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ABSTRACT

Practical wearable gesture tracking requires that sensors align
with existing ergonomic device forms. We show that combin-
ing EMG and pressure data sensed only at the wrist can sup-
port accurate classification of hand gestures. A pilot study
with unintended EMG electrode pressure variability led to
exploration of the approach in greater depth. The EMPress
technique senses both finger movements and rotations around
the wrist and forearm, covering a wide range of gestures, with
an overall 10-fold cross validation classification accuracy of
96%. We show that EMG is especially suited to sensing fin-
ger movements, that pressure is suited to sensing wrist and
forearm rotations, and their combination is significantly more
accurate for a range of gestures than either technique alone.
The technique is well suited to existing wearable device forms
such as smart watches that are already mounted on the wrist.
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INTRODUCTION

Increasing use of wearables has generated interest in novel
gesture input techniques for mobile interactions. Of particular
importance is integrating reliable and practical sensing into
wearable devices that are ergonomically acceptable to design-
ers and users. For smart watches and other wrist-mounted
wearables, there are opportunities to detect interactions with
the hand on the same side as the wearable [12]. However,
current techniques can be impractical due to signal occlusion,
requirement for additional sensors mounted independently of
the wearable, and inability to sense different types of ges-
tures.
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We explore whether hand gestures can be accurately classi-
fied using sensors only on the wrist, the predominant loca-
tion for existing wearable devices. Our gesture recognition
approach is to explore the combination of Electromyography
(EMG) and pressure, using Force-Sensitive Resistor (FSR)
sensors mounted on the inside of a wrist strap. Our aim is to
accurately classify a large range of hand gestures, detecting
both finger and wrist movements, because many hand ges-
tures include both these forms of movement. Throughout this
paper we use the term ’gesture’ to mean a discretely classi-
fied pose, rather than continuous measurement of hand move-
ments.

Our pilot study found a high classification rate of finger ges-
tures using wrist-mounted EMG sensors. We suspected that
classification features derived from EMG signals were being
modulated by variable pressure through the EMG sensors’
contact with the wrist. This led us to build the EMPress sys-
tem, which includes explicit pressure sensing in the gesture
detection process, drawing on previous work on low-power
gesture input with FSR sensors.

Our key contributions are:

e A novel design combining EMG and pressure data using
machine learning to accurately detect and classify hand
gestures.

e Two studies which identify and then quantify the perfor-
mance of combining these sensors in the prototype EM-
Press system.

e Experimental evidence that these sensors are strongly com-
plementary, emphasising EMG for detecting finger move-
ments and FSR for detecting wrist movements.

Our first study investigates the effectiveness of wrist-mounted
bipolar EMG electrodes for detecting single finger gestures.
The results from this study exhibited surprisingly high EMG
classification accuracy in the wrist condition. This high ac-
curacy led us to suspect that variable wrist pressure on the
EMG electrodes was modulating and enhancing our EMG fin-
ger gesture classification rate.

The pilot study therefore led us to an unexpected hypothesis
that pressure data on the wrist strap could provide our classi-
fier with features that enhance the EMG results. Our second
study describes the EMPress technique which uses separate
EMG and pressure sensors to isolate and quantify this effect.
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Figure 1: Cross section of the forearm at the distal ends of
the radius and ulna. Our final experimental prototype is seen
around the wrist. The anterior of the arm is at the top. The
muscles and tendons are coloured to represent groups with
similar functionality.

The prototype we developed for our second study uses padded
wet electrodes to moderate pressure effects on the EMG sig-
nal, and a cross-arm reference electrode to determine an up-
per bound of EMG performance. Our study demonstrates that
pressure not only contributes to EMG classification of ges-
tures under optimal conditions, but can actually parallel or
surpass EMG performance across a range of gestures, and in
complementary ways such that both techniques can be used
together to further improve performance.

In the following sections we explain the relevant forearm
anatomy which supports our wrist-based EMG approach. We
then describe the different types of sensors which we use
across the two studies in this paper.

BACKGROUND

Electromyography

Wearable devices have traditionally been worn on the wrist,
normally considered the most ergonomic location for inter-
active wearables. When a muscle is contracted, an electri-
cal potential difference is created by the electrically or neu-
rologically activated muscle cells. Surface Electromyogra-
phy (EMG) measures the difference with electrodes on the
skin close to the muscles of interest, which can infer mus-
cular activity. EMG data can be used to determine which
muscles are active and even the amount of force they pro-
duce. Well-placed sensors are key to identifying patterns of
EMG signals, which relate to specific movements of mus-
cles. However, there are comparatively few muscle cells in
the wrist compared to the proximal upper forearm (near the
elbow), and the distal tendons (near the wrist) are more dif-
ficult to discriminate as they are more tightly packed. Thus
there are increased challenges in performing EMG sensing of
hand muscle movements by sensing at the wrist. As a result,
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current off-the-shelf solutions such as the Myo armband typi-
cally capture EMG signals from muscles in the upper forearm
[15].

Figure 1 shows a cross section of the wrist, the position for a
typical wearable strap. There are three main groups of mus-
cles which are responsible for the flexing and extending of
the fingers. The flexor digitorum superficialis and flexor dig-
itorum profundus (Fig 1, top) flex the fingers. The exten-
sor digitorum communis, extensor indicis proprius, extensor
medii proprius (Fig 1, bottom) extend the fingers, and aid a
little to extend the hand. These muscles control all fingers
except the thumb, the muscles responsible for this are known
as the pollicis muscle group (Fig 1, left). As these muscles
flex both the whole hand and the fingers it can be challeng-
ing to differentiate between gestures using EMG, for exam-
ple flexion of the wrist and flexion of all fingers. The flexor
carpi radialis, and the flexor carpi ulnaris (Fig 1, top left/right)
control hand flexion at the wrist, and control hand abduction
and adduction, respectively. Similarly, the extensor carpi ul-
naris/radialis (Fig 1, bottom left/right) extend the hand at the
wrist joint, and are also capable of abduction/adduction of the
hand.

Commonly, bipolar electrodes are used to measure the electri-
cal potential generated by the muscles in EMG systems. Nor-
mally, three electrodes are attached to the skin, two within
close proximity of one another and another reference elec-
trode to an area with less muscle activity. The signal can then
be acquired by measuring the output of a differential ampli-
fier, using the bipolar electrodes as input, removing any com-
mon noise that is measured by the reference electrode. Elec-
trodes can be *wet’ (mounted onto the skin with adhesive and
conductive gel) or ’dry’ (without gel or adhesive). Recent
designs for dry electrodes have comparable accuracy to wet
electrodes, and are a more practical alternative [14].

Prototype EMG sensors can be designed in high density ar-
rays worn on the forearm. These designs demonstrate ex-
cellent recognition rates for finger movements [3] and even
for wrist movements [9][19]. However, these sensor arrays
require a myriad of electrodes spread across a significant pro-
portion of the arm’s surface and may be more appropriate
for integration into clothing than wearable devices. Finger
muscle movement can also be captured using targeted wrist-
mounted EMG sensors. For robustness these are commonly
used in conjunction with additional EMG sensors mounted
on the hand and/or distal forearm eg [6], making the overall
configuration impractical for integration into a single wrist-
mounted wearable. The use of EMG sensors in practical
wearable scenarios typically also requires calibration in or-
der to account for slipping watch straps and to align sensors
with the anatomically optimal detection points. While we do
not consider the issue of calibration in this paper, shift com-
pensation algorithms [3] could further improve the results of
our work.

Hand Gesture Sensing Techniques

Given the challenges of accurate EMG sensing, a number
of other techniques have been applied to wearable gesture
recognition. Inertial Measurement Units (IMUs) can provide
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data to enhance gesture classification[19]. However, data col-
lected from a wrist-mounted wearable can’t be used to de-
tect rotations about the wrist joint, because the hand can ro-
tate separately to the forearm. Many gestures change mean-
ing significantly based only on localised wrist rotation, for
example the difference between pointing gestures in differ-
ent directions, or the difference between a ’thumbs up’ and
a ’thumbs down’. Researchers have addressed this issue by
placing accelerometers on the hand in rings or other hand-
mounted wearables [10], but this requires additional hardware
over a single wrist-worn wearable. Wrist-mounted IMUs can
detect arm movement in a wider coordinate system, and can
help to detect supination and pronation in the forearm but it
is still difficult to differentiate between rotation of the whole
arm and forearm, as the locally measured movements are the
same.

GestureWrist [17] used a capacitance-sensing technique sim-
ilar to localised EMG, to gather movement cues based on the
shape of the wrist. The technique relies on providing a sep-
arate electrical source through the body which makes it dif-
ficult to combine with EMG sensing, as the local electrical
source would drown out or interfere with the EMG signal.

Wrist-mounted computer vision approaches to gesture detec-
tion such as Digits [13] have recently become been integrated
into wrist-mounted wearables and demonstrate excellent spa-
tial accuracy. However, as with IMU approaches, the Digits
system is currently restricted to the hand’s coordinate system
and so is unable to detect gestures which depend on wrist
and forearm rotations. In general such computer vision tech-
niques also suffer from intermittent occlusion which bounds
the performance of the approach.

Finally, recent work has explored whether Force-Sensitive
Resistors (FSRs) can provide a useful additional channel of
data from a wrist-mounted wearable. FSRs have two copper
traces that sandwich a special type of conductive polymer in
between, which decreases in resistance as force is applied to
it. By measuring the resistance of the resistor (e.g. by us-
ing a voltage divider), the amount of force applied can be
inferred. Superficial tendons will move as hand gestures are
performed, and because of their proximity to the surface of
the skin, the movement can also recorded by FSRs to classify
certain gestures. WristFlex [7] used an array of FSRs in a
wearable wrist strap to detect finger pinch gestures based on
the subtle tendon movements in the wrist. The authors found
a high classification accuracy with low power consumption.

Gestures

The types of gestures that we wish to classify are shown in
Figure 2. The coloured dots next to each gesture indicate the
corresponding coloured muscles in Figure 1 that are predomi-
nantly responsible for producing the gesture, starting and fin-
ishing with the Palm hand posture. Most gestures use several
different groups of muscles.

While there is no standardised hand gesture taxonomy, most
gesture techniques described above evaluate against varia-
tions of general movements which draw on finger and wrist
rotations. For our pilot study, we try to classify a set of ges-
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Figure 2: The set of gestures which we try to detect. The
coloured dots represent the muscle groups shown in Figure 1
which are predominantly used during the gesture.

tures which contain several finger gestures, a fist and a palm
gesture. Finger gestures and Wrist gestures are significantly
different due to the different muscle groups which are re-
quired, illustrated by the colour variations between the ges-
ture classes. For our follow-up study, we grouped and sup-
plemented these gestures to explore a more challenging set of
15 gestures in three classes:

Finger Gestures These are gestures which only involve
movements of the fingers. Anatomically, any movement
which only involve rotations of the phalanges around their
phalangeal joints will be classed as a finger gesture. In this
class, we want to test whether individual fingers can be dis-
criminated, and therefore include single finger flexions.

Wrist Gestures Hand movements which rotate the whole
hand around the wrist joint are classified as wrist ges-
tures. Although supination and pronation of the forearm
occurs because of rotations at both the wrist and elbow
joint, we include them as wrist gestures because they ro-
tate the whole hand.

Other Gestures This set of gestures are not naturally fo-
cused only on single fingers or the wrist, consisting of
whole-hand gestures that use multiple fingers simultane-
ously.
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PILOT STUDY

Motivation

The aim of our pilot study was to compare the effectiveness of
hand gesture recognition using EMG when using sensors lo-
cated on the wrist in comparison to another device located on
the proximal upper forearm. We were especially interested
in how the relocation of sensors would affect the classifica-
tion rates of finger gestures. We did not include wrist ges-
tures in our pilot, as we expected to rely on existing studies
that have measured wrist gesture performance with EMG [1].
The gesture set that we tested for included the following from
Figure 2: Index, Middle, Ring, Fist, Palm. The palm gesture
represents a relaxed state with no muscle activity.

Hardware

Hand-gesture recognition using electromyography is more
challenging to implement around the wrist than if the sen-
sors were located at the proximal end of the forearm, for the
reasons explained previously, including smaller surface area,
reduced muscle mass and the muscles being closer together.

Commonly in EMG, each muscle is individually measured.
However, due to the constraints set by the surface area of
the wrist and considering practically, we decided to use just
two pairs of bipolar electrodes. The positioning of these elec-
trodes is crucial, as they both need to have good coverage over
different areas of the flexor digitorum muscles. The number
of muscles in the forearm which we wish to detect are far
greater than the number of data channels the device provides.
The underlying principle for detecting which muscles are ac-
tive in this situation is as follows.

Several muscles are measured by a single electrode. The sen-
sitivity of an electrode to any particular muscle is proportional
to it’s distance away from the electrode’s conductive cen-
tre. Since the values that are collected are roughly consistent
each time a gesture is performed, a machine learning classi-
fier can predict the gesture. The muscles of interest here are
the flexor digitorum superficialis and profundus, and there-
fore we placed our 2 pairs of sensors orthogonally to these
muscles, on the anterior of the forearm, so that each pair of
sensors are more receptive to certain fingers. Figure 3 shows
the difference in signals when flexing different fingers for two
bipolar electrodes placed horizontally across the wrist, as per
the placements in Figure 1. The graphs show that each sensor
is indeed more receptive to a particular muscle, as confirmed
by the differences in amplitude.

The reference electrode was placed to the side and on the pos-
terior of the forearm, close to the ulna. Here there are fewer
muscles and thus less muscle activity to be picked up by the
electrode, making it the ideal for a wrist-mounted device to
place a ground electrode. The electrodes are held in place
with an elastic strap.

For this prototype, we created our own electrodes using con-
ductive metal pins. It was necessary to apply gel to the elec-
trodes for good electrical contact with the skin.

The electrodes are connected to circuit boards that apply a
differential amplification, rectification and smoothing of the
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Figure 3: EMG signals from flexing a) the index finger and
b) the ring finger

signals from the bipolar electrodes[18]. Each of the four
boards are connected to an Arduino Uno. The Arduino is
programmed to read analogue data from the sensors, which
are then sent to the computer via serial communication for
data collection and processing. The data is collected at ap-
proximately 60Hz.

Software

The data samples recorded for each channel from the device
is of the form of a 1D time series. We extracted several time-
domain features from each sensor in a given recorded sam-
ple. We used a support vector machine to classify the gesture
data that we recorded. We chose to use an SVM over alter-
native classifiers because we knew our feature space would
be small, and the kernel that the SVM uses will increase the
dimensionality of the feature space. We also found that pre-
vious work on hand gesture recognition using EMG demon-
strate that SVMs yield good performance [19][2]. We chose
to use Libsvm, a simple yet efficient library for support vector
machines[5]. After extracting the features, we normalised the
values of each feature vector, since an SVM is not scale in-
variant. We used C-Support vector classification with a radial
basis function kernel due to it’s better classification perfor-
mance over linear kernels[11], although a linear kernel would
be faster if interactive feedback were required from a real-
time wearable system with limited processing capabilities.
The C-SVC classifier implemented by Libsvm uses a ’one-
versus-one” method for multi-class classification.

For the data collected with each device, we used the k-fold
cross validation technique in order to find suitable parameters
for the SVM classifier. Using these parameters to train the
SVM on the training data, we could then use the classifier to
predict each testing instance, and compare this to the training
label to find out if the outcome was correct. The percentage
accuracy of the classifier for each participant then equates to
the number of correctly classified instances divided by the
total number of instances.

Procedure

We used a within-subjects experimental design, with the in-
dependent variable being the placement of the electrodes, and
dependent variable being the accuracy of the SVM classifier.
We kept the feature set and the supervised learning imple-
mentation the same in each iteration of the study.
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12 participants (9 male, 3 female) participated in the study, all
participants were healthy with no known muscle impairment.
The study consisted of a 30 minute session, during which the
participant would perform gestures while wearing one device
worn at the wrist, and then again with the second device on
the upper forearm. During each of the 5 gestures, the device
would record the data from each bipolar differential channel.
The gesture would be repeated multiple times over the course
of the session.

Results

A Shapiro-Wilk test showed that the classification sample
was not normally distributed (W=0.731, p <0.05), so a non-
parametric Wilcoxon Signed Ranks Test was applied to com-
pare the devices’ classification accuracy. This test indicated
that the classifier was significantly more accurate for the data
collected from the device worn on the wrist (mean 82% cor-
rectly classified) than for the device located on the upper fore-
arm (mean 53%), Z = -2.359, p <0.01.

Discussion

Our pilot study demonstrated a significant increase in clas-
sification accuracy when the electrodes are worn on the
wrist compared to the proximal forearm location. While we
hoped that the new placement might prove comparable to the
usual upper forearm placement for finger gesture detection,
we were surprised that the difference was so significantly
in favour of the wrist, which we believed should be more
anatomically difficult to discriminate the EMG signals.

This result led us to explore other potential reasons for the
increased performance of the classifier in the wrist condition.
Looking at the differences in the system design, one key area
was the home-made electrodes used under the wrist band.
During some sessions, we found that the resting amplitude
of the EMG sensor data varied within the same session. One
reason for this could be a change in electrical contact with
the skin. This change can be caused by a displacement of the
electrodes, due to movements of the forearm. Upon further
experimentation with the device, we came to believe that the
increased performance could be attributed to changes in pres-
sure on the EMG electrodes from the elastic wrist strap. The
pressure was modulating the EMG signal in ways which we
suspected may be providing additional gestural features to the
classifier than pure EMG signals alone.

The hypothesis that wrist pressure was providing predictable
features by modulating our EMG data was rather surprising.
Existing studies in the literature directly using wrist pressure
to detect hand gestures had selected specific movements to
ensure classification accuracy, such as the use of a finger
pinch in the WristFlex study [7]. Nonetheless, we hypoth-
esised the wrist pressure was the most likely variable in the
higher classification rate. In order to test this hypothesis, we
conducted a second user study in which we isolated the pres-
sure and EMG data collected only on the wrist, in order to
quantify the effect of the pressure changes in the wrist on the
gesture classification results.
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Figure 4: An Image of the prototype worn around the wrist.

EXPERIMENT

This section describes the design process of the device for
our main study. The following section describes the study
and results.

Hardware

The changes in pressure applied to each electrode from the
strap are present for a number of reasons. The key explana-
tion is that muscles/tendons in the forearm become displaced
upon contraction. Stretching of the skin can also affect the
pressure between the sensor and strap. Factors of the strap
design such as the elasticity, can significantly change how the
movement of the skin affects the pressure, as we found out
during trial and error of different strap types. Eventually we
decided that a simple elastic band would suffice.

In order to measure the pressure between the strap and the
wrist, we chose to use the same Force Sensitive Resistors that
are used in the WristFlex prototype [7]. The FSR400 com-
ponent [8] provides good performance in their study and our
requirements are similar: inexpensive, small and highly sen-
sitive.

In order to isolate the pressure data from the EMG readings,
we chose to use a more robust EMG sensor (SKINTACT
Ag/AgCl aqua-wet electrode, ref: FS-TF). "Wet” ECG elec-
trodes that are commonly used for medical purposes have a
design which mitigates the effect of pressure, due to the use
of highly porous foam beneath the sensor. The electrodes are
connected to circuit boards via shielded cables with snap con-
nectors. The circuit boards apply differential amplification,
rectification and smoothing of the signals from the bipolar
electrodes[18]. For each pair of bipolar electrodes this pro-
vides a single channel of EMG data. Each of the four signal
processing boards are connected to an Arduino Uno.

The prototype for our second study extends the capabilities of
the device used previously. We kept the same configuration of
2 bipolar EMG electrodes located on the anterior side of the
forearm, because of the reasonable accuracy for single finger
gesture recognition that our first study showed is attainable.

The increased gesture set which we aim to identify in this
study includes gestures other than finger gestures. Some ges-
tures require the use of the muscles located in the poste-
rior compartment of the forearm (Figure 1, bottom), as indi-
cated by the coloured dots in Figure 2. Chiefly, these are the
Extend, Adduction, Abduction, Spread and Point gestures.
Therefore to detect the activity of these muscles, we decided
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Figure 5: Diagram of the hardware components used in the
prototype.

to place two additional bipolar sensors close to the extensor
muscles on the posterior of the forearm. This has the added
effect of detecting muscle activity from the extensor digito-
rums, thus facilitating the classification of Finger gestures.
The muscles that are active upon wrist Flex, Extend, Adduct
and Abduct are the flexor/extensor carpi radialis/ulnaris.

The new EMG sensors we have chosen are unnecessarily
large (excessive amounts of adhesive) and could be engi-
neered at a fraction of their size with no loss of functionality.
For our purposes, this limited the amount of space left to allo-
cate to FSR sensors. We therefore chose to put the reference
electrode on the other hand. In an ideal situation where the
sensors are smaller, it should be possible to have the refer-
ence electrode placed close to the ulna as in our pilot study,
without overlapping with any of the other sensors.

The force sensors we have used are much smaller than the
EMG sensors. This allows us to easily place them on the
sides, close to the tendons of the muscles which control
thumb movement and hand abduction/adduction. We were
also able to fit two more FSRs in between the two EMG sen-
sors on the anterior and posterior of the wrist (Figure 1. These
latter two are conveniently placed onto the tendons of interest
for finger gestures: tendons of the flexor and extensor digito-
rum muscles. The sensors are spaced around an elastic band
which is worn around the wrist. Our design supports adjust-
ment of the sensors’ placement on the band, to account for
differently sized wrists. The elastic is required so that there is
slight pressure exerted onto every force sensor, so that when
the shape of the wrist changes, there is a change in pressure.
In the absence of such an external force, the sensor would
simply move with the surface of the skin, and there would be
minimal change in signal. The force sensors are connected to
a small circuit that consists of a digital multiplexer and a volt-
age divider which work in tandem. A resistor of 180kQ gave
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us values within a suitable range. The output signal from the
circuit is then connected to the Arduino’s analogue pin.

The approximate positions of all the sensors are shown in Fig-
ure 1 and Figure 4. In total there are eight electrodes worn on
the wrist, and there are also reference electrodes for each pair
of bipolar electrodes attached to the other arm. Our aim is to
be able to detect finger and wrist gestures with as few elec-
trodes as possible while still maintaining a reasonable accu-
racy, as increasing the number of electrodes makes a device
more impractical due to the size, power, computational load
and cost.

The diagram in Figure 5 shows how each of the hardware
components are connected. In the figure, only one of four
sets of EMG components are shown.

Software

The data collection process that we use remains similar to
that of the pilot study. Instead of receiving 2 data channels
from the Arduino, we now have 4 FSR and 4 EMG channels.
Features for EMG could theoretically be extracted from both
the frequency and time domain. However, due to the limi-
tations of our hardware, we could not collect sensor data at a
high enough frequency for there to be any significant informa-
tion in the frequency domain. Useful frequency information
would have to sample data at a rate several orders of magni-
tude higher than our current rate of 60Hz [1][16]. We ex-
tracted the following features for each 1D time signal (2.4s):

e Root mean square (RMS) - This feature is correlated with
the signal energy, and thus muscle activity in the case of
EMG. This has been found to be a good feature for ma-
chine learning with EMG data[3]. Significant changes in
signal energy also occur in the FSR data, as seen in the
sample data shown in Figure 6. The muscles in the fore-
arm have different sizes, and the larger they are, the higher
the amplitude of the received EMG signals. Large mus-
cles, such as the flexor carpi ulnaris, can influence several
sensors due to their size. These properties facilitate the
process of classification, as the muscles which could have
produced the electric potential difference can be inferred.

e Standard deviation (SD) - Also correlated with the mus-
cle activity, although this feature is invariant to amplitude
offsets.

e Peak amplitude - Measures the maximum value of the sen-
sor data. This is chosen to take into account the shape of
the signal, as two signals with the same RMS could look
entirely different.

We tested the accuracy of our classifier by using a leave-one-
out 10-fold cross validation on our data sets. For each itera-
tion, we use a stratified shuffle split on the training portion,
and then used a grid search algorithm for selecting the hyper
parameters, C and y. Once suitable parameters were found,
we then trained the SVM and tested the classification on the
test fold. Using this method, we remove any bias from the
parameter selection that would have otherwise occurred if the
parameters were instead chosen using a grid search on the
entire data set.
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Figure 6: Graphs of electromyographic and pressure signals for select gestures. The horizontal axes show time, and the vertical

axes show amplitude.

The time taken to read the data file, compute the features and
classify the instance using the SVM, is less than Sms on a
desktop class Core i7 Intel processor , across all gestures and
sensors. This is 3 times less than the sampling rate, which
suggests the feasibility of real time classification using our
system entirely possible, as further optimisations would re-
duce the time even more.

Our software suite also included an application that would
show the participant a sequence of videos of someone per-
forming certain gestures that they would then mimic. While
the participant is performing the gesture, a second Python
script would record 2.4 seconds of sensor data that was sent to
the computer’s serial port from the Arduino. It is then stored
as comma separated value files for later analysis.

Participants

A total of 12 participants (different from the first study) took
part in our experiment. There were 3 female, and 9 male par-
ticipants. The average age across all participants is 33 years,
with a standard deviation of 9.1 years. The circumferences
of their wrists averaged 16cm, with a standard deviation of
1.3cm.

Procedure

An experiment began with the participant being asked to wear
the device around their left wrist. We first adhered the elec-
trodes for the electromyography onto the participants arm.
The band with the force sensors was then placed around the
wrist, making sure that each force sensor had good contact
with the skin, with slight pressure on each of them to ensure
the output signal was in a suitable range.

We then instructed them to mimic the gestures that were
shown in a video clip on a screen in front of them. They
were told to keep the timing of their hand movements in sync
with the one in the video clip, as closely as possible. Each
video clip is 4 seconds, and the gesture in every clip starts
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and ends at the same point in time. This is to ensure that the
gestures are performed consistently throughout. Each ges-
ture video clip is shown 6 consecutive times, the first clip
is to let the participant acknowledge that a new gesture has
started, and so that they can practice it once. The data is not
recorded during this period, only for the 5 subsequent ges-
tures. The participants perform 15 different hand gestures in
this manner, these gestures are all those shown in Figure 2.
This process is repeated once more, to give a total of 10 data
points per gesture. For each participant’s data set, we tested
10-fold cross validation accuracies using a separate SVM to
train each individual’s gesture data.

In our study, we used three sensor conditions (EMG, FSR,
Both) and three gesture sets (Fingers only, Wrist only, All),
where the ’All’ category combines the first two gesture
classes with the *Other’ gestures shown in Figure 2. Since
we vary both of these variables simultaneously, data is col-
lected across a total of 9 different experimental conditions.

To re-iterate our hypothesis: we expected that incorporating
pressure data increases the classification rate of gestures com-
pared with using EMG alone on the wrist.

Results

Figure 7 shows the mean results for each experimental condi-
tion. For the full set of 15 gestures, average 10-fold cross val-
idation classification rate for both EMG and FSR data across
all participants is 95.8%. This gives us a classification rate
for our overall device with respect to our gesture set. We also
compared the Sensor and Gesture conditions to identify main
effect and to identify any interaction between them.

A two-way repeated measures ANOVA indicated that the
main effect of Gesture was significant, F(2,10) = 5.67, p
<0.001. Post hoc analysis with Bonferroni correction ac-
counting for multiple comparisons showed that Wrist Ges-
tures were classified significantly better than All Gestures (p
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Figure 7: Cross validation accuracies for each test condition,
with standard error bars.

<0.05), but not significantly different to Finger Gestures (al-
though approaching significance, p=0.06). The overall differ-
ence between Finger Gestures and All Gestures was also not
significant.

The main effect of Sensor was also significant, F(2,10) =
17.70, p <0.001. Post hoc analysis, again with Bonferroni
correction, indicated that Both sensors were significantly bet-
ter than either EMG (p <0.001) or FSR (p <0.001), but that
these did not significantly differ from one another.

The interaction effect between Gesture and Sensor was also
significant F(4,8) = 11.69, p <0.001. The distributions of
Gesture and Sensor classification rates suggest that this effect
was caused by EMG data correctly classifying more Finger
Gestures (90.5%) than Wrist Gestures (85.3%), while FSR
data correctly classified more Wrist Gestures (96.1%) than
Finger Gestures (86.5%). The EMG and FSR techniques in
combination showed significant complementarity when clas-
sifying All Gestures, each technique alone providing fewer
correct classifications (EMG 86.6%, FSR 89.4%) while to-
gether they classified All Gestures correctly to an accuracy of
95.8%.

The confusion matrix in Figure 8 shows the performance of
the classifier for the case with Both sensor types and All ges-
tures. There is no obvious misclassification for any particu-
lar gesture, although the main confusion appears in the fin-
ger gestures. The ring gesture has the highest number of
false positives, wrongly classifying the middle, pinky, and
palm gestures. Similarly, the SVM classified several index
and pinky gestures as middle finger gestures, and fist as point
gestures. This error could be attributed to a few possibilities.
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Figure 8: Confusion matrix across all participants, using both
sensors and all gestures.

The most likely of them however, is that there is an insuffi-
cient number of sensors for the flexor/extensor muscles that
control the fingers. The Finger gestures being the most incor-
rectly classified gestures can also be confirmed by the fact that
the average cross validation result is worse than that of Wrist
gestures, and also All gestures. The thumb gesture appears
to have fewer false positives and false negatives, and this is
likely due to do the fact that the thumb gesture uses muscles
which are different from those the other finger gestures use.

We found the standard deviation to be much larger for Finger
gestures (3.72%) than Wrist gestures (1.67%) and All ges-
tures (1.98%), when all sensors are used. When the EMG
sensors are only used, the deviation is 6.22% for the Finger
gesture set. This is a much larger variance than Wrist gesture
classification using only FSR (2.05%). One possible reason
for this could be the variance in hand dexterity of participants,
due to the somewhat difficult control of individual finger flex-
ing; the flexor digitorum superficialis is principally responsi-
ble for this.

In theory, larger wrist sizes should increase the recognition
rates of the classifier, since the muscles are more interspersed,
and the larger muscle mass should increase the difference in
electrical potential. Though our data does not suggest such a
correlation between the circumference of the subjects wrists
and the classification accuracies, our sample has too limited
variance to determine this.

DISCUSSION

Our principal result is the accurate classification, just below
96%, demonstrated by the combined EMG and FSR data
across our gesture set. This indicates that the EMPress tech-
nique is viable for hand gesture recognition, and that this ap-
proach is significantly better than either sensor type on its
own.
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Figure 10: Confusion matrix across all participants, using
purely EMG sensors for classifying finger gestures.
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Figure 11: Confusion matrix across all participants, using
purely FSR sensors for classifying finger gestures.

It is not possible to directly compare EMPress to other pub-
lished gesture sensing methods, because gesture sets, num-
ber and type of sensors used, and anatomical position vary
widely across the literature. Our overall classification rate
for Finger gestures is 94.0%, while the rate for Wrist ges-
tures is 97.5%. Confusion matrices show that the weakness
in our system is generally due to the mis-classifications of
adjacent fingers within the Finger gesture set. We suspect
that this is partly due to the low electric potential generated
by the few muscle cells that are present in the wrist. Sens-
ing EMG spikes predictably at the wrist against low signal-
noise ratios is the most challenging aspect of the EMPress
technique. Nonetheless, our data shows that even with these
challenges that EMG outperforms FSR when classifying Fin-
ger gestures, and its inclusion therefore remains an important
component of our technique. Uniquely, we have also demon-
strated that this high level of classification accuracy is pos-
sible without resorting to distributed arrays of EMG sensors
across the forearm, instead localising the sensors to a wrist-
mounted device. Following [3], even if constrained to spare
real estate on the existing wrist strap, we expect that further
EMG sensors should increase the classification rate.

While we expected pressure sensing to significantly supple-
ment EMG gesture classification accuracy, our study demon-
strates that pressure not only contributes to EMG classifica-
tion of gestures, but can actually parallel or even beat EMG
performance in complementary ways. The study data reveals
that the overall FSR-only classification success rate is 89.4%,
showing a strong predictability of wrist pressure over a wide
range of gestures. While we expected pressure sensing to per-
form well under conditions of wrist movement (96.1%), per-
haps most surprising is that pressure sensing alone was able
to detect finger gestures to a classification accuracy of 85.3%.
While WristFlex [7] already demonstrated a high predictabil-
ity for a particular anatomically targeted pinch gesture using
FSR sensing at the wrist, we believe the EMPress technique
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is the first time such an approach has been shown to be po-
tentially strong for a varied range of gestures without special
anatomical targeting of the sensors, and particularly for com-
bined wrist and finger movement classification.

Finally, our study shows that the EMG and FSR techniques
are strongly complementary, with EMG significantly better
for detecting finger gestures and FSR significantly better for
Wrist gestures. We therefore propose that, for wrist-based
wearables, the techniques are used in conjunction so that a
high recognition rate can be achieved while locating sensors
only at the wrist. Note that our device consists of wet elec-
trodes with cross-arm references, this suggests that our find-
ings apply under optimal EMG conditions. It is not necessar-
ily the case that this complementarity will yield true for a sys-
tem with dry electrodes with a same-arm reference electrode
placed over the ulna, and further work will be required to ver-
ify this level of performance against dry and locally grounded
EMG such as our pilot study used.

FUTURE WORK
We anticipate exciting future work in the design of the elec-
trodes deployed in EMPress-enabled wearables.

Firstly, it may be possible to integrate the different sensing
types. Having separated EMG and pressure sensing in order
to separate their contribution to the overall effect, it is now
possible to consider engineering a design which re-integrates
EMG and pressure sensing. Designs would be possible which
directly exploit the pressure-modulated EMG signal we ob-
served, alongside a comprehensive exploration of optimal
feature sets of the signal for classification. It would also be
possible to retain the software design for our second study
but integrate hardware within the EMG electrode itself, sup-
porting pressure sensing while greatly increasing the space
available on the wearable strap for a larger array of sensors
around the wrist.

Moreover, with this approach the FSR component could then
directly measure the pressure exerted onto the EMG sensor.
In our final prototype, even with foam underneath the elec-
trode, there is still a slight change in electrical contact as the
foam is compressed. Dry electrode sensors such as those used
in the Myo will also suffer from pressure changes due to the
movement of the wrist strap. The use of conductive foam[4]
may mitigate but not remove the effect of pressure. However,
an integrated EMPress sensor would be able to measure the
pressure exerted onto the EMG contact from the band. This
would allow a predictive model of the modulating effect of
pressure on the EMG signal to underpin an estimate of the
"true’ EMG signal.

Our gesture set allows us to differentiate between Finger ges-
tures and Wrist gestures. However, we have not tried to
classify nuanced combinations of both Finger and Wrist ges-
tures, nor have we attempted to combine multiple Finger ges-
tures simultaneously. Detecting multiple Finger gestures with
a reasonable accuracy will probably demand higher density
of EMG sensors placed precisely above muscles of interest
as described above. Since the sensors seem to be suited to
recognising separate components of gestures, calibration al-
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gorithms to map sensor-anatomy offsets [3] will be important.
There is also the potential to biologically tailor the device so
that additional pressure sensing can be targeted towards re-
gions where there are limited surface EMG signals owing to
wrist anatomy.

Finally, given existing wearables typically already include
an IMU, our technique could potentially draw on accelera-
tion data to detect many more gestures and/or with further
increases in accuracy. In particular, gestures which require
movements that stem from the elbow, arm, or whole body
would be well-supported by such data, and we may observe
some further improvement to Wrist gesture classification ac-
curacy as well.

CONCLUSION

Our initial study planned to compare the effect of EMG sen-
sor placement on the forearm. We found that placement of
EMG around the wrist has comparable accuracy to when the
sensors are located on the upper forearm. This unexpected
outcome led us to believe that pressure exerted from the wrist-
band which held the EMG sensors to the skin, modulated the
signal in a semi-predictable manner.

Our main study confirmed our hypothesis that including the
pressure around the wrist does indeed increase the classifi-
cation rate for different kinds of gestures involving both fin-
ger and wrist movements. Furthermore, we found significant
complementarity between the two types of sensors: the pres-
sure sensing surpasses EMG for classifying Wrist gestures,
and the reverse is true for Finger gestures. We believe this
technique is sufficiently accurate and ergonomically practical
to have significant potential for underpinning a new genera-
tion of wearable gesture sensing technology.
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