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Abstract

In this paper we introduce a spatio-temporal planning
and scheduling approach for collaborative multi-robot
systems. In particular, we are targeting an application
to physically reconfigurable systems in order to take
advantage of morphological changes. The planning ap-
proach relies on an ontology to model the functional-
ities individual physical agents offer within the multi-
robot system, while an implicit domain representation is
given. An inference layer on top of a knowledge-based
system allows to account for superadditive effects from
physically combining two or more robots. We present
a formulation of the domain-specific planning prob-
lem and outline our spatio-temporal planning approach.
This approach combines the use of constraint-based sat-
isfaction techniques with linear optimization to solve a
multicommodity min-cost flow problem to deal with the
transportation of immobile robotic systems. The paper
describes the findings after implementing core features
and evaluates the approach based on a fictitious scien-
tific mission. We close with a discussion of the current
limitations of the illustrated approach.

1 Introduction
Robotic space missions rely on highly specialized robotic
systems to perform scientific missions. Despite the existing
capabilities of these systems, the communication delay in
a space-exploratory mission has a significant influence on
operations and is a major reason for an overall slow mis-
sion progress (NASA 2016). While automation and intro-
duction of techniques from artificial intelligence could miti-
gate some of these effects, there is a reluctance of increasing
autonomy in such systems. One of the reasons for this re-
luctance is keeping the operational and financial risk to a
minimum.

The application of reconfigurable multi-robot sys-
tems (Roehr, Cordes, and Kirchner 2014) offers an approach
to reduce these types of risk in multiple ways. Firstly, the
modularity of such system allows for an incremental mis-
sion design, which can include systems with different de-
grees of specialization. That means, that after an initial de-
ployment phase where a limited number of robotic systems
is used, subsequent system development and deployments
can take advantage of reconfigurability and extend the func-
tionality of the existing systems. Secondly, the additional

degree of freedom that arises from the flexibility of reor-
ganising resources (Evans 1991) within the multi-robot sys-
tem can be used at the time of mission planning as well
as at runtime. Thus, the inherent flexibility (DeLoach and
Kolesnikov 2006) of a physically reconfigurable multi-robot
system offers a benefit for operations regarding safety, effi-
ciency and efficacy. A reconfigurable multi-robot system en-
compasses all the benefits of a multi-robot system so that it
can mitigate the issue of single-point-of-failure. As an addi-
tional benefit, resources can be dynamically shifted within
a physically reconfigurable system, so that functionalities
and redundancies can be created where they are needed the
most. Meanwhile, efficiency can be increased by distributing
tasks according to the level of capability of individual robots
and while traditional multi-robot systems can increase effi-
cacy by applying general cooperation schemas, reconfigura-
tion adds the possibility of creating physical coalitions aside
from creating virtual ones. This not only results in a mor-
phological change, but allows to take advantage of any su-
peradditive effect, e.g., using abilities that are not available
within individual systems, but only when two or more join.

The motivation for developing a planner for reconfig-
urable multi-robot systems comes from the idea of taking
full advantage of the available flexibility in an automated
way. While will not present results of a fully completed im-
plementation that includes the anticipated multi-objective
optimization for redundancy and efficiency, but we illus-
trate an overall integrated planning approach that accounts
for the full flexibility of a reconfigurable multi-robot sys-
tem. Hence, our main contribution is the outline of an in-
tegrated multi-robot planning approach, which allows us to
limit the combinatorial explosion that comes with a cooper-
ative multi-robot system. In the following we therefore in-
troduce related work in this area in Section 2. Subsequently,
we outline our planning approach in Section 3 and provide
details on the implementation and validation in Section 4.
The final section 5 provides our conclusions and an outlook
of future work.

2 Background
Real reconfigurable multi-robot systems have been success-
fully developed in the past years, though the main focus
of these efforts has been swarm-like systems, i.e. modules
that can be almost arbitrarily combined, but are limited with



Figure 1: The multi-robot system which represents the initial
motivation and target platform for the planning algorithm.

respect to their final applicability for complex tasks. The
work by Roehr et al. (Roehr, Cordes, and Kirchner 2014)
presents a recent achievement in this area by allowing more
complex and more capable robots to combine and dynami-
cally form coalitions. The project TransTerrA (Sonsalla et al.
2014) builds upon these experiences and develops a recon-
figurable multi-robot system that comprises of mobile and
immobile robotic agents such as the mobile rover SherpaTT,
the mobile shuttle Coyote III, payload-items and so-called
base camps; the robotic systems are depicted in Figure 1.

Leading to the progress of developing these kind of re-
configurable multi-robot systems has been the development
of interfaces that allow for a reliable electro-mechanical cou-
pling of two physical agents. While the development of such
hardware is progressing, the automated exploitation of this
additional degree of freedom has yet received little attention.

Theoretical work for organization modelling has been col-
lected by Dignum (Dignum 2009) and OperA and LOA
(logic for agent organizations) are two examples providing a
formal foundation. Dignum also stresses the importance of
dealing with reconfigurable systems as yet another dimen-
sion for organizations. Closer oriented towards the multi-
agent and multi-robot domain are MOISE+ (Hübner, Sich-
man, and Boissier 2002) and OMACS (Zhong and DeLoach
2011), which provide models to describe goal oriented or-
ganizations to consider restructuring (of task assignments)
of such multi-agent systems as error response and based on
a metric, which quantifies the ability to fulfil specific tasks.
In order to quantify the benefit of a specific configuration of
an organization the work of DeLoach et al. (DeLoach and
Kolesnikov 2006) is a rare example and relies on a static
analysis at design stage.

Looking at the safety property a reconfigurable multi-
robot system could be viewed as the so-called superaddi-
tive game (Weiss 2009) - a subclass of characteristic func-
tion games; the best coalition of agents is a monolith com-
posite agent, i.e. merging all available agents leads to a
maximum degree of redundancy. However, a reconfigurable
multi-robot system is restricted in the way composite agents
can be constructed, i.e. physical interfaces might be already

used or are incompatible with each other, thus possible com-
binations are limited. Rahwan et al. (Rahwan et al. 2011)
provide an approach to find the best possible combination
for this restricted case, however, the given approach already
requires knowledge about compatibility, which becomes im-
practical even for medium sized teams when agents can be
connected via multiple interfaces. Meanwhile, approaches
such as ModRED (Baca et al. 2014), and coalition struc-
ture generation (Rahwan et al. 2009),(Rahwan et al. 2011)
provide means to identify (near) optimal configurations for
unrestricted coalition building. Since the search space is the
space of all so-called coalition structures PA = 2|A|, where
A is the set of available agents; the cost for this computation
can be significant: Rahwan et al. show that it is (Rahwan et
al. 2009) O(2|A|) and limiting even for a small team size;
stronger assumptions allow to reduce this restriction, e.g.,
Baca et al. (Baca et al. 2014) show a reduction to O(log|A|)
but they also assume a constant utility of two linked agents
irrespective of the total size the coalition they are in.

Tenorth and Beetz (Tenorth and Beetz 2013) illustrate that
ontologies offer a scalable approach to model robotic sys-
tems and plan with this information, e.g., they rely on a set
of ontologies to describe actions, capabilities and interde-
pendencies. However, they use their ontological description
to parametrize so-called action-recipes and focus on single
robotic systems, whereas Cashmore et al.(Cashmore et al.
2015) embed ontologies into a full planning approach.

Planning for reconfigurable multi-robot systems is chal-
lenging due to their high degree of flexibility and marsupial-
like robotic teams (Murphy, Ausmus, and Bugajska 1999)
are only one of multiple possible expressions of such re-
configurable multi-robot systems. Wurm et al. (Wurm et
al. 2013) apply temporal planning in the context of a
multi-robot carrier service which enhances robotic explo-
ration. They use the PDDL-based temporal-planning sys-
tem TFD/M (Eyerich, Mattmüller, and Röger 2012) which
offers the use of so-called semantic attachments or rather
external evaluation functions for better context integration,
e.g., allowing to use a path-planning component to com-
pute action costs. Similarly, Eich et al. (Eich et al. 2014)
perform coordination of a multi-robot team using hierarchi-
cal task networks (HTNs), but without explicitly using tem-
poral planning. A combination of (meta-)constraint-based
solvers, temporal planning and HTN planning can be found
in CHIMP (Stock et al. 2015), which has also been suc-
cessfully applied to single and multi-robot problems. While
all mentioned planning systems are suitable to multi-robot
planning, none of these systems takes into account superad-
ditive effects of combining two or more robots.

Numerous timeline-based approaches have been gathered
for space-related applications by Chien et al. (Chien et al.
2012) and in our approach we also use a timeline-based rep-
resentation and Temporal Constraint Networks (Nau, Ghal-
lab, and Traverso 2004),(Dechter 2003) for qualitative tem-
poral reasoning. In addition, we adopt the PLASMA planner
approach (Maio et al. 2015) of resource driven planning.



3 Planning with a reconfigurable multi-robot
system

The challenge of planning with reconfigurable multi-
robot system is directly related to characteristic function
games (Weiss 2009). A configuration of the multi-robot sys-
tem can be viewed as a so-called coalition structure CS ∈
PA, where PA represents the space of all coalitions struc-
tures that can be created from the set of actors A. Rahwan
et al. formalize in (Weiss 2009) a coalition structure over
A as CS = {C1, . . . , C|CS|} such that

⋃|CS|
i=1 Ci = A. By

definition coalitions within a coalition structure cannot over-
lap, i.e., Ci ∩ Cj = ∅, i, j = 1 . . . |CS|, i 6= j. That means,
that each agent of A is part of one and only one coalition in
a coalition structure.

Planning needs to consider possible transitions between
these coalition structures, while finding the optimal coalition
structure is already O(2|A|) for a set of agents A (Rahwan et
al. 2009).

The planning goal is to provide a feasible plan which out-
lines core actions to perform a robotic mission, i.e., the mis-
sion specification can be seen as the goal specification. The
initial intention, however, it not to produce a fully detailed
action plan, e.g., when and how manipulation takes place.
Instead, the goal lies in exploiting reconfigurability to form
composite agents while guaranteeing that resources for spe-
cific functionality (and thus actions) will be available at a
specific location and time. Thus, a solution will represent a
rather coarse grid for a robotic mission (but fulfilling nec-
essary preconditions for functionalities) which can be used
by more specialized planners, e.g., manipulation planner or
navigation planner, to provide a detailed plan.

In the following we introduce the basic notation, defini-
tions and our assumptions regarding reconfigurable multi-
robot systems such as implemented in Roehr et al. (Roehr,
Cordes, and Kirchner 2014):
Definition 3.1. An atomic agent a ∈ A represents a mono-
lithic physical robotic system, where A = {a0, . . . , an} is
the set of all atomic agents. An atomic agent cannot be sep-
arated into two or more physical agents.
Definition 3.2. A mechanically coupled system of two or
more atomic agents is denoted a composite agent CA =
{ai, . . . , aj}, where ai, . . . , aj ∈ A, |A| ≥ |CA| > 1.
Definition 3.3. The type of an atomic agent a is denoted
â and equivalently for a composite agent CA the type is
denoted ĈA. The set of all agent types is denoted Â =
{â1, . . . , ân}.
Definition 3.4. A (general) agent type ĜA is represented
as a tuple set of agent type and type cardinality: ĜA =
{(â0, c0), . . . , (ân, cn)}, where ai ∈ A and 0 ≤ ci ≤ |A|.
ĜA ⊃ ĜA′ ⇐⇒ ∀(ai, ci) ∈ ĜA, (âi, c

′
i) ∈ ĜA′ : ci >

c′i, where i = 1 . . . |A|. Such a tuple set will be denoted an
agent pool.
Definition 3.5. A reconfigurable multi-robot system
(RMRS) is a set of fully cooperative atomic agents. It can
temporarily form composite agents from two or more atomic
agents.

t0 t1 t2 t3 t4 . . .

l0

l1

l2

l3

[ ](F0,{(â0, 3)})

[ ](F1,∅)

Figure 2: A mission specification example consisting of
two spatio-temporal requirements (F1, ∅)@(l3, [t0, t1]) and
(F0, {(â0, 3)})@(l1, [t2, t4]), where l0, . . . , l3 are location
variables and t0, . . . , t4 are timepoint variables.

Assumption 3.1. Each agent can be mapped to a single
agent type only.

Assumption 3.2. Each atomic and composite agent com-
prises a central controller.

Assumption 3.3. A mechanical coupling between two
atomic agents can only be established through two compat-
ible coupling interfaces.

Formally, a robotic mission is a tuple M =
(Aa, STR,X ), where Aa = {a0, . . . , an} is the set of avail-
able atomic agents, STR is a set of spatio-temporally qual-
ified expressions (steqs) and X is a set of (temporal) con-
straints.

A spatio-temporally qualified expression in this context
is an expression of the form: (F ,Ar)@(l, [ts, te]), where F
is a set of functionality constants, Ar is a set of required
(general) agent types, l is a location variable, and ts, te are
temporal variables describing a temporal interval with the
implicit constraint ts < te. Currently, we use qualitative
timepoints and favour the notation of time slots by start
and end time over the specification of a duration, since this
(a) allows a future addition of quantitative timepoints (and
mix between quantitative and qualitative time), and (b) can
be directly translated to the problem solver for constraint-
satisfaction problems (CSPs). Figure 2 illustrates a mission
specification example. A mission specification can contain
partially or fully temporally ordered requirements, i.e., con-
straints between all qualitative timepoints can remain in-
complete in this specification.

Organization model
Reconfigurable multi-robot systems come with great flexi-
bility and as already mentioned come with the possibility
of increasing efficacy through cooperation. One of the chal-
lenges in planning with such a system lies in accounting
for superadditive effects of composite agents, e.g., in our
work we want to account for functionality that becomes only
available when two or more agents join together - an exam-
ple: a robot ’mobile’ that is mobile, can provide power to
external modules, but has no inbuilt camera, can pick up an



(unpowered) camera module ’cam’. In contrast to the atomic
agents (’mobile’ and ’cam’) the newly formed composite
agent ’mobile cam’ can take images and take them from any
location the robot can reach. We will later refer to this ability
of this composite system as ’LocationImageProvider’.

Furthermore, in order to use planning to improve the
safety of operations, we have to provide holistic metrics, i.e.
we have to account for the state of the multi-robot system
as a whole. The introduction of holistic metrics will allow to
compare different states and characterise a multi-robot sys-
tem, e.g., using the overall redundancy level with respect to
the required functionality.

To model a multi-robot system, allow for inferring capa-
bilities of agent coalitions and eventually use the model for
planning we bring the ideas of Tenorth and Beetz (Tenorth
and Beetz 2013) and Cashmore et al. (Cashmore et al. 2015)
together. Both our requirements for planning with recon-
figurable multi-robot systems, i.e. reasoning for composite
agents and providing a holistic metric, are tackled by using
a knowledge-base which we denote organization model.

The organization model is an ontology that can be aug-
mented with domain-specific and system-specific informa-
tion; it allows to encode basic functionalities of agents as
well as the dependence of an agent’s functionality towards
the availability of other resources. We account for two re-
source concepts to describe functionality of an agent: capa-
bility and service. A functionality can have resource require-
ments which are defined using qualified cardinality con-
straints on the property has; this quantifies ownership of a
resource. Figure 3 is an excerpt of an organization model
and shows the basic modeling approach. Requirements are
defined using minimum cardinality constraints in order to al-
low accounting for redundancies. Meanwhile, resources as-
sociated with an agent are defined as maximum cardinalities;
this allows to encode resource outages for individual agents
in the organization model. The organization model can fur-
ther be augmented with more agent specific data, e.g., trans-
port capacities or power consumption 1.

To identify functional dependencies of agents and infer
the availability of a functionality f of a composite agent type
ĈA due to superadditive effects, the following problem def-
inition can be used: searching for the assignment matrix M
which maps available resources (described by a vector U

that is derived from the given composite agent type ĈA) to
required resources (represented by a vector L and derived
from the given functionality):

L−M · I = ~0

subject to

uj −
dim(L)∑
i=1

mi,j ≥ 0, j = 1 . . . dim(U)

mi,j =

{
≥ 0 ⇐⇒ cU,j v cL,i

0 otherwise

1Example ontologies: https://github.com/2maz/
rmrs-pub

Capability v Functionality v Resource v >
Service v Functionality v Resource v >
MoveTo v Capability
ImgProvider v Service
MoveTo ≡ ≥ 1.has.Locomotion

u ≥ 1.has.Localization
u ≥ 1.has.Mapping
u ≥ 1.has.Power

ImgProvider ≡ ≥ 1.has.Camera
u ≥ 1.has.Power

LocImgProvider ≡ ≥ 1.has.ImgProvider
u ≥ 1.has.MoveTo

ARobot ≡ Agent
u ≤ 1.has.Locomotion
u ≤ 1.has.Localization
u ≤ 1.has.Mapping
u ≤ 4.has.Camera
u ≤ 1.has.Power

Figure 3: Organization model excerpt of a Description
Logic (DL) for an atomic agent concept ARobot. This
illustrates an example formulation for a service named
LocImgProvider which reflects the functionality to pro-
vide images from specific locations.

L = [l1, . . . , ln] represents a vector of minimum cardi-
nalities of required resources for the functionality f , U =
[u1, . . . , un] represents the vector of maximum available re-
sources (provided by the set of agents forming the com-
posite agent); n represents the number of different required
resource classes. I is the all-ones matrix dim(U) × 1, M
is the assignment matrix dim(L) × dim(U) with entries
mi,j , i = 1 . . . dim(L), j = 1 . . . dim(U) which are re-
stricted to 0 or positive integer values, and cV,k is the concept
(here: resource class) belonging to entry 1 ≤ k ≤ dim(V )
in a vector V . The value mi,j indicates how many instances
of a particular resource class j are available to satisfy the
request for resources of class i.

The following relationship between the existence of the
functionality f and the existence of a solution to the stated
problem exists:

ARobot ≡ 1.has.f ⇐⇒ ∃M L−M · I = ~0

Thus, if an assignment matrix M can be found for a func-
tion f and a given agent concept, then the functionality is
available for this concept.

Similarly, if the availability of a set of functionalities has
to be tested, then the combined resource requirements of in-
dividual functionalities have to be considered. We define the
required set of resources Lf for a functionality f as:

Lf = [lf,1, . . . , lf,n]

The required resources for the set of functionalities F =
{f1, . . . , f|F |} can then be represented as:

LF = [max(lf1,1, . . . , lf|F |,1), . . . ,max(lf1,n, . . . , lf|F |,n)]



At present, the organization model does not directly ac-
count for negative effects that might come with forming a
composite agent; this is a limitation we intend to tackle in
future revisions.

To reduce the search space we apply a functional sat-
uration bound to a set of composite agent types CT =

{ĈA0, . . . , ĈAn} which provides a minimal set of coalition
types CTmin ⊆ CT that fulfil the functional requirements,
so that for any other coalition type ĈAv /∈ CTmin the fol-
lowing holds:

∃C ∈ CTmin : ĈAv ⊃ C

To give a more intuitive interpretation of this formula-
tion: we intend to remove any composite agent type from
the search space when a subset of its embodied agents is suf-
ficient to provide a requested functionality. We encode this
problem as integer-linear program and solve it with a stan-
dard solver (cf. Section 4) once for a given mission speci-
fication, i.e. initially when required functionalities and the
available agent pool are known.

Metrics and Heuristics
To estimate travel cost for an agent we take the same ap-
proach as Wurm et al. (Wurm et al. 2013) and estimate
the travel time between two locations; we define a nominal
speed as a default property for mobile agents, so that based
on this information the duration estimate can be computed,

A mapping from location symbols to actual coordinates
can be added to the mission specification and as long as
no better information is available, e.g., from a path plan-
ner (Wurm et al. 2013), the distance between locations will
be the basis for cost computations. Robotic systems con-
sume electrical energy and thus all agents come with a nom-
inal power consumption. Hence, duration of actions is not
selected directly as cost measure, but total energy consump-
tion. Although the power consumption can vary over time
with the type of activity, we assume a constant consumption
and leave this improvement as future enhancement. Further-
more, we assume (though not true in all cases) that reducing
energy consumption will be a primary goal for optimizing
multi-robot plans since it can be mapped to the efficiency of
the mission plan.

As mentioned in the introduction, safety is another crite-
ria that has to be taken into consideration. Reconfigurable
multi-robot systems can take advantage of their flexibility
to exchange resources (by forming new coalitions) in or-
der to adjust the level of redundancy in a composite agents.
This leaves the options to deliberately increase redundancy
for prioritized tasks or maintain a minimum level of redun-
dancy in general. Demanding a high level of redundancy in
a mission tends towards a monolithic system that performs
all tasks, while a low level of redundancy thrives for a max-
imum number of parallel tasks, i.e. maximising efficiency.
This means that in the optimization function of the planner
a (user-defined) balance has to be established to trade-off
redundancy and efficiency.

We will base our safety heuristic on the standard mod-
elling of parallel and serial component-based systems. Each

component will be associated with a probability of survival,
leading to an overall measure of probability of survival. This
information can only be extracted by measuring the perfor-
mance of the real systems, and the relation to individual
components. The reliability Rf of a functionality f can be
computed by accounting for parallel components, i.e., re-
sources that are not strictly required but which can serve as
replacement:

Rf (t) =

{
1−

∏n
i=1(1− pi(t)) parallel system∏n

i=1 pi(t) serial system

where pi(t) is the time-dependant probability of survival
with 0 ≤ pi(t) ≤ 1, e.g. influenced by component degrad-
ing.

Overall, the metric can be seen as characteristic function
of a characteristic function game (Weiss 2009). However,
here it is a multi-objective optimization function to trade-off
safety and efficiency, and the problem does not fit into any
of the existing four major subclasses of monotone, superad-
ditive, convex or simple games.

The integration of metrics remains work in progress, how-
ever, computing the reliability of a plan will based on a crit-
ical path analysis and tracing the dependency of individual
functionalities on specific agents.

Planning algorithm
A dedicated domain definition is not provided to the planner,
yet a planning domain is implicitly given by using the orga-
nization model and accounting for recombination of agents.

A full domain definition can be provided, e.g., by trans-
lating the organization model and inference results into
Planning-Domain Definition Language (PDDL). Core ac-
tions considered for such an encoding are (cf. Figure 4):
(i) move, (ii) join, and (iii) split. The move action represents
a typical change of location and requires three parameters:
agent, start location and target location, while split and join
refer to a composite agent instance which is uniquely iden-
tifiable by the combination of agents.

The required set of predicates: (i) atomic(a): an agent a
is atomic, (ii) operative(a): a composite agent a is currently
assembled or an atomic agent a is operative (and thus not
part of any composite agent), (iii) at(a,l): an agent a is at
location l, (iv) embodies(c,a): a composite agent c embodies
an atomic agent a, (v) mobile(a): an agent a is mobile (can
move by itself), and (vi) provides(a,f): an agent a provides a
functionality f .

The action models in Figure 4 have been tested with and
transcoded from a PDDL-based representation and to facili-
tate the transcoding into PDDL, we initially prohibit mixing
of composite and atomic agents in a new composite agent.
However, this does not limit the modelling capabilities: in-
stead we assume a complete separation of a composite agent
into atomic agents when a reconfiguration takes place to
form a new composite agent. The corresponding transition
can be easily optimized before performing it with the real
robots. Furthermore, an atomic agent is either embodied by
a composite agent (and becomes a virtual instance which
cannot be directly associated with a location), or it is opera-
tive and physically present at a location.



moveto(a, ls, lt) – move actor a from start ls to target lt

precond : mobile(a) ∧ operative(a) ∧ at(ls) ∧ ¬at(lt)
effects : at(lt)

join(c, l) – construct the composite actor c at location l

precond : ∀z ∈ A : ¬atomic(c) ∧ ¬operative(c)∧
((embodies(c, z) ∧ operative(z) ∧ at(z, l))
∨(¬embodies(c, z))

effect : ∀z ∈ A : at(c, l) ∧ operative(c)∧
(¬embodies(c, z) ∨ (¬at(z, l) ∧ ¬operative(z))

split(c, l) – split the composite actor c at location l

precond : operative(c) ∧ at(c, l)
effect : ∀z ∈ A : ¬operative(c) ∧ ¬at(c, l)∧

(¬embodies(c, z) ∨ (operative(z) ∧ at(z, l))

Figure 4: Operations as part of the domain definition, for a
set of atomic agent A and location variables l, ls,lt

While this approach offers the possibility to reuse exist-
ing PDDL-based planners in a similar as done by Wurm et
al. (Wurm et al. 2013) and Cashmore et. al (Cashmore et
al. 2015), we found the need for translating the organization
model into this intermediate representation restrictive and
counter-productive for our problem. Therefore, we employ a
planning and scheduling approach that uses the organization
model as an integral part. The algorithm consists of the fol-
lowing main steps: (1) generation of a fully specified qual-
itative temporal constraint network (2) typing for satisficing
assignment also referred to as model assignment (3) role as-
signment, (4) timeline construction, (5) time-expanded net-
work construction (6) flow optimization, (7) solution evalu-
ation, and eventually (8) generation of multi-robot plan(s).

The core structure of the planning algorithm is illustrated
in Algorithm 1, i.e. up to the flow optimization step. This
variant is a simple high-level search strategy and illustrates
the main ideas of this paper to tackle planning with a recon-
figurable multi-robot system.

Temporal constraint network The planning algorithm
starts by taking all temporal constraints of the mission and
generating a temporal constraint network. Based on this in-
put nextQualTCN in Algorithm 1 computes a qualitative
temporal constraint network which is consistent and has no
timeline gaps – such a temporal constraint network eventu-
ally contains one constraint out of >,<,= between any two
qualitative timepoints.

Model assigment A least-commitment principle is ap-
plied as part of the model assignment process in order to
reduce the search space of coalition structures PA; this is
done by limiting the search to composite agents that sat-
isfy the functional requirements for each spatio-temporal ex-
pression while ignoring supersets of such composite agents.
Time overlapping requirements with the same location will
be merged into one requirement.

The model assignment process requires the quantification

Algorithm 1: TemPl Version 0.1
Data:M: mission spec, minNumS: min number of

solutions
Result: timeline-based solutions

1 begin
2 S = ∅;

// model assignment conflict resolvers

3 MCR = ∅;
// role assignment conflict resolvers

4 RCR = ∅;
5 while tcn = nextQualTCN(M) do
6 while nextModelAssignment(M, tcn) do
7 while ra = nextRoleAssignment(M, ma) do
8 rt = computeRoleTimelines(M, ra) ;
9 ten = computeTempExpNetwork(M,

rt);
10 mcf = computeMinCostFlow(M, ten);
11 if conflictFree(mcf) then
12 s = renderSolution(M, mcf);
13 S = S ∪ s;
14 if |S| ≥ minNumS then
15 return S
16 else
17 RCR =getRAConflictResolvers(mcf);

MCR =getMAConflictResolvers(mcf);
if RCR 6= ∅ then

18 r = popResolver(RCR);
19 applyResolver(M, r);
20 goto 7;
21 if MCR 6= ∅ then

// no role assignment found

22 r = popResolver(MCR);
23 applyResolver(M, r);
24 goto 6;
25 return S

of support of a functionality for an atomic agent type â with
respect to a resource class c:

support(â, c, f) =
cardmax(c, â)

cardmin(c, f)

The functions cardmin and cardmax return the minimum
and maximum required cardinality for an instance of a re-
source class, leading to the following definition of support
of a function f with respect to a resource class c:

support(â, c, f) =


0 no support
≥ 1 full support
> 0 and < 1 partial support

We define the functional saturation bound for an atomic
agent type â with respect to functionality f using the inverse
of support:

FSB(â, f) = max
c∈C

1

support(â, c, f)
,

where C is a set of resource classes and ∀c ∈ C :
cardmin(c, f) ≥ 1 to account only for relevant resource



classes. Similarly, the bound for a set of functions F is de-
fined as:

FSB(â,F) = max
f∈F

FSB(â, f)

Two main interpretations of the functional saturation
bound exist. First, it is a lower bound on the number of re-
quired instances of an atomic agent type to achieve a func-
tionality (if these instances are the sole contributors). Sec-
ond, it is also an upper bound for the number of instances
of an atomic agent type which are actually contributing to
achieve this functionality; any excess availability of this
agent type is not strictly necessary, but will increase the
level of resource redundancy. Hence, the functional satura-
tion bound defines the boundary between supporting func-
tionality and introducing redundancy.

Applying the functional saturation bound allows to reduce
the number of agent types that needs to be considered for
a satisficing assignment, which is subsequently solved as
a CSP. Each variable in this CSP corresponds to a spatio-
temporal expression defined in a mission M; each spatio-
temporal expression represents a joint requirement of func-
tionality that needs to be fulfilled by an agent and agent
(type) availability. Hence, each CSP-variable has a finite do-
main D = {ĈAk, . . . , ĈAl} consisting of composite agent
types. The solution of this CSP contains the minimum as-
signments of agent types for each spatio-temporal expres-
sion.

Role assignment While the model assignment leaves un-
solved what agent (instance) has to be assigned to a require-
ment, this will be detailed by the subsequent role assign-
ment step. This allows to deal with concurrent activities. A
role role = (i, â), where 0 < i < N is a tuple that rep-
resents an identifiable instance of an agent type; N is the
maximum number of available agents of the type â. The
role assignment process takes into account the number of
available agents (per type) and introduces unification con-
straints to allow only feasible concurrent activities. Again,
this role assignment is solved as a CSP, where the domain
of a variable is the set of all available roles, although this
domain will be further limited for individual requirements
based on the required number and type of agents. Further-
more, all roles associated with concurrent requirements have
to be distinct; this is enforced by introducing inequality con-
straints between time overlapping requirements. A solution
to the role assignment is either empty or contains (correct-
by-construction) conflict-free assignments of agent roles for
each spatio-temporal expression, i.e. an agent role is associ-
ated with one location at a time only.

Having conflict free role assignments is a necessary pre-
requisite to produce timelines in a subsequent step, i.e. after
the role assignment or unification process a timeline is com-
puted for each role (cf. Figure 5).

Logistic network At this stage of the processing it has
not been considered, whether an agent is mobile and able
to change the location by its own means. Hence, for the
next planning step, the algorithm starts to distinguish be-
tween mobile and immobile agents. The sub-problem of
dealing with mobile and immobile systems resembles the

t0 t1 t2 t3 t4 . . .

role0

role1

role2

role3

[ ]l0 [ ]l1

[ ]l1

[ ]l0

[ ]l2

Figure 5: Timelines of multiple roles, representing the
spatio-temporal requirement for each role; a role can be
mapped to an instance of an agent type.

one in (Wurm et al. 2013), but can be interpreted as network
flow problem (Ahuja, Magnanti, and Orlin 1993) or more
specifically as a so-called transshipment problem.

Mobile agents can offer transport capacities, which can
be used to transfer immobile agents; to distinguish between
mobile and immobile systems the process relies on check-
ing the availability of two (domain) specific functionalities:
(a) ’MoveTo’ describes a systems ability to perform loca-
tion changes by its own means, and (b) ’TransportService’
describes a system’s ability to carry payload and this capa-
bility can be further detailed by specification of transport ca-
pacities. The information about available functionalities will
also be defined in the organization model for each robotic
agent type and clearly, this is a domain specific addition, but
we are dealing with a planning problem of physical agents.

Based on the information about mobile and immobile
agents, a logistic network can be modelled and solved us-
ing flow optimization techniques. We model the flow opti-
mization problem using a time-expanded network. The time-
expanded network is a directed graph G(V,E). Each vertex
v ∈ V represents a tuple (l, t), where l is a location vari-
able and t represents a (qualitative) timepoint. Each directed
edge e ∈ E, e = (v, v′) with v = (l, t) and v′ = (l′, t′)
has to fulfil the temporal constraint: t < t′, and each role’s
timeline corresponds to a path in this graph (under the men-
tioned assumption of an underlying strongly connected tem-
poral network). The multicommodity min-cost flow problem
has been formulated as integer programming problem based
on the most-general formulation with commodity depen-
dant upper and lower bounds on edges (Kennington 1978);
a commodity represents a resource type that can be trans-
ported across an edge in the graph. Each edge e has an up-
per bound for the overall capacity ube and a lower and upper
bound for each commodity k: 0 ≤ lbke ≤ ubke ≤ ube. We ex-
tend this formulation to provide some control on the flow
and allow to define a trans-flow constraint for a commodity
on a vertex, i.e. setting a minimum inflow for a vertex that
has no supply or demand for this commodity. Due to balanc-
ing constraints, i.e. inflow and outflow need to match supply
or demand a valid solution will contain a symmetric outflow
of the commodity from the given node.
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l0
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Figure 6: The initial time-expanded network with temporal
constraints: t0 < t1 < t2 < t3 and upper capacity bound of
≤ ∞. The dotted path represents the timeline-based path of
a mobile agent a, for which an upper capacity bound UBa

can be set - given the transport capacity of this mobile agent.

In order to perform flow optimization the mission speci-
fication has to contain information about the initial location
of all resources. The initial location can be interpreted as
supply node, whereas subsequently the final destination is
defined as demand node. There might be even unused re-
sources that remain at the initial location as part of the so-
lution. In order to consider the timeline for immobile sys-
tems the corresponding spatio-temporal requirements are
expressed by setting supply on the start vertex, the demand
on the final vertex, and the trans-flow constraint for the role,
i.e. commodity it maps to, on all intermediate vertices.

Flow violations Finding a valid minimum cost flow might
fail and the failed state of the min cost flow graph can be
analysed to identify flow violations. Two types of violation
are possible: (i) trans-flow violation: a commodity is not
routed through a location at a specific timepoint, or (ii) min-
flow violation: a commodity is not supplied to a location at
a specific timepoint.

Both violation types can be addressed by the following
resolution strategies: (a) role distinction: increasing the role
distinction (for the amount of the missing resources) be-
tween two spatio-temporal constraints where the violation
is found, or if the system is immobile (b) transport request:
requesting the presence of a mobile system with transport
capability

Plan rendering If a solution to the flow optimization
problem has been found, it can be translated into a plan for
the multi-robot system (or a plan per role). This solution can
be characterised regarding safety and efficiency, e.g., com-
puting the associated level of redundancy and the expected
energy required to execute this solution.

4 Implementation and validation
In the following, we detail the implementation of our plan-

ning and scheduling system and while we aim at a scalable
approach our application targets medium-sized reconfig-
urable robotic teams consisting of about 25 member agents.

We target an application on small board computers and
thus try to maintain a consistent C++-based code-basis, e.g.,
for the ontology based organization modelling we created
a C++-variant of owlapi (Horridge and Bechhofer 2011).
This allows us to take advantage of ontology modelling
capabilities including support for datatypes and qualified
cardinality constraints. Reasoning on ontologies is based
on the Description Logic (DL) reasoner FACT++ (Tsarkov
and Horrocks 2006). A custom reasoner is introduced for
the organization model (cf. Section 3) and relies on solv-
ing integer-linear programs. For dealing with constraint-
satisfaction problems we rely on Gecode (Schulte and Tack
2012). All our graph-related subproblems such as tempo-
ral constraint networks and min-cost flow optimization share
the same graph library implementation.

The specification of temporal constraints in a mission is
based on qualitative relations and despite its more limited
expressiveness point algebra (PA) has been selected as main
representation due to better computational characteristics.
Qualitative reasoning and generation of qualitative temporal
constraint networks without time gaps relies on GQR (Gant-
ner, Westphal, and Wölfl 2008) which is combined with a
custom implementation of qualitative reasoning to facilitate
the future combination of qualitative with quantitative tem-
poral reasoning (Meiri 1996).

The mission specification is given by a user in XML 2

and allows to associate location constants either with tuples
of latitude-longitude or Cartesian 3D coordinates; this al-
lows the computation of metric distances between two loca-
tions (an additional radius parameter allows to map latitude-
longitude coordinates to metric distances) to identify overall
plan cost.

Tests have been performed on an PC equipped with an
Intel CORE i7-4600U 2.1 GHz with 12 GB of memory.

A mission example
To illustrate the working of the core features of our ap-
proach we present here two example missions that are driven
by some scientific goals. The following section describes
one mission example using a more abstracted representation
since it allows a more compact illustration. Subsequently,
we will provide a more concrete and slightly more complex
example, including the corresponding solution graph.

Abstracted mission We assume an initially given set of
robots implicitly given by a composite actor type ÂI ; all
agents are available to perform a mission illustrated in Fig-
ure 7. Agents of types â, b̂, and ĉ are mobile, where â has
a transport capacity for eight immobile systems and the re-
maining for one immobile system; agents of type d̂ and ê
are immobile and as such require to join with any of the mo-
bile agents to change their location. All or a subset of these
robots can be used to produce a satisficing solution.

We assume a space-exploration mission, where all re-
sources are initially deployed at a landing site denoted l0.
Starting from this landing site a set of tasks has to be carried

2Mission scenarios: https://github.com/2maz/
rmrs-pub



out at three further locations which are denoted l1, l2, and
l3. The mission specification comprises 9 locations sym-
bols and 14 qualitative timepoints in total. The function-
alities required to perform these tasks are F0 = {f0, f1}
and F1 = {f0, f1, f2}. Functionality f2 is only supported
by immobile agents of type ê. The organization model en-
codes the information on (superadditive) capabilities and the
functional saturation bound is applied once before the plan-
ning step, i.e. leading to a mapping between composite agent
types and available functionalities based on the existing set
of agents.

The first iteration of the planning algorithm will lead
to an incomplete solution, since the flow optimization step
cannot satisfy all constraints. The problem arises through
the use of a single agent of type ê; after the role distri-
bution step has taken place, a single timeline is generated
for an agent of type ê which supports the functionality
(F1,{(d̂, 5)}) and (∅,ÂI). Initially the role distribution only
takes temporal constraints into account, hence both require-
ments can be served by a single agent. Therefore, the flow
optimization suffers from a trans-flow constraint violation
on (F1,{(d̂, 5)}) after the first iteration, i.e. the required in-
flow and outflow for a commodity is not fulfilled. To re-
fine the partial plan a resolver introduces additional con-
straints for role assignment or model distribution, e.g., to
fix a role assignment the respective timeline is split, by in-
creasing the distinction of agents between the two affected
spatio-temporal requirements. If that repair action does not
lead to a feasible plan, resolution has to backtrack to the
level of model distribution and add a functional requirement
for a mobile system.

For this particular mission example the mincommodity
flow optimization requires to encode a linear problem of the
following size: 4643 rows, 4290 columns and 12870 nonze-
ros. Columns correspond to the number of edges times the
number of commodities. The problem instance is solved in
about 4 s including fixing one flaw in the plan. Applying the
linear optimization problem does not result in a primal feasi-
ble solution and checking the first solution for constraint vi-
olations on trans-flow constraints lead to the application of a
resolver. The second iteration still has no primal feasible so-
lution, though there will be no violations on trans-flow con-
straints. This is due to the fact, that the excess resources exist
at the starting point, i.e. a solution might leave resources un-
used, so that the total demand supply balance constraint will
be violated. The degree of this violation can also be quanti-
fied using the internal solver results, e.g. Figure 8 illustrates
output of the internally used linear program solver; the cost
for routing one commodity across an edge is uniformly set
to 1. Hence, the result shows that finally 28 commodities can
be moved between edges while 20 resources overall remain
at their initial position, i.e. are unused. The final assignment
is illustrated in Figure 9, where the nth instance of an agent
type â will be denoted iân.

Eventually, splitting and joining of agent groups can be
mapped to the implicit actions join and split (cf. Figure 4),
while transitions between different locations map to the
move action. These implicit action center around a set of

ÂI = {(â, 3), (̂b, 2), (ĉ, 3), (d̂, 25), (ê, 5)}
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[ ](∅,ÂI )
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Figure 7: Mission example to describe a robotic mission:
ÂI is the set of initially available resources, and the first re-
quirement is making all resources available at location l0,
i.e. setting the starting point. F0 = {f0, f1} is a set of func-
tionalities that needs to be available for a limited time inter-
val.

GLPK Simplex Optimizer, v4.52
4643 rows, 4290 columns, 12870 non-zeros

0: obj = 0.0 infeas = 39.0 (4500)
500: obj = 26.0 infeas = 21.0 (4000)

1000: obj = 26.0 infeas = 21.0 (3500)
1356: obj = 26.0 infeas = 21.0 (3144)

LP HAS NO PRIMAL FEASIBLE SOLUTION

GLPK Simplex Optimizer, v4.52
4643 rows, 4290 columns, 12870 non-zeros

0: obj = 0.0 infeas = 40 (4500)
500: obj = 28.0 infeas = 20 (4000)

1000: obj = 28.0 infeas = 20 (3500)
1356: obj = 28.0 infeas = 20 (3144)

LP HAS NO PRIMAL FEASIBLE SOLUTION

Figure 8: Output of the GLPK simplex optimization (for for-
matting reasons we have manually shortened this output) for
two subsequent planning steps: the first optimization results
in an invalid solution where on 26 out of 39 commodities
can be moved and triggering repairing the initial flaw by re-
questing the addition of another mobile agent; in the follow-
ing iteration 28 out of 40 commodities be moved.



A = {iâ0 , . . . , iâ2 , ib̂0, . . . ib̂1, iĉ0, . . . , iĉ2, id̂0, . . . , id̂24, iê0, . . . , iê4}
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. . .
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A

[ ]
{iâ1 , id̂17, . . . , id̂19, iê4}

[ ]
{iâ2 , id̂20, . . . , id̂24, iê3}

[ ]
{iê4}

[ ]
{iâ2 , id̂22, . . . , id̂24}

Figure 9: Computed solution for the mission example. The
initial set of agents is split into three groups, one remain-
ing at the initial position l0, and two groups moving to
(l1, [t2, t3]) and (l2, [t2, t3]) respectively. An additional split
allows a subgroup to continue to l3.

atomic agents, which can be combined to form composite
agents.

Concrete mission For the concrete mission we assume
that all robotic systems are initially available at the loca-
tion ’lander’ and a mission designer outlines the requirement
based on activities that might have to be performed at certain
location and in some kind of general order. The set of robot
types available for this mission is based on the real systems
available in (Roehr, Cordes, and Kirchner 2014) and (Son-
salla et al. 2014): the exploration rover Sherpa, the legged
crater explorer CREX, the star-wheeled scout Coyote III,
25 Payloads, and 5 BaseCamps - which can be used as lo-
gistic hubs to store payloads. In this mission only a Sherpa
can carry payloads and up to 8 of them. Payloads and Base-
Camps are immobile units, while all other systems are mo-
bile. The following locations are defined: lander, b1, . . . , b7
and qualitative timepoints t1 < t2 < · · · < t14.

The following spatio-temporal qualified expressions de-
fine the requirements for the mission:
1. ({},{(Sherpa,3),(CREX,2),(CoyoteIII,3),(Payload,25),(BaseCamp,5)}

@(lander,[t0,t1])

2. ({},{(Payload,3})@(lander,[t4,t10])

3. ({LocationImageProvider, EmiPowerProvider},{(Payload,3)})@(b1,[t2,t3])

4. ({},{(Payload,1)})@(b1,[t3,t14])

5. ({},{(BaseCamp,1)})@(b1,[t4,t7])

6. ({LogisticHub, LocationImageProvider, EmiPowerProvider},{(Payload,3)})
@(b2,[t2,t3])

7. ({LocationImageProvider, EmiPowerProvider},{(Payload,6)}) @(b4,[t6,t7])

8. ({},{(Payload,3})@(b4,[t8,t9])

9. ({},{(BaseCamp,3)})@(b4,[t11,t14])

10. ({},{(Payload,1)})@(b6,[t10,t14])

The functionalities LocationImageProvider are available
on Sherpa, while EmiPowerProvider is available on all mo-
bile systems. On a single core a solution is computed in
57.56±9.8 s (averaged over 10 runs), a solution is illustrated
in Figure 10; the linear problem to solve the transshipment
problem has the following size: 9100 rows, 4320 columns
and 21536 nonzeros.

Limitations This paper illustrates first results of a proto-
type of the planning approach outlined in the previous sec-
tions. As such, it requires further improvement and assess-
ment to analyse computational properties and completeness.
The optimization for performance has so far focused on the
model-based planning approach and the use of the func-
tional saturation bound and performance is expected to be
improved further.

A detailed quantification of functionalities is not yet part
of the modelling, i.e. a transport capacity can be requested
in general, but not the transport capacity of a certain num-
ber of some agent type. Currently, this has to be solved by
introducing additional spatio-temporal requirements which
are nearby to the original one in time and space.

5 Conclusions and Future Work
This paper illustrates an approach towards automated plan-
ning and scheduling for reconfigurable multi-robot systems
that accounts for the embodiment of agents and reconfig-
urability. In this work we bring knowledge engineering and
temporal planning together to find a practical and scalable
solution of dealing with reconfigurable multi-robot systems.

The organization model is a key element to allow reason-
ing with capabilities of atomic and composite agents. Since
the organization model is encoded in Web Ontology Lan-
guage (OWL), which is a specification of the World Wide
Web Consortium (W3C), it offers a well defined interface
to users for modelling as well as for interoperation and ex-
change of information within the multi-robot system. By this
and similar to reconfigurable multi-robot systems it supports
incremental mission design since it can grow with the sys-
tem, e.g., by introducing new functionalities and agent de-
scriptions.

Our planning approach uses the newly introduced func-
tional saturation bound to limit the effects of combinato-
rial explosion. While the functional saturation bound cannot
prevent combinatorial explosion, it can reduce the planning
problem even when hundreds of agents are available for the
mission since handling of redundant coalitions of agents is
avoided. The core planning approach relies on temporal net-
works that have no timeline gaps, but we use a CSP-based



Figure 10: A final mission outline computed by our plan-
ning system from which individual plans can be computed
from. The asterisk (*) marks roles that have reached their fi-
nal destination. Link capacities depend on the robotic agents
transferring from one location to another; link capacities to
transfer to, i.e. remain at, same location are infinite.

generation of temporal constraint networks to satisfy this re-
quirement. Furthermore, we adopt of a flaw-based plan re-
pair strategy similar to (Maio et al. 2015). The planning ap-
proach has been validated using a set of example mission
specifications.

This paper currently only mentions the use of metrics to
analyse and optimize multi-robot plans, but our main mo-
tivation of the planning approach aims at using the infor-
mation about the organizational, i.e. multi-robot system’s,
state to optimize resource usage and distribution. In general,
our future work will be focused on completion of the full
planning approach including the integration of the multi-
objective optimization and an application of the planning
system to the real reconfigurable multi-robot system (cf. Fig-
ure 1).

Since planning can only operate on an abstraction of the
real world, any resulting plan will leave potential for op-
timization. However, to augment the multi-robot planning
approach we suggest to strengthen the ability for local col-
laboration, e.g., in terms of annotating a solution plan with
potential for local optimization. While the multi-robot plan
identifies two or more agents that join at some location and
point in time, this information should be used by this sub-
set of agents to join at an even earlier stage, e.g., by sharing
knowledge about target positions, leading to an embedded,
online and local optimization.
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