder (IC-Haus MU)

FT-Sensor (ATI Mini 45 )
FT-Sensor (ATI Nano 25)
F-Sensor (Burster 8435)

54 x

54 x

Camera (Procilica GC 2450C)

IMU (XSens MTi)Lidar (Hokuyo UTM-30LX)

Tactile Sensor Array (DFKI)
Absolut Encoder (Megatron)
Pressure Sensor 
Hall-Effect Sensor 
Incremental Encoder (MR Typ ML) 

Current 
Sensor
Board

Camera (Procilica GC 2450C)

IMU 
(XSens MTi)

Temperature Sensor 
Motor Current and Suppy Voltage Sensors on PCB

54 x
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Figure 6 Sensor distribution within the MANTIS robot.

The designed hardware architecture that handles the pro-

cessing of the sensor data and controlling of the robot is

depicted in Figure 7. In total, there are 62 FPGAs, 14

microcontrollers, and one standard x86 central processing

unit integrated into the system. Like for the homunculus,

an artficial model of the senory or motor cortex in human

beings, it can be seen that some areas of the robotic system

are equipped with a higher density of processing units than

others.

System on Chipx86 CPU

FPGAMicrocontroller unit

Low-Speed LVDSHigh-Speed LVDS

Extremities Head Torso

Figure 7 Architecture of the processing units within the

MANTIS robot.

3.1 First-level control of BLDC signals
Most of the processing elements are placed in the system

in direct neighbourhood of actuation units. Since the in-

troduction of custom PCBs for BLDC motor control in the

robots developed at the DFKI RIC [5], the motor actuation

and control is realized locally. The technological advance-

ment allowed us to move from Xilinx Spartan 3 FPGAs

having roughly 17,000 logic elements to Spartan 6 modules

containing 44,000 logic cells while staying roughly in the

same form factor. This development supports the design

approach to move as much signal processing and control as

possible to first level processing units. Over the years the

local processing evolved to hierarchical controllers and the

implementation of advanced protocols for heterogeneous

processing networks like Node-Level Data Link Commu-

nication (NDLCom) [16].

3.2 First-level control of tactile sensor data
Further processing power is placed near the grippers where

different modalities of contact sensing support the grasping

of objects. Based on previous experiences with this tech-

nology [7], fiber-optic sensing principles were selected to

form tactile sensor arrays in the palm.

The integrated sensor module can be seen in Figure 8. It

consists of an upper layer where polymer-optical-fibers are

placed in pairwise manner on a bended contact surface.

The processing electronics at the lower layer consist of a

small FPGA (Lattice MachXO2 4000) capable of extract-

ing the tactile sensor information from a camera image that

is capturing the endings of the sensing optical fibers of the

sensor. The overall dimensions of the sensing module are

40 mm by 15 mm in width and length and 17 mm in height.



Table 3 Upper boundaries for sensor data generated every second in the MANTIS robot

Sensor Type Freq. [Hz] Data [Bit] Volume [MB/s] Num. Sensors

IC-MU Encoder 4000 12 0.005 58

IC MH Encoder 4000 12 0.005 30

ATI FT 6 axis Force-torque 12 16 > 0.001 14

XSens MTi IMU 2000 16 2

GC2450C Camera 15.1 160.5M 287 2

Hoykuyo UTM Lidar 40 26k 0.123 1

LM75 Temperature 10 9 > 0.001 61

DFKI Skin Tactile Sensors 30 2.4M 1 12

Total: 180

Figure 8 Integrated fiber-optic sensing module

Together with the 6 DOF force-torque sensors, these sen-

sors implement the tactile sensing capabilities of the robot.

Two FPGAs in the lower arm allow local pre-processing of

the data (e.g. determination of force levers) and a direct

reaction to processed stimuli. Examples for this are the re-

alization of stable grasps directly at the first level without

including higher-level computation units.

Assembling the data from first-level processing and for-

warding it to standard processing units is a task where

embedded communication signals have to be acquired

from a considerable amount of input channels. Such pre-

processing requires a system capable of massive parallel

data handling in combination with a serial processing unit.

The Xilinx Zynq System-on-a-Chip (SoC) is a perfect can-

didate for this task. Massive parallel processing power is

delivered by an FPGA and the embedded dual core ARM

Cortex A9 core provides enough processing power to do

high level computing on a Linux operating system. Choos-

ing this embedded two-in-one solution ensures that the

overall footprint of the processing unit remains small when

compared to discrete solutions. The lack of commercial

off-the-shelf (COTS) products containing a Xilinx Zynq

which are able to satisfy all of our requirements led to an

in-house development. Figure 9 shows the final result of

the latter, the ZynqBrain. The ARM Controller permits the

installation of a standard Debian Linux which has the ad-

vantage of providing all software packages from the De-

bian software repository. On top of that the installation

of the ROCK software framework was easy compared to

the installation on more exotic operating systems. The em-

bedded FPGA is, among other things, responsible for pre-

processing the data received from the limbs and controlling

other hardware such as current measurement unit, emer-

gency switch, relais board (for motor supply), and battery

surveillance.

Figure 9 ZynqBrain containing the system-on-a-chip

(SoC) Zynq device including a reconfigurable FPGA and

a dual-core ARM A9 processor plus peripherals. A: Xil-

inx Zynq SoC with mounted heat sink, B: JTAG port, C:

USB port, D: 2 UART ports, E: Micro SD Card Slot, F:

Ethernet Connector, G: Memory (RAM), H: Inter-board

connector. Not visible is the connector located on the back

of the ZynqBrain which permits to connect and stack dif-

ferent extension boards.

4 Software Design
As described in the previous sections, MANTIS is a sys-

tem with an extensive sensory and actuatory equipment by

which the robot should gain extensive capacities to interact

with and perceive its environment in different ways. To im-

plement this abilities to its full extend, the control software

has to enable the robot to identify the current situation in or-

der to decide on and execute appropriate motions to achieve

the intended objective at the best possible performance.



4.1 Locomotion
MANTIS possesses a behavior-based control architecture,

combining various behaviors such as central pattern gener-

ators with postural behaviors and reflexes to generate sta-

ble locomotion. Underlying the behaviors executed on the

robot are behavior graphs (BGs), computation networks

featuring elements from neural networks as well as ge-

netic programming, previously described by Langosz et

al. ([8, 9]). The use of BGs allows the graph-based de-

velopment of locomotion control algorithms while provid-

ing an interface for machine learning algorithms. These

can either be used to optimize control parameters of exist-

ing graphs for specific actions or to develop entirely new

control graphs or embedded subgraphs. As learning has to

be conducted for a wide variety of environments and over

extensive sets of repetitions, a simulation environment3 is

used, facilitating repeatability and providing accurate mea-

surements of evaluation criteria such as stability, energy ef-

ficiency, or body vibration to calculate a fitness value.

4.1.1 Behavior Graphs
Nodes in BGs (Figure 10) - in contrast to nodes in classic

artificial neural networks (ANNs) - can have an arbitrary

number of inputs and outputs and a freely definable transfer
function to map the former to the latter. While this allows

emulating ANNs and similarly defined networks made

from simple nodes for use with graph-building machine-

learning algorithms such as NEAT ([15]) or SABRE ([9]),

it further enables manual definitions of complex computa-

tions such as inverse kinematics in a single node as well

as wrapping subgraphs into single nodes and using numer-

ically intuitive global control parameters.

Figure 10 Structure of a behavior graph such as the ones

used for MANTIS (from [8]).

All of this greatly simplifies the use of machine learning

algorithms to improve existing and develop entirely new

graphs. For instance, parameter optimization algorithms

such as CMA-ES [4] can be both used to tune manually

predefined control parameters of an engineered graph and

to adapt the non-intuitive parameters of an evolved graph

without changing the interface between control structure

and machine learning components. This becomes espe-

3MARS (http://www.mars-sim.org)

cially important when combining switching of behaviors

with online-adaptation in the future [3].

4.1.2 Behavior Library and Configuration
Human engineering as well as automated learning in sim-

ulation yields a number of graphs defining robot behav-

iors, necessitating mechanisms to catalog behaviors and

to choose which behavior to execute for a given task in a

given environment considering the observed system state.

For this purpose, a behavior library was created for MAN-

TIS, where both types of behaviors are stored after their

performance was evaluated in a variety of contexts, the lat-

ter being defined as a combination of a provided task and

detected environment. A behavior configurator (see Fig-
ure 10) then automatically chooses behaviors based on the

context the robot operates in. This system is combined with

an interface to a deliberative navigation layer, allowing to

use knowledge from past behavior evaluations in planning

processes [2]. Crucial requisites for a proper functioning of

such an approach are the capabilities of the system to per-

form online context identification as well as performance

self-evaluation using the available sensory equipment.

Figure 11 The control architecture used for MANTIS

(from [2]).

4.2 Manipulation
A whole body control approach is used to manipulate ob-

jects while observing constraints such as stability, thus con-

sidering all body joints to bring the hands into desired

grasping poses. The contact surface of the manipulated ob-

ject can be determined by the contact arrays on each finger.

The huge amount of data is directly processed in the FPGA

of each hand to reduce computation and communication

load of the main CPU.

For good grasping poses the robot uses color and depth

data from the cameras and lidar integrated in its head. This

data gets fed to an ANN model that was pre-trained on la-

beled RGB-D images. For this pre-training of the neural

network, the Cornwell data set and the data preprocessing

methods from Lenz et al. [10] are used. In order to re-

duce the vast search space for possible grasps Bayesian

Optimization is used. The thus determined grasp poses



are ranked using the ANN’s output as a score. Before

initiation of the actual closing movement of the gripper

MANTIS’ manipulator has to be moved towards the object.

This approaching which is part of the grapsing procedure

is learned using imitation learning. A human demonstrates

the grasping trajectory which then gets represented by a

Dynamic Movement Primitive and is transferred onto the

robot using the learning platform described by Metzen et

al. [12].

5 Reference Experiments
Given the extensive use of simulation for the develop-

ment and optimization of behaviors of MANTIS, it is es-

sential that its simulation model resembles the real system

as closely as possible. This is especially important since

some scenarios such as reduced gravity conditions, e.g.,

on the Moon can only be tested in simulation. However,

when creating and revising MANTIS’ simulation models

along with the ongoing mechanical design, it is also im-

portant to weigh accuracy and detail against model com-

plexity, especially for the purpose of optimizing behaviors

in simulation, where computation speed is paramount. For

instance, as a rigid body model is used in MANTIS’ sim-

ulation, structural flexibilities can only be emulated using

additional passive joints, inflating the model’s complexity

and thus leading to slow computation and possible instabil-

ities.

For creating a complete model, a two-step approach is im-

plemented. First, individual components such as motors

and structural elements are modeled after data obtained

from their real counterparts. For structures, this comprises

obtaining values for masses and inertia from CAD, but

can also include testing bending stiffness on an appropri-

ate bending test bench. For motors, a specially designed

motor test bench is used to characterize the controller reac-

tion and power consumption across the range of speed and

torque of different motor types. The results obtained from

these measurements enable the use of black-box function

approximation to recreate the same behavior of motors in

simulation, e.g., for power consumption which is an impor-

tant evaluation factor for behavior optimization. Similarly,

since controllers in simulation run with a much slower fre-

quency than in reality, determined by the iteration step du-

ration of the simulation (often as long as 10 ms), different

sets of parameters have to be found approximating the real

motor behavior, which is a parameter optimization problem

in itself and can be tackled with similar methods as param-

eter optimization of behaviors.

In a second step, the whole body behavior of the robot can

be compared to the simulation model to further tune overall

simulation parameters, such as contact softness and fric-

tion, both essential to correctly recreate the behavior of a

walking robot. For this purpose, a walking test bench was

created, comprised of a treadmill large enough for MAN-

TIS with its wide stance to walk on and thus allowing to use

a stationary motion tracking system to monitor the robot’s

movements.

Finally, it is important to note the virtual impossibility of

completely closing the simulation-reality-gap due to unac-

countable variance both in controlled measurements and

even more so in the field, with often unpredictable influ-

ence of environmental conditions (e.g. temperature or soil

humidity) and interaction (e.g. sinking or slipping on the

surface).

6 Conclusion and Outlook
The development of robotic systems with numerous DOF

as well as high sensor data quality and quantity leads to an

ever-increasing amount of data that needs to be transformed

into useful information for high-level decision making.

With the ongoing effort to acquire sensory information with

higher spatial density, higher resolution or different modal-

ities, this trend will only continue in future robotics de-

velopment. Handling the bottleneck of processing power

by dynamically distributing tasks among the processing

hardware [13] or applying concepts from disciplines like

Big Data and high performance computing will become

increasingly necessary to effectively handle the growing

amount of data and processing nodes in future robots.

Similar considerations apply to the behavior-based loco-

motion control approach utilizing a behavior-library to

store optimized behaviors and gained experiences repre-

sented as corresponding performance evaluations in certain

contexts. Here, the number of behaviors and evaluations is

currently still relatively small, keeping the library as well

as the selection process manageable in terms of memory

usage and computing time. It is desirable, though, for the

robot to evaluate the performance of its behavior online

and thus to continuously improve its behavior library in a

life-long learning approach. This includes the exploration

of novel behaviors in unknown contexts through interac-

tion with the environment as well as the alteration of past

evaluations according to a worsening performance result-

ing from wear out of the system. Consequently, strategies

to keep the library manageable yet capable of storing as

much of the gained experiences as possible, while includ-

ing the possibility to diminish previous evaluations and to

remember bad experiences, are required.

In future walking experiments reference data will be ac-

quired and subsequently used for further optimization of

the overall simulation model. This will allow to develop

behaviors for walking and other tasks purely in simulation

that can be transferred on the real robot with minimal adap-

tation effort. Another advantage is that the simulation can

be used to generate, evaluate, and optimize locomotion be-

haviors for other gravity conditions such as on the lunar

surface to set up an suitable initial behavior library for a

real extraterrestrial mission.
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