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ABSTRACT
The increasing usage of sensors in modern technical sys-
tems and in consumer products necessitates using efficient
and scalable methods for storing and processing sensor data.
Coupling big data technologies with semantic techniques
not only helps achieving the desired storage and process-
ing goals, but also facilitates data integration, data analy-
sis and the utilization of data in unforeseen future applica-
tions through preserving the data generation context. In this
work, an approach for prototyping semantic sensor analysis
systems using Apache Spark is proposed. The approach uses
smartphones to generate sensor data which is transformed
into semantic data according to the Semantic Sensor Net-
work ontology. Efficient storage and processing methods of
semantic data are proposed and a use case where a smart-
phone is deployed in a transportation bus is presented along
with a street anomaly detection application.

CCS Concepts
•Computing methodologies → Semantic networks;
Ontology engineering; •Information systems→Distributed
storage;

Keywords
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1. INTRODUCTION
Modern technical systems and production processes often

comprise a large number of sensors providing data about
current operating conditions as well as the system’s envi-
ronment. Examples can be found in vehicles (private and
industrial), factories (“Industry 4.0”), agriculture (weather
and oil sensors) and in energy production (solar and wind
power plants). In the past, sensor data has mainly been used
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for controlling the current operations of a system. Nowa-
days however, high-frequency data about operating condi-
tions and use contexts can in addition be seen as a strategic
information asset for the operator or manufacturer. This is
made possible through the advancements in big data tech-
nologies which allow processing the vast amounts of collected
sensor data and by the use of the Semantic Sensor Network
(SSN) ontology which adds semantic compatibility for sensor
data[2].

The use of semantics helps towards achieving autonomous
processing and reasoning about sensor data despite the in-
creasing complexity in sensor networks deployed in modern
systems. It also allows easy data integration through incor-
porating different ontologies that describe new application
contexts in order to extend the data processing and reason-
ing capabilities over the collected data. A great advantage
in using semantic data rather than building applications on
top of the raw data is that with semantics, the context of
data generation is explicitly captured. This leads to eas-
ier analysis in any later applications even if they were not
initially intended when the data was collected. Section 6.2
demonstrates a direct application for collected sensor data
and discusses the ease of utilizing the same semantic data in
further future applications.

To illustrate the potential of harnessing big data and se-
mantic technologies for processing sensor data, we propose
a simple prototyping approach that uses smartphones for
transforming objects or devices into semantic sensor data
sources and providing the means to semantically analyze
the captured data. This approach is defined by the follow-
ing stages:

1. Generating sensor data: Smartphones nowadays
are equipped with a notable set of sensors including ac-
celerometer, gyroscope, GPS, light sensor, etc. Given
its connectivity, storage, and processing features, phys-
ically attaching a smartphone to an object of interest
is enough to generate sensor data about this object.

2. Semantic modeling of the object with deployed
sensors: Given a set of sensors being tracked, an on-
tology is generated based on SSN to model the use of
the smartphone and its tracked sensors to monitor an
object of interest.

3. Transforming raw sensor data into semantic data:
Utilizing Apache Spark [12] to process possibly huge
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amounts of raw data, sensor data is transformed to se-
mantic data using the generated SSN-based ontology.
The use of big data technologies, such as Spark, aims at
facilitating the process of scaling up the system when
smartphones are replaced by permanent sensors and
the need to process always-on sensor streams arises.

4. Analysis and reasoning about the data: After
obtaining semantic sensor data, the possibilities for
materializing semantics through reasoning about the
data, also when combined with other contextual data,
can be achieved. This also involves the use of Spark
for robust and scalable performance.

It is worth mentioning that smartphones are not the best
option when it comes to deployment of sensors in real life
sensor networks scenarios. This is due to their high energy
consumption and need for a permanent power connection,
operating system overhead and unreliability, relatively large
size, and inability to operate in several environments and
conditions such as underwater or in high temperature sur-
roundings. However, the effortless deployment of the pro-
posed system can often yield sufficient insights and results
for certain simple applications and serves as a prototype that
could scale up to meet high demand application scenarios
with only few changes required.

This paper proceeds as follows: Section 2 lists the related-
work to this paper. Section 3 describes SensorTracker, which
is an Android app developed for collecting smartphone sen-
sor data. Section 4 presents the process of realization of
semantic sensor data through generating an SSN-based on-
tology which is used to transform raw sensor data to seman-
tic data. Section 5 describes how Apache Spark is used in
processing and analysing sensor data. Section 6 presents a
use case where the system is deployed to monitor a public
transport bus. And finally, Section 7 discusses the conclu-
sions of this research and the future work opportunities.

2. RELATED WORK
Using manual user description of sensor deployment, [13]

presents an approach that helps in transforming raw sensor
data into RDF conforming to SSN ontology. This method
is usable for general sensor data however for the proposed
smartphone based prototyping approach a fully automated
transformation of sensor data is feasible as shown in Sec-
tion 4. Apache Spark [12], which is the general cluster com-
puting framework used in this work does not support seman-
tic data natively. [3] presents an evaluation of RDF distribu-
tion algorithms using Spark, while [4] presents an encoding
scheme for ontology classes and properties using Spark with
a restriction to single-inheritance ontologies. In a similar
use case to the one presented in Section 6, [6] presents an
approach to detect potholes in streets using accelerometer
data collected from taxis in the greater Boston area, USA.

3. SENSORTRACKER APP
The starting point for realization and analysis of seman-

tic sensor data is data collection. Using smartphones for
acquiring data has the advantages of abundance of sensors
included, connectivity, storage space and processing power.
SensorTracker is an Android app developed for the purpose
of acquiring sensor data. After attaching the smartphone

Figure 1: Snapshot of the SensorTracker Android
app interface.

to the object of interest, sensors to be tracked are easily se-
lected using SensorTracker interface as shown in Figure 1.
Even though smartphones are not the ideal sources for sensor
data streams as indicated in Section 1, the following proper-
ties were considered to overcome the limitations and utilize
the advantages of using a smartphone in building Sensor-
Tracker application:

• Robustness: SensorTracker runs in the background
and was tested for extended running times of several
days recording a total of over 14 million records equiv-
alent to 1.2 GB of raw sensor data as detailed in the
experiment setup of Section 6.1.

• Storage and Connectivity: Sensor data is saved
in the form of CSV files and can be optionally trans-
ferred or inserted to a remote database using internet
connectivity when available.

• Local Processing: Given the processing power of
modern day smartphones, SensorTracker does local ag-
gregation of sensor data within user-specified time frames
to reduce redundant data if required. Also, Sensor-
Tracker uses sensor fusion techniques to provide fused
sensor data and not only data from the phone’s phys-
ical sensors. For example, using accelerometer, gyro-
scope and magnetic field sensor data to produce fused
orientation sensor data.

4. REALIZATION OF SEMANTIC SENSOR
DATA

As discussed in Section 1, two steps are needed to trans-
form raw sensor data into semantic data. The first step in
this transformation is the creation of a conceptual model to
describe the created sensor network. Combining the user’s
choice of tracked sensors in the smartphone application pre-
sented in Section 3, the user’s manual description of the ob-
ject to which the smartphone is deployed, and the Semantic
Sensor Ontology (SSN), an SSN-based ontology is created
to describe the sensors attached to the object of interest as
specified in Section 4.1. A mapping function is then used to
create all the needed RDF triples for each sensor data record
collected. This mapping is further discussed in Section 4.2.

Since transforming raw sensor data into semantic data
comprises processing huge amounts of data, a Spark based
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storage and processing approach introduced in Section 5 is
used in order to enhance the performance while preserving
the semantic structure of data presented in this section.

4.1 Generating an SSN-Based Ontology

Figure 2: Example of a generated SSN-Based ontol-
ogy describing a smartphone with GPS sensor con-
nected to a bus.

The W3C Semantic Sensor Network Incubator Group1

(SSN-XG) developed the Semantic Sensor Network ontol-
ogy as an ontology to describe sensors and sensor networks
for the use in sensor web and sensor network applications.
The SSN ontology is created around the Stimulus-Sensor-
Observation design pattern [8] where the act of sensing is
conceptually separated into three parts: a stimulus, a sen-
sor and an observation. In addition to its Skeleton mod-
ule that describes the sensing activity, several conceptual
modules are built in the SSN ontology to cover key sensor
concepts such as Deployment, Device, System, OperatingRe-
striction and Data. The Semantic Sensor Network ontology
was quickly adopted in research and applications and be-
came the standard ontology for semantic sensor networks.

Using the simple assumption of attaching the sensing de-
vice (smartphone) to any object of interest, and knowing
the available sensors on the smartphone, the proposed sys-
tem generates an ontology based on SSN to describe the
sensors deployment setup. Figure 2 shows a part of an ex-
ample ontology generated to describe a smartphone attached
to a public transportation bus. For the readability of the fig-
ure, only the GPS sensor is displayed. The generated ontol-
ogy considers the object of interest as sub-class of both the
ssn:Platform and ssn:FeatureOfInterest classes. Since
SSN does not include a model for describing sensor values
and their units of measurement, the SSN-based ontology
is complimented by the use of the Dolce Ultralite Ontol-
ogy(DUL) [9] and the Measurement Units Ontology(MUO) [1].

4.2 Mapping Raw Sensor Data to RDF Triples
As previously mentioned in Section 3, the SensorTracker

app records the sensor data for all the smartphone sensors
chosen by the user in CSV format. After parsing the raw
data files and discarding any erroneous records, a group of
RDF triples are created depending on the type of the sensor
in each data record and added to the base ontology. Figure 3
shows an example of an acceleration data record and its
mapping to its equivalent RDF triples.
1https://www.w3.org/2005/Incubator/ssn/

Figure 3: Example of mapping raw sensor data
record to its equivalent RDF triples.

5. SPARK INTEGRATION
Current and emerging use cases involve huge amounts of

raw sensor data which imposes the use of a scalable clus-
ter computing framework that ensures data parallelism and
fault-tolerance. Apache Spark [12] is a general engine for
large-scale data processing that utilizes in-memory comput-
ing to achieve up to 100x better performance than the state
of the art MapReduce [5] approach. Spark’s efficient perfor-
mance is a result of using a read-only data structure called
Resilient Distributed Datasets (RDDs) [11]. RDDs can be
stored in main memory which makes a significant difference
especially with iterative algorithms where intermediate re-
sults do not need to be replicated and persisted on the dis-
tributed file system with each iteration. To maintain fault
tolerance, Spark records all transformations and rebuilds
any lost RDDs by reapplying the recorded transformations
on the original datasets.

In any ontology knowledge base, a natural separation ex-
ists between TBox and ABox statements where the former
denotes the set of classes and properties that describe the
conceptualization of a system and the latter denotes a set of
facts about individuals belonging to these classes. This sep-
aration is used to distinguish between the base ontology and
the generated RDF statements representing the collected
sensor data.

5.1 Processing of TBox Statements
Given the relatively small size of a base ontology, there

is no need for a distributed processing of its statements.
Instead, the generated OWL ontology is processed locally
to produce an encoding of the TBox statements which is
passed as a Spark broadcast variable to be available during
runtime on all the working nodes of the Spark cluster. Two
tables for the classes and the properties of the ontology are
created:

• Ontology Classes: For each class, a mapping is cre-
ated from its URI to a unique numerical ID and a set
of the IDs of its sub-classes using rdfs:subClassOf

property.
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• Ontology Properties: For each property, a mapping
is created from its URI to a unique numerical ID and
the numerical IDs for its domain(rdfs:domain) and
range(rdfs:range) classes as well as a set of the IDs
of its sub-properties using rdfs:subPropertyOf prop-
erty.

The use of numerical IDs to replace string based ontol-
ogy URIs enhances the utilization of the available memory
and improves the performance of identifiers’ comparisons.
Note that using the transitivity of rdfs:subClassOf and
rdfs:subPropertyOf properties, the set of sub-classes and
sub-properties are computed by recursively finding the sub-
entities of the direct sub-classes (resp. sub-properties) of a
class or a property. [4] uses a similar encoding however does
not account for multiple inheritance of classes and proper-
ties which is common in most ontologies such as the SSN
ontology used here.

5.2 Processing of ABox Statements
For the ABox statements, which comprise the vast major-

ity of the statements in a knowledge base, Spark is used in
all operations involving these statements starting with the
creation of the statements using raw sensor data and in all
the following steps including querying the knowledge base
and analyzing its data. As indicated in Section 4.2, a set
of RDF statements are assigned to each record of sensor
data. These statements however, are not stored in a single
RDD containing all the triples created. Instead, an RDD is
created for each property containing a key-value pair repre-
senting the subject and the object of the conceptual RDF
triple. Figure 4 shows an example outcome for this pro-
cess where numerical IDs are replaced with textual IDs for
clarity. The analogy to column-oriented DBMS enhances
the performance where not all triples need to be loaded into
main memory as it is the case with many sensor data anal-
ysis scenarios such as the use case presented in Section 6.2.

Figure 4: An example of storing ABox RDF state-
ments in properties’ RDDs.

Note that restoring the triples format is a straight for-
ward process where for each element in a property RDD, a
triple can be formed from the element’s key and value as
the subject and the object of the triple respectively, and
the property represented by the RDD as the property of the
triple.

5.3 Analyzing Semantic Sensor Data
In order to query the semantic sensor data using Spark,

the query is transformed into an equivalent set of Spark
operations. [10] proves that any conjunctive query could be
transformed into a set of the following Spark operations:

• Map: applies a specified function to all the elements
of an RDD.

• Filter: returns a new RDD consisting of the subset
of the data in an existing RDD that satisfies a certain
predicate.

• Join: joins two RDDs based on the equality of their
respective elements’ keys.

This essentially permits the execution of SPARQL queries
on the dataset through transforming the SPARQL query
into its equivalent set of Spark operations. A simple exam-
ple of such transformation is presented in Section 6.1. Addi-
tionally, analysts could further utilize Spark transformations
and actions like sortByKey, ReduceByKey, count and reduce
to get more insights from the dataset.

6. EXAMPLE USE CASE
The main motivation for using the system proposed is be-

ing able to effortlessly obtain a working prototype of sensors
attached to an object of interest, modeling the obtained sen-
sor deployment according to the SSN ontology, and enabling
the design of big data algorithms and results analysis to run
on the collected sensor data in addition to other possible
integrated data from different sources. This usage scenario
conveniently scales up when applied to different sensor data
sources and much larger amounts of collected data. In what
follows, Section 6.1 introduces the experiment setup for the
presented use case while Section 6.2 discusses the application
details.

6.1 Setup and Collected Data
In order to test the system, we used a simple setup where

an Android smartphone (Samsung Galaxy Note 4) was at-
tached to a bus of the Rhine-Neckar public transport net-
work (VRN2) that operates on multiple lines in the city
of Kaiserslautern in Germany. The smartphone was stored
inside a closed cabinet in the bus and connected to a sta-
ble power supply through a USB cable. To achieve consis-
tent sensor recordings that reflect the movements of the bus
rather than the smartphone itself, the phone was fixed to
a keep a vertical position along the experiment period of 8
days. Over this time, the app recorded a total of 14, 248, 629
records in which the bus crossed a distance of over 1600 km.

Figure 5 shows the trajectory followed by the bus during
the 8-day experiment in addition to the bus stops located in
Kaiserslautern.

To illustrate the ability to query the data using the pro-
posed system as introduced in Section 5, the following SPARQL
query to retrieve all bus trajectory points is presented with
its equivalence in Spark using Spark’s Python API:

SELECT ?lat ?lon

WHERE{

?a rdf:type sob:LocationValue.

2http://www.vrn.de/
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Figure 5: Bus trajectory followed during the exper-
iment(purple) with locations of bus stops(green).

?a sob:hasLatitude ?lat.

?a sob:hasLongitude ?lon.

}

which is equivalent to the following operations pipeline in
Spark:

(TypeRDD

.filter(lambda (nodeID,typeID):

equalsType(typeID,"sob:LocationValue") )

.join(hasLatitudeRDD)

.join(hasLongitudeRDD)

.map(lambda (nodeID,(typeID,lat,lon)): (lat,lon))

).collect()

Note that the method equalsType() uses the TBox en-
coding availability in memory to verify that the node type
is either equal to the class sob:LocationValue or to one of
its sub-classes.

6.2 Street Quality Assessment: Anomaly De-
tection

As an application for the analysis of the collected public
transport bus data using the proposed system, the accelera-
tion and the location data are utilized to assess the quality
of the streets of the city through detecting street anoma-
lies. Street anomalies include potholes, manholes, bumps
and any other damages to the street that disturb the driv-
ing experience. By providing a simple experimental defini-
tion of an anomaly as a location where a spike of at least
1.8m/s2 occurs within a 2 seconds time frame along the z-
acceleration axis, we were able to locate locations of street
anomalies on the streets travelled by the bus. Figure 6 shows
the bus acceleration data along all axes with a clear spike
in z-acceleration value indicating the presence of a street
anomaly.

In this paper, the focus is on demonstrating the ease of
building applications and semantic reasoning on top of the
obtained sensor data knowledge base. The evaluation of

Figure 6: One minute of acceleration data with a
spike in acceleration across z-axis denoting presence
of a street anomaly.

the precision of the introduced street anomaly detector is
hence omitted. Still, as a refinement of the results, clustering
of the retrieved street anomaly locations is applied using
DBSCAN [7] with haversine distance as the spatial distance
metric. The results of this clustering is shown in Figure 7.

Figure 7: Locations of clusters of street anomalies
(green) with single anomalies displayed in blue color.

In a related application, [6] utilizes acceleration data from
taxi cars to distinguish the different types of street anoma-
lies. Using smartphones, the detection of anomalies is com-
puted locally on the phone where only locations of detected
anomalies are stored and later clustered in order to obtain
a final result. As this might be sufficient for this exact use
case, the original sensor data collected and processed lo-
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cally in smartphones is lost and could not be utilized in
any further applications different from the original applica-
tion context of detecting potholes. Following our proposed
approach, all the raw sensor data was to be stored and pro-
cessed using big data techniques. And by storing the data
in semantic form, many other applications could be built on
top of the data by integrating different information sources.
Potential examples are analyzing the demands for taxis at
times of concerts or sports events, analyzing the activity per
taxi station, and analyzing taxi delays if integrated with the
company reservations data.

7. CONCLUSIONS AND FUTURE WORK
In this work, an approach for prototyping semantic sensor

analysis systems is proposed. This approach starts by phys-
ically attaching a smartphone to an object of interest and
recording the sensor value variations through an Android
app. The use of smartphones for sensor tracking is not vi-
tal for the following steps as data from any source such as
Internet of Things (IoT) devices or dedicated sensors could
be used. However, the usage of a smartphone is sufficient
for simple applications and for prototyping more complex
ones. An ontology based on the Semantic Sensor Network
ontology is then generated to model the setup and add an
abstraction layer for analysing the sensor data. To provide
the scalability required in data intensive scenarios, big data
technologies are used for transforming raw sensor data into
semantic data and for the latter processing of the obtained
semantic data. Using the conceptual division between TBox
and ABox statements in the resulting ontology, an effective
approach is presented to make TBox statements available
in memory at runtime in all working nodes of an Apache
Spark cluster while storing the ABox statements in seman-
tic property RDDs in an analogy to column-oriented storage
in database systems. An example deployment of a smart-
phone in a public transportation bus is presented and the
data collected is processed to provide potential locations of
street anomalies.

For future work, the techniques for storing and process-
ing the data will be evaluated and further optimizations for
data distribution are to be considered. Despite the ability to
represent any SPARQL query using Spark operations, sup-
porting SPARQL queries by the system adds a second layer
of abstraction with which many data analysts are familiar.
And for the public transportation use case, extending the
ontology to model the bus network can facilitate realizing
several applications beyond street quality assessment such
as analysing bus delays and finding their causes.
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[3] O. Curé, H. Naacke, M.-A. Baazizi, and B. Amann.
On the evaluation of rdf distribution algorithms
implemented over apache spark. arXiv preprint, 2015.
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