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Abstract: In this paper, we present a system for autonomous object search and exploration
in cluttered environments. The system shortens the average time needed to complete search
tasks by continually planning multiple perception actions ahead of time using probabilistic prior
knowledge. Useful sensing actions are found using a frontier-based view sampling technique in
a continuously built 3D map. We demonstrate the system on real hardware, investigate the
planner’s performance in three experiments in simulation, and show that our approach achieves
shorter overall run times of search tasks compared to a greedy strategy.
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1. INTRODUCTION

Mobile service robots need to operate in dynamic envi-
ronments that are subject to change not only as a result
of the robot’s own actions but often due to independent
change. The robot’s knowledge about the physical state
of such an environment may get wrong and incomplete.
As an example of such a domain, consider a robot waiter
in a restaurant. Since there are other waiters and guests
involved, who interact with the environment and introduce
changes without announcing these changes to the robot,
it can never fully rely on the internally presumed state of
the world, especially regarding the whereabouts of task-
relevant objects. Instead, it needs to actively incorporate
explicit sensing actions into its plans to search for objects
or to verify beliefs about the current state of the world.
View obstructions due to clutter must be accounted for and
sensing actions at a variety of locations may be necessary.
Systems that reason about such active perception actions
to enhance their operational capability and flexibility in
changing or unknown environments comprise several inter-
related aspects and have been studied in diverse contexts.
While our work focuses on bringing the robot’s sensor into
configurations desired for data acquisition in a collision-free
way, interactive perception actions that move occluding
objects out of the way have also been considered in recent
literature (Dogar et al., 2014; Gupta et al., 2013; Wong
et al., 2013). Collision-free active perception systems typi-
cally determine a next best view, i.e., a sensor configuration
that the robot should assume next to optimize a utility
function that incorporates the expected information gain
and often also predicted costs, which typically amount to
the action’s execution time. Next best view algorithms can
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be seen as a variation of Connolly’s (1985) “Planetarium
Algorithm”, which compares simulated range images to
successively select the view pose with the largest area of
yet-unknown space in the image. While the objective of
exploration is different from object search, it can be argued
that a general object search system covers the use case of
exploration in the special case that it terminates only after
exhausting the search space and is not guided by prior
knowledge regarding some target object.
We present a system for object search and exploration
in cluttered environments that aims to minimize ex-
pected total task execution times using a continual
planning method that exploits partial knowledge of the
environment and a probabilistic model of the target
object’s location. The software is implemented using
the ROS framework and designed as an active percep-
tion module for the artificial cognitive system RACE
(Hertzberg et al., 2014). It is available as open source
at https://github.com/uos/uos_active_perception.
After reviewing related work in Sec. 2, we present our
approach in Sec. 3. We show experimental results in Sec. 4
and conclude with a discussion of future work in Sec. 5.

2. RELATED WORK

Establishing a prior hypothesis regarding probable locations
of the target object allows to direct the search process
towards such locations and enables the system to work
in large environments where uninformed search would be
infeasible. Ye and Tsotsos (1999) [also Shubina and Tsotsos
(2010)] maintain a probability distribution function for a
single target object that assigns to each cell in a discretized
workspace the degree of belief of the target being located
there. Approaches that have been examined to obtain the
required world knowledge include semantic probabilistic
environment models (Kunze et al., 2012), visual saliency
(Rasouli and Tsotsos, 2014), as well as relational models of



object classes (Wong et al., 2013), affordances (Moldovan
and Raedt, 2014), and spatial relations (Kunze et al., 2014;
Anand et al., 2011).
Once a region of interest has been identified, the robot
needs to select a next best view, i.e., a sensor configuration
that brings that region into sight, considering criteria
that usually include visibility of unexplored space and
sensing costs, e.g., the time needed to travel to the sensing
pose. Ye and Tsotsos (1999) and Shubina and Tsotsos
(2010) decompose view selection into robot relocation and
choice of sensor configuration. Sensor configurations are
selected iteratively at each location based on their expected
probability to detect the target until travel to a new
location becomes necessary. Yamauchi (1997) proposes to
guide autonomous exploration in 2D by targeting frontiers,
i.e., boundaries between free space around the robot and
unknown space beyond, a concept which Surmann et al.
(2003) extend to autonomous mapping in 3D by sampling
potential sensing poses in a 2D projection of 3D space.
Blodow et al. (2011) evaluate frontiers in full 3D only for
promising view poses candidates previously identified in a
2D projection of the map. Dornhege and Kleiner’s (2013)
frontier-void-based approach explicitly associates clusters
of unknown map cells with neighboring clusters of frontier
cells to identify high visibility view poses with six degrees of
freedom. The original deterministic form of this approach
is modified in later research by Dornhege et al. (2015) to
employ sampling. While these systems operate in a cycle of
view selection and sensor relocation, Shade and Newman
(2011) present an approach that merges view selection and
path planning to generate smooth exploration trajectories
towards frontiers using a potential field method inspired
by fluid dynamics.
The above cited systems, with the exception of Dornhege
et al. (2015), select views using a greedy strategy. Com-
puting an optimal search/exploration strategy is NP-hard
and related to the set cover, art gallery, and traveling
salesman problems (Ye and Tsotsos, 1999; Sarmiento et al.,
2003). Planning multiple steps ahead is necessary in certain
applications without regard for optimality, e.g., to avoid
traversing unknown space to scan a target (Renton et al.,
1999) or to expose unknown space behind multiple layers
of concealment (Gupta et al., 2013). Several approximate
methods to generate more efficient plans have been ex-
amined that rely on divide and conquer (Dogar et al.,
2014), pruning heuristics (Sarmiento et al., 2003), and a
set cover/TSP decomposition of the problem (Dornhege
et al., 2015).
Planning systems for object search have been shown in
experiments to provide useful results without prohibitive
computational cost (Sarmiento et al., 2003; Dornhege et al.,
2015). However, the advantage of planning compared to a
greedy approach is outweighed by computational cost when
a certain amount of replanning is considered (Dornhege
et al., 2015). Since search/exploration systems are likely to
encounter circumstances that deviate from the presumed
world state, it is desirable to lower the computational
burden and make continual planning feasible.
Since it does not introduce any restrictions on sensing poses
and allows dynamic scaling of view pose density, sampling
seems to be a favorable approach to generate sensing

Fig. 1. PR2 during a search process. The target volume on
top of the table has several occlusions and a cavity.

pose candidates that has already been used successfully
for forward-looking search (Dornhege et al., 2015). The
process can be guided towards promising locations using
the concept of frontiers (Blodow et al., 2011).
This paper contributes three innovations for mobile object
search and exploration. First, we present an efficient
anytime system for 3D view computation that uses frontier-
based sampling to find next best view candidates. Second,
we develop an object search strategy that plans multiple
sensing actions ahead of time to minimize the expected
search time using a predictive model of robot movement
speed and a probabilistic model of target object locations.
Third, we show the performance of the search planner to
be suitable for offline as well as continual planning and
demonstrate the complete system running in the real world.

3. APPROACH

Our system searches for an object of a target class (e.g.,
a mug) within a given target region. It is designed as a
subcomponent of a cognitive architecture that is capable of
recognizing individual objects when they are detected by
the sensor and maintains a belief state regarding probable
object locations. When the object search component is
triggered by the system, it is given a set of bounding
volumes (e.g., a box that encompasses the top of the table
shown in Fig. 1) and the degree of belief for each of these
volumes to contain an object of the target class. The actions
available to the robot are navigating to a new position
(using a path planner), pointing the head, and raising or
lowering the telescoping torso, and any combination of
these may be used to transition between view poses. We
rely on the system to terminate the search process when
the target is detected within the sensor’s field of view.
Fig. 2 shows an overview of the data flow between the
involved components and highlights the active perception
components that are subject of this paper in a darker
shade. A 3D map is continually built from sensor data and
is used by a view sampling module, which computes a set
of possible view poses along with the expected information
gain for each pose. These samples are per request fed to an
object search planning and execution module, which aims
to minimize the expected time until the target is found
and iterates between requesting view samples, planning,
moving the robot, and sensing.



3.1 Mapping and View Sampling

The system maintains an octree representation of the
robot’s workspace with cells that take values of either free,
occupied, or unknown. The OctoMap library (Hornung
et al., 2013) provides a mapping framework that allows
to efficiently query the map and to integrate point clouds
using a probabilistic sensor model. We maintain a set of
frontier cells that consists of all unknown cells with at least
one known free neighbor cell, akin to Blodow and colleagues’
(2011) “fringe voxels”. The map is built incrementally by
continual integration of preprocessed sensor data.
Arbitrary regions of the map can be reset to unknown to
express that the region is assumed to have changed and
should be observed anew. This can be triggered manually or
by external modules that use semantic knowledge to deduce
that the information regarding a certain region is out of
date based on the observation of some situation or activity.
Future work may implement a version of fading knowledge
that gradually decreases confidence in individual cells when
they have not been observed for a certain amount of time.
The map constitutes the basis of the view sampling process
that determines and evaluates possible sensor poses for the
observation of unknown cells within some region of interest.
View sampling is an anytime operation that allows to adjust
the amount of computational effort invested on the fly and,
given enough time, will find all feasible view poses. The
sampling system’s output consists of 2-tuples, wherein the
first element is a sensor pose and the second element is a
set of unknown cells that are expected to be visible from
this pose. In the following, such pairs shall be called views.
A query to the sampling system consists of a region of
interest (ROI), defined as a set of bounding volumes V . For
each volume Vi ∈ V, the set of all frontier cells inside Vi is
gathered. Unknown cells at the boundary of Vi that are not
marked as frontiers are additionally included as frontiers
for this volume only to enable the system to find views for
regions even if they are enclosed in unknown space. The
union of all collected frontier cells within the ROI is in the
following denoted as F .
The position of each view sample is picked from a con-
strained space around a randomly chosen target frontier
cell f ∈ F . All views are oriented to point directly towards
their respective target cell, whereby the position remains
to be chosen randomly without violating any of three
general constraints. The first constraint simply demands
the position to be within the sensor’s range limits relative
to the target cell. Secondly, the sensor pose must be
attainable according to the robot’s kinematics; for example,
the sensor’s height is always limited, if not fixed, and also
the pitch angle may be variable within limits. Finally, all
potential camera poses should be located at the known-
space side of the frontier, looking towards the ROI. This
constraint is enforced by estimating the frontier plane’s
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Fig. 2. Structural overview of inter-component data flow.

normal vector at f and restricting the angle between the
line of sight and the frontier normal to be less than 90◦. The
frontier normal of a target cell is calculated by connecting
the mean of the center points of all unknown neighbors
with the mean of the center points of all free neighbors.
While a straightforward implementation could simply pick
random coordinates and reject those samples which lie
outside the constrained region, we reduce the amount of
rejects significantly using a local consistency approach in
the above outlined constraint network.
To determine the set of cells that are expected to be revealed
by the sensor at a sample pose, we scan the field of view of
a virtual camera and compile the set of all unknown cells
within the ROI that are traversed by rays. When a ray hits
an unknown cell, it is allowed to pass through; hence, view
sampling assumes unknown space to be free and is, in this
sense, optimistic.
The sampling procedure loops until either the required
number of views is generated or a timeout is reached. See
Fig. 3 for a visualization of the generated view samples.

3.2 Object Search

The object search component acts on search tasks that
define a target object and a search region and runs until
either the target is located or the search region is exhausted.
A planner constructs sequences of views with the aim to
minimize the expected duration of a search process that
successively visits all views in the sequence.
The search region defined in each task is represented as a set
of bounding volumes V. Each volume Vi ∈ V is annotated
with a probability Pi of the volume containing at least one
entity of the target type according to the robot’s current
state of belief. Since all Pi are independent of each other,
it is not necessary that

∑
Pi = 1. Each cell ck ∈ Vi is

assumed to equally and independently contribute to Pi,
resulting in a probability value for each cell of

∀ck ∈ Vi : p(ck) =
{

1− Ni
√

1− Pi if unknown(ck)
0 else ,

(1)
where Ni is the number of cells in Vi. Comparable object
search systems, such as those of Ye and Tsotsos (1999)
and Shubina and Tsotsos (2010), model the probability
distribution of a single target object’s location. In such
a model, the sum of all location probabilities necessarily
equals 1, and all probabilities must be updated accordingly
when a set of cells is seen without locating the target.
Because our approach makes no assumption about the
number of target objects, all Pi and all p(ck) can be
considered independent and no update step is necessary.
View sampling is called for the region of interest to generate
a set of n views S. The returned views include only
unknown cells, so that the total detectable space according
to the view set is

V̂ (S) =
⋃

si∈S
cells(si) ⊆ V , (2)

where cells(si) yields the set of all cells expected to be
seen from the view pose si. We disregard the reliability
of detection algorithms and assume that if a target is in
view of the sensor, it will be detected every time. The
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Fig. 3. View sampling during different stages of object search. Views are visualized as arrows with color-coded normalized
target space visibility (blue for zero visibility). Unknown cells within the ROI on the table are marked yellow. From
left to right: (a) Overview of the setting. (b) Initial samples. (c) Unknown cells after partially observing the ROI.
The unknown cells closest to the robot are below the sensor’s field of vision. (d) After observation from a second
angle, few occluded cells remain. Note: We show an orthographic projection; all parts of the algorithm work in 3D.

probability of detecting at least one instance of the target
type by moving the sensor to a view pose si can be defined
in terms of the set of cells seen C = cells(si) as

p(C) = 1−
∏

ci∈C

(1− p(ci)) . (3)

The total expected probability to see a target using all
views is simply p(V̂ (S)). The object search task contains a
termination criterion in the form of a threshold probability
ω. The search process terminates when p(V̂ (S)) < ω.
An external path planner is used to generate paths from the
current robot location to all view locations. All unreachable
views are filtered out. Subsequently, predicted transition
times t(si, sj) between the remaining views are calculated.
Since these times are needed in every step of the planning
process, a lot of time is saved by pre-computing them as a
lookup table. Further time is saved by clustering close-by
view poses together to reduce the quadratic number of path
planning requests necessary. Transition times comprise the
driving time (predicted using a linear regression over path
costs returned by the planner), the time needed to lift the
robot’s torso to achieve different sensor heights, the time
needed to move the pan/tilt head, and a fixed amount of
sensing time at the target pose.
Let a sequence of views be denoted as L = 〈L0, . . . , Ln〉,
where L0 is the current state and each Lk has a correspond-
ing view sL,k ∈ S. The goal is to find a sequence L̂ that
minimizes the expected time until the target is found which
is given by

E[T |L] =
n−1∑
i=0

i∏
k=0

(
1− p(sL,k|〈L0, . . . , Lk−1〉)

)
t(Li, Li+1) ,

(4)
where p(si|L) is the probability to find a target with
observation si after having already seen the sequence L.
Accounting for all cells already seen by L, this is calculated
as

p(si|L) = p

(
cells(si) \

n⋃
k=0

cells(Lk)
)
. (5)

Sarmiento et al. (2003) examine this optimization problem
in a similar context and employ a heuristic algorithm called
utility greedy to quickly compute approximate solutions.
Our planner uses the key heuristics of utility greedy in
a depth-first branch and bound approach to construct
plans without consuming too much memory. Since the
objective function is the plan’s expected runtime, the
obvious greedy heuristic to determine the order in which

new views si ∈ S are appended to partial plans is to
minimize the local increase in expected runtime. However,
this performs poorly, confirming the observation made by
Sarmiento et al. who propose to improve efficiency using a
different utility function given by

util(si|L) = p(si|L)
t(Ln, si)

. (6)

Since this function proves to be effective, we adopt it for
our planner2. To further accelerate planning, Sarmiento et
al. sacrifice optimality and introduce a pruning heuristic
that discards strictly dominated views sk given a partial
plan L according to

dominated(sk|L) :⇔
∃si ∈ S : p(si|L) > p(sk|L) ∧ t(Ln, si) < t(Ln, sk) . (7)

In what follows, use of this pruning heuristic by the planner
will be signaled with the flag ξ ∈ {0, 1}.
We introduce two additional mechanisms to reduce the
amount of branching in the planner. First, branching is
only allowed up to a depth limit ψ. Second, only expansions
are allowed for which the utility value is not smaller than
the best utility value divided by a branch limit factor φ. As
the value of φ increases, more branching takes place, since
less views are discarded. For ψ = 0 or φ = 1, the planner
constructs a single greedy sequence without branching.
As evidenced by (4) to (7), the planner needs to perform
set operations to track a plan’s quality and to evaluate
heuristic functions. It should be noted that, although
(5) is formulated in terms of set union, the planner is
implemented using only set difference, resulting in faster
set operations with increasing planning depth.
The total probability of success for a plan can be calculated
analogously to (3) as

p(L) = 1−
∏

Li∈L

(
1− p(Li|〈L0, . . . , Li−1〉)

)
. (8)

A plan is complete when the remaining probability to
encounter a target by adding more view poses falls below
the termination threshold ω, as expressed by

complete(L|S) :⇔ p(L) > 1− 1− p(V̂ (S))
1− ω . (9)

After planning finishes, the robot navigates to move the
sensor into the first planned position, senses, and waits
2 See Sarmiento et al. (2003) for an analysis of the relation between
the utility function and the objective function and why the naive
utility function performs poorly.



Fig. 4. Top-down view of the simulated environment used
in the experiments, consisting of two connected rooms
with various target volumes (red boxes: two shelf
arrangements, one single shelf, three cluttered tables).

for sensor data integration. If the search process is not
externally interrupted, that means that no target object
has yet been found, and the procedure starts another cycle.
Each cycle retains the previously planned views, which are
reevaluated and augmented with additional views using
the view sampling system. A new plan is constructed
continually in each cycle until p(V̂ (S)) < ω.

4. EVALUATION

The robot used in the experiments is a Willow Garage PR2
with a head-mounted RGB-D camera which can be panned
350◦ and tilted 115◦. The head is mounted on a telescoping
torso with a lift range of 31 cm. The real-world functionality
of the active perception system has been shown as part
of the final demonstration of the RACE project3. We
evaluated the system in detail using the Gazebo simulator
with a simplified robot model that retains the physical
limitations of the real version. Robot motion is replaced by
updating poses directly in the simulation with simulated
transition times that are obtained from the same model that
is used by the planner to predict execution times. Robot
localization is obtained directly from simulated ground
truth. This intentionally eliminates any influence that
imperfect robot localization and navigation as well as an
inaccurate execution time model may have on object search
performance. Fig. 4 shows an overview of the simulated
environment used in all experiments. Run times of all
algorithms were measured on an Intel Core i7 870 CPU.
We ran three series of experiments evaluating several
planner configurations, and, while computing the optimal
solution was not feasible, compared the performance of
the planning algorithm with the greedy approach. The
task in all experiments is to locate a target within the
volumes shown in Fig. 4 with a probability of Pi = 0.2
for each volume to contain at least one instance of the
target. Each experiment comprises 20 trials starting with a
random initial robot pose and ending when the remaining
probability of detecting the target falls below ω = 0.05. To
measure object search efficiency, we determine the mean
expected value of the time needed to complete search tasks
as the sum of an execution time component (motion and
sensing), and a planning time component4.
3 A video of the system running on the PR2 can be found at
http://kos.informatik.uos.de/flap4caos/
4 See (4) for the calculation of expected values
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Fig. 5. Cum. prob. of success over time for one run of
greedy search vs. continual planning with initial map.
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transitions; dashed lines: expected execution times.

We generate 200 view samples for each trial, sufficient for
almost complete coverage of our test environment, and
share them between all planner configurations to enable a
direct comparison. Accordingly, a lookup table for predicted
transition times between views is generated once per trial
and shared between all planner configurations. Table 1
shows the average computation times for these operations
over all experiments. The total probability to find a target
is determined by the structure of the environment, the set
of available view poses, the choice of target volumes, and
their target encounter probabilities, and is hence equal for
all planner configurations within each trial. In the first two
experiments, we test offline and continual planning given
a full 3D map of the environment, thereby enabling our
planner to fully optimize the search process from the start.
In the third experiment, we test continual planning without
an initial map (only walls are known in advance), so that
the system is forced to adapt the search strategy on the
go.

5. DISCUSSION AND FUTURE WORK

As shown in Fig. 6, the object search planner outperforms
the greedy strategy in all experiments with regard to the
expected execution time of the resulting plan as well as the
combined expected run time of the search process. In case
a map is available beforehand, continual planning achieves
run times that are on average 10% shorter compared to
greedy, and it compares preferably to offline planning,
which is remarkable considering the computational cost
of repeated planning. While the advantage of planning
decreases when no initial map is available, we still achieve
a 7% reduction of average search time using knowledge
acquired during the ongoing search process itself. A
visualization of search progress during a single task is shown
in Fig. 5. The planning algorithm achieves coverage of the
search region using fewer sensing steps (11 vs. 13) and also
tends to reduce average transition times between sensing
poses. Although the planning algorithm yields a shorter
total search time, the simple greedy strategy is still a viable
alternative with the advantages of being parameter free
and computationally cheap. The relative competitiveness

Table 1. Average algorithm run times

View sampling (200 views) 2.4 ± 0.1 s
Transition time prediction (50 clusters) 6.4 ± 0.6 s
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Fig. 6. Mean expected execution times (dark) and mean expected total planning times (bright) for the greedy strategy
vs. the best performing planner configuration in each experiment. Note: The x-axis is truncated and starts at 150 s.

of greedy strategies is not uncommon in related work as
reviewed in Sec. 2.
It is part of future work to examine how appropriate planner
parameterizations change with different search tasks and
working environments. The speed of plan generation may be
less important in applications with different cost functions,
e.g., energy consumption or risk of failure, which our
planner can be adapted for by choosing appropriate
parameters with enlarged planning scope. As stated in
Sec. 3.2, the current approach disregards issues of target
recognition. Future developments will have to address the
fact that targets in real applications cannot be recognized
with full reliability and may be only partially visible due
to occlusion or field of view limits. Additionally, some
unexplored volumes could be excluded from search simply
because they are too small to contain the target object.
Our experiments used a simple model of target location
probabilities and manually selected target volumes. In
principle, both can come from arbitrary sources (see Sec. 2)
and can be updated during the search process. A source
for target object location probabilities is available with
the probabilistic anchoring module of the RACE system,
based on a probabilistic model of spatial relations, and
is currently being evaluated separately. Future work will
investigate the integration of both systems.
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