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Abstract

Understanding human behavior is an active research area which plays an im-
portant role in robotic learning and human-machine interaction. The identification
and recognition of behaviors is important in learning from demonstration scenar-
ios to determine behavior sequences that should be learned by the system as well
as to identify behaviors which are already available to the system and therefore
do not need to be learned. Beside this, the determination of the current state of a
human is needed in interaction tasks in order that a system can react to the human
in an appropriate way. In this paper, characteristic movement patterns in human
manipulation behavior are identified by decomposing the movement into its ele-
mentary building blocks using a fully automatic segmentation algorithm. After-
wards, the identified movement segments are assigned to known behaviors using
k-Nearest Neighbor classification. The proposed approach is applied to pick-and-
place movements recorded by using a motion tracking system. It is shown that
the proposed classification method outperforms the widely used Hidden Markov
Model based approaches in case of a small number of labeled training examples
which considerably minimizes manual efforts.

1 INTRODUCTION
In future, robots and humans must interact very closely and even physically

to satisfy the requirements of novel approaches in industry, production, personal
services, health care, or medical applications. To facilitate this, not only the robotic
systems must be equipped with enlarged dexterities and mechanisms that allow
intuitive and safe interaction, but also the human intention, behavior and habits
have to be better understood (?). To allow this, novel and most important easy to
apply methods have to be developed.

One highly relevant factor in human-machine interaction is an understanding
of human behaviors. For example, the knowledge of the current state of the human
is necessary to realize an intuitive interaction. Based on this knowledge, systems
can interact with humans in an appropriate manner. To obtain this knowledge,
the identification of the important parts of the human behavior and the assignment
of the identified behaviors into categories which induce different reactions of the
system are necessary. Only if the state of the human and the context which is
described by this state are known, the system can follow the working steps that are
required in this situation or can support the human if desired.
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Another example is imitation of human behaviors by a robotic system which is
a current issue in robot learning approaches and has intensively been investigated,
see for example (?; ?; ?). Especially, Learning from Demonstration (LfD) is a rel-
evant issue in this research area, in which learning algorithms are used to transfer
human demonstrations of behavior to a robot (?). Because learning of complex
behavior can be very time consuming or even impossible, the behavior should be
segmented into its main building blocks to be learned more efficiently. By group-
ing segments that belong to the same behavior and by recognizing these behaviors,
it can be determined which segments are needed to be learned for a certain situ-
ation. Beyond that, movements can be identified that can already be executed by
the system and thus do not need to be learned.

The hypothesis of the composition of human movement into building blocks
is shown in several behavioral studies, e.g., in a study on infants (?). These stud-
ies show that complex human behaviors are learned incrementally, starting with
simple individual building blocks that are chunked together to a more complex
behavior (?). If these building blocks should be detected by an artificial system,
characteristics in the movement patterns have to be identified. In manipulation be-
haviors, bell-shaped velocity profiles have found to be a suitable pattern (?). In
this work, a velocity-based behavior segmentation algorithm presented by Senger
et al. (?) is used to segment recorded human movement. The applied algorithm
detects reliably and fully automatic movement sequences that show a bell-shaped
velocity profile and are therefore assumed to be building blocks of human behavior.

As stated above, identified building blocks of human movement have also to
be classified according to the actual behavior they belong to. By assigning suit-
able annotations to the recognized movement classes, the selection as well as the
detection of the required behavior becomes intuitive and easy to use in different
interaction scenarios. For supervised movement classification approaches, train-
ing data is needed that has to be manually pre-labeled. To keep the manual input
low, it is desirable that the classification works with small sets of training data. We
propose to classify detected building blocks by using simple k-Nearest Neighbor
(kNN) classification. With suitable features extracted from the movements, kNN
satisfies this condition.

This paper is organized as follows: In Section 2, different state-of-the-art ap-
proaches for segmentation and recognition of human movements are summarized.
Our approach is described in Section 3. Afterwards in Section 4, the approach
is evaluated on real human manipulation movements and compared to Hidden
Markov Model (HMM) based approaches which are widely used in the literature
to represent and recognize movements. At the end of this paper, a conclusion is
given.

2 RELATED WORK
Action recognition is an active research area which plays an important role in many
applications. One main focus lies in the automatic annotation of human move-
ments in videos, which can be used, e.g., to find tackles in soccer games, to support
elderly in their homes or for gesture recognition in, e.g. video games (?). Besides
the detection of humans in video sequences, the classification of their movements
is an important part in video based action recognition. Algorithms like Support
Vector Machines, or their probabilistic variant the Relevance Vector Machines,
Hidden Markov Models, k-Nearest Neighbors or Dynamic Time Warping based
classification are used to classify the observed actions. A more detailed overview
is given in (?).

But also in other areas, where the human is not observed by a camera but
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recorded with other modalities like markers fixed on the body, human action recog-
nition is tackled. In this non-image based movement recordings, the segmentation
of the recorded movements is next to the classification of high interest. For ex-
ample in (?), human arm movements were tracked and segmented into so-called
movement primitives at time points where the angular velocity of a certain number
of degrees of freedom crosses zero. After a PCA based dimensionality reduction,
the identified movements were clustered using k-Means. However, this approach
is very sensitive to noise in the input data which results in over-segmentation of the
data. Gong et al., on the other hand, propose Kernelized Temporal Cut to segment
full body motions, which is based on Hilbert space embedding of distributions (?).
In their work, different actions are recognized using Dynamic Manifold Warping
as similarity measure. In contrast to the analysis of full body motions, we focus on
the identification and recognition of manipulation movements which show special
patterns in the velocity which should be considered for segmentation.

Beyond that, HMM based approaches are often used in the literature, both for
movement segmentation as well as for movement recognition. For example, Kulic
et al. stochastically determine motion segments which are then represented using
HMMs (?). The derived segments are incrementally clustered using a tree structure
and the Kullback-Leibler distance as segment distance measure. In a similar fash-
ion, Gräve and Behnke represent probabilistically derived segments with HMMs,
where segments that belong to the same movement are simultaneously classified
into the same class if they can be represented by the same HMM (?). Besides these
approaches, solely training based movement classification with HMMs is widely
used, e.g. in (?; ?). Because HMMs are expected to perform not well when few
training data is available, we propose to use kNN instead and compare it with the
HMM approach.

3 METHODS
In this section we describe the velocity-based movement segmentation algorithm to
identify building blocks in human manipulation behavior as well as our approach
to recognize different known movement segments in an observed behavior.

3.1 Segmentation of Human Movement into Building Blocks
We aim to find sequences in human movement that correspond to elementary build-
ing blocks characterized by bell-shaped velocity profiles as shown in (?). There-
fore, we need a segmentation algorithm that identifies these building blocks. A
second important property of the algorithm should be the ability to handle varia-
tions in the movements. Human movement shows a lot of variations both during
the execution by different persons as well as by the same person. For this reason, it
is important that the algorithm for human movement segmentation finds sequences
that correspond to the same behavior despite differences in their execution.

An algorithm that tackles these issues is the velocity based Multiple Change-
point Inference (vMCI) algorithm (?). This algorithm fully automatically detects
building blocks in human manipulation movements. It is based on the Multiple
Change-point Inference (MCI) algorithm (?) in which segments are found in time
series data using Bayesian Inference. Each segment yi+1: j starting at time point
i and ending at j, is represented with a linear regression model (LRM) with q
predefined basis functions φk:

yi+1: j =
q

∑
k=1

βkφk + ε, (1)
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where ε models the noise that is assumed in the data and β = (β1, ...,βq) are the
model parameters. It is assumed that a new segment starts if the underlying LRM
changes. This modeling of the observed data allows to handle technical noise in
the data as well as variation in the execution of the same movement. To determine
the segments online, the segmentation points are modeled via a Markov process in
order that an online Viterbi algorithm can be used to determine their positions (?).

Senger et al. expanded the MCI algorithm for the detection of movement se-
quences that correspond to building blocks characterized by a bell-shaped velocity
profiles. To realize this, the LRM of Equation 1 is split to model the velocity of the
hand independent from its position with different basis functions, where the basis
function for the velocity dimension is chosen in a way that is has a bell-shaped
profile. In detail this means that the velocity yv of the observed data sequence is
modeled by

yv = α1φv +α2 + ε, (2)

with weights α = (α1,α2) and noise ε. The model has two basis functions. First,
the bell-shaped velocity curve is modeled using a single radial basis function:

φv(xt) = exp
{
− (c− xt)

2

r2

}
. (3)

In order that the basis function can cover the whole segment, Senger et al. pro-
pose to choose half of the segment length for the width parameter r. The center
c is determined automatically by the algorithm and regulates the alignment to ve-
locity curves with peaks at different positions. Additionally, the basis function 1
weighted with α2 accounts for velocities unequal to zero at start or end of the seg-
ment. Like in the original MCI method, an online Viterbi algorithm can be used to
detect the segment borders.

Figure 1: VMCI segmentation result on artificial data.

An example segmentation using the vMCI algorithm can be seen in Figure 1.
At the top, a one-dimensional simulated movement can be seen. The lower figure
shows the corresponding velocity. To simulate two different behavior segments,
the movement is slowed down at time point 0.4. For the position dimension, the
algorithm fits LRMs to the data according to Equation 1 with pre-defined basis
functions. In this case autoregressive basis functions are chosen. The velocity
dimension is simultaneously fit with a LRM as introduced in Equation 2. The
algorithm automatically selects the models which best fits parts of the data. In this
case it is most likely that the data arises from two different underlying models,
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which results in a single segmentation point which matches, within an acceptable
margin, the true segmentation point. In contrast to other segmentation algorithms,
like for example a segmentation based on the detection of local minima, vMCI is
very robust against noise in the data, as shown in (?).

3.2 Recognition of Human Movement
There are many different possibilities to classify human movements, as reviewed
in Section 2. In general, a movement classification algorithm which works with
minimal need for parameter tuning is desirable to make the classification easily
applicable on different data. Furthermore, manual efforts can be minimized if the
algorithm reliably classifies movement segments in case that only a small training
set is available. For this reasons we use the kNN classifier for movement recogni-
tion. It has only one parameter, k, and is able to classify manipulation movements
with a high accuracy with a small training set, as shown in our experiments.

To classify the obtained movement sequences, features which reflect the dif-
ferences between different behaviors have to be calculated. Furthermore, the data
should be normalized to account for executions of the same movement at different
positions or at varying speeds. If the acquired data is represented in Cartesian coor-
dinates, different execution positions of the same movement result in different time
series data. Thus, a normalization of the data which eliminates these differences is
required. We propose to transpose the data into a coordinate system which is not
global but relative to the human demonstrator. As reference point, we use the posi-
tion of the back (see Figure 2A) at the first time point of a segment, i.e. the data is
transformed into a coordinate system centered at this point. Additional, variance
in the movement that can still occur is reduced by normalizing each movement
segment to zero mean.

Next to the pre-processed tracking points of the demonstrator, additional fea-
tures are needed to successfully classify movement segments. We focus on the
recognition of manipulation movements, like pick-and-place tasks, in which one
or several objects are present. Thus, the distance of the human hand to the ma-
nipulated object as well as the object speed are important features to distinguish
between movement classes. Depending on the recognition task additional features,
like the rotation of the hand to distinguish between different grasping positions, can
be relevant.

In the kNN classification, an observed movement sequence is assigned to the
movement class, which is the most common among its k closest neighbors of the
training examples. We use the Euclidean distance as distance metric and account
for segments of unequal length by applying an interpolation to bring all segments
to the mean segment length. Alternatively, dynamic time warping (DTW) could be
used as distance measure. This would have the benefit, that using DTW the seg-
ments are additionally aligned to the same length. But in a preliminary analysis of
kNN classification on manipulation behaviors our approach outperformed a DTW
based kNN. For the number of neighbors k, we take k = 1. That means we consider
just the closest neighbor for classification because we want to classify with a small
number of training examples. A bigger k could result in more classification errors
due to the very low number of examples of each class.

4 EXPERIMENTS
In this section, the proposed segmentation and classification methods are tested
on human pick-and-place movements tracked by using a motion capturing system.
The experimental setup is described in Section 4.1. Afterwards, it is shown that the
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Figure 2: Snapshots of the pick-and-place task analyzed in this work. A: Markers for movement
tracking are placed at the back, the arm and the hand of the demonstrator as well as on the
manipulated object. The images show the grasping of the object from the shelf (A) which is then
placed on a table standing on the right hand side (B). B: Movement segment move obj table is
sketched.

vMCI algorithm correctly detects segments in the recorded demonstrations which
correspond to behavior building blocks with a bell-shaped velocity pattern. Fur-
thermore, we evaluate the classification with kNN using small number of training
data and compare the results with an HMM based classification approach.

4.1 Experimental Setup
Different human demonstrations of pick-and-place movements were recorded to
evaluate the presented approach. The movements were tracked using 7 motion
capture cameras which measure the 3D positions of visual markers at a frequency
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of 500Hz, which were down-sampled to 25Hz. The markers were placed on the
human demonstrator as well as on the manipulated object. The positions of the
markers can be seen in Figure 2A. Three markers were placed on the back of the
demonstrator to determine the position of the back and its orientation. This is used
to transform the recorded data into the coordinate system relative to the back, as
described in Section 3.2. To track the movement of the manipulating arm, markers
were placed at the shoulder, the elbow, and the back of the hand. The orientation
of the hand is determined by placing three markers instead of one on it. Grasp-
ing movements were recorded by using additional markers which were placed at
thumb, index, and middle finger. Finally, two more markers where placed on the
manipulated object to determine its position and orientation. However, the task
in our experiment required only basic manipulating movements (e.g., approaching
the object or moving the object). Thus, just the position of the hand and the manip-
ulated object were used for segmentation and recognition, but not their orientation.

The task of the human demonstrator, partly shown in Figure 2, contained 6
different movements. First, a box placed on a shelf should be grasped (move-
ment class: approach forward) and placed on a table standing at the right hand
side of the demonstrator (move obj table). After reaching a rest position of the
hand (move to rest right), the object had to be grasped again from the table
(approach right) to move it back to the shelf (move obj shelf). At the end,
the arm should be moved into a final position in which it loosely hangs down
(move to rest down). Beyond that, short periods of time in which the demonstra-
tor did not move his arm can be assigned to the class idle.

Overall, the pick-and-place task was performed by three different subjects, re-
peated 3 times by each. Two of these subjects performed the task again with 4
repetitions while their movements were recorded with slightly different camera
positions and a different global coordinate system. This resulted in different po-
sitions of the person and the manipulating object in the scene which should be
handled by the presented movement segmentation and recognition methods. Thus,
17 different demonstrations from different subjects and with varying coordinate
systems were available to evaluate the proposed approaches.

4.2 Segmentation and Recognition of Pick-and-Place Move-
ments
To identify the individual movement parts in the pick-and-place task described
in the previous section, we applied the vMCI segmentation algorithm described
in Section 3.1 on the position and the velocity of the recorded hand movements.
For this, the recorded position of each demonstration were pre-processed to a zero
mean and such that the variance of the first order differences of each dimension is
equal to one, as proposed in (?). Three examples of the segmentation results can
be seen in Figure 3. It shows that the vMCI algorithm successfully segments the
trajectories into movement parts with a bell-shaped velocity profile.

Afterwards, the resulting movement segments of all 17 demonstrations were
manually labeled into one of the 7 different movement classes that are present in
the pick-and-place task. However, some of the obtained segments could not be
assigned to one of the movement classes because they contain only parts of the
movement. This could result from errors in the segmentation as well as from
demonstrations where a movement is slowed down before the movement class
ends, e.g. because the subject thought about the exact position to grasp the ob-
ject. An example can be seen in the top plot of Figure 3. The concatenation of the
first two detected segments belong to the class approach forward. Nonetheless,
the vMCI algorithm detected two segments because the subject slowed down the
movement right before reaching the object. These incomplete movement segments
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Figure 3: Segmentation results of three different demonstrations. The black lines are the x-, y-
and z-position of the hand. The blue line corresponds to the velocity of the hand and the red
vertical lines are the segment borders determined by the vMCI algorithm.

were discarded for the evaluation of the classification approach. Overall, this re-
sulted in 98 labeled movement segments with different occurrences of each class,
as summarized in Table 1.

Table 1: Occurences of each class in the available data.
movement class num. examples

approach forward 11
move obj table 17

move to rest right 16
approach right 16
move obj shelf 17

move to rest down 15
idle 6

Before classification, the original recorded marker positions of each obtained
segment were pre-processed as described in Section 3.2 and the distance from the
hand to the object and the object velocity were calculated as additional features.
The data was classified using 1NN with a training set with maximal 10 examples
per class. An example result of the classification using 1NN is shown in Figure 4.
For this example demonstration of the pick-and-place task, all segments have been
labeled with the correct annotation using a training set with 5 examples for each
class.

For comparison, the data was also classified using a HMM based approach,
which is a standard representation method for movements in the literature, see
Section 2. In the HMM based classification, one single HMM was trained for each
of the 7 movement classes. The number of states in the HMMs was determined
with a stratified 2-fold cross-validation repeated 50 times with equally sized train-
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Figure 4: Classification result of a demonstration of the pick-and-place task with 1NN. The dif-
ferent movement classes of the task are indicated with different colors along the color spectrum
starting with red for approach forward and ending with blue for move to rest down.

ing and test sets on the obtained movement segments. As a result, we trained each
HMM with one hidden state. To classify a test segment, the probability of the seg-
ment to be generated by each of the trained HMMs is calculated. The label of the
most likely underlying HMM is assigned to the segment.

To compare the 1NN classification with the HMM based classification, we
used the acquired labeled data-set containing 98 segments from 3 different subject
recorded in two different coordinate systems, as described in Section 4.1. From
this data-set i, i ∈ {1, ...,10}, examples from each class were randomly selected
and used as training data. The number of training examples per class is kept low to
minimize manual resources needed for labeling. Furthermore, there are some ex-
amples left for testing if maximal 10 examples are chosen for each class, see Table
1. Please note that the class idle, which is not one of the main movements in the
analysed pick-and-place tasks, has less than 10 examples in the data, i.e. for i > 6,
still only 6 examples of this class were part of the training data. After the selection
of the training data, the test data-set was build from the remaining examples. The
validation was performed with 100 iterations for each i. The mean accuracy of the
1NN and HMM based classification is visualized in Figure 5. Because the data
contains 7 different classes, an accuracy of 14,3% can be achieved by guessing.
The 1NN classification clearly outperforms the HMM based classification using
training sets with occurrences of each class smaller or equal to 10. Already with 1
example per class an accuracy of nearly 80% can be achieved using 1NN. With 10
examples per class, the accuracy is 98,3% which is very close to an errorless clas-
sification. In contrast, HMM did not achieve an accuracy higher than 90% in this
evaluation. With not more than 5 examples per class, the accuracy of the HMM
based classification is considerably below the achieved accuracy using 1NN.

This results show, that with the proposed 1NN classification, manipulation
movements can be assigned to known movement classes with a very small number
of training examples. This means that with minimal need for manual training data
labeling and no parameter tuning, very good classification results can be achieved
using the proposed approach. Furthermore, the 1NN classification considerably
outperforms the widely used HMM based classification in case that a small num-
ber of training examples is available.
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Figure 5: Comparison of the accuracy of the classification of manipulation movement segments
using 1NN and HMM based classification.

5 CONCLUSIONS

In this paper, we identified and recognized characteristic movement patterns in hu-
man manipulation behavior. We successfully segmented pick-and-place data into
movement building blocks with a bell-shaped velocity profile using a probabilistic
algorithm formerly presented in (?). Furthermore, we showed that using the simple
1NN classification, the obtained segments can be reliably classified into predefined
categories. Especially, this can be done using a small set of training data. In com-
parison to HMM based movement classification, a considerably higher accuracy
can be achieved with small training sets.

For future work, an integrated algorithm for segmentation and classification
should be developed, in which both motion analysis parts influence each other.
Such an approach becomes for example relevant when extra segments are gener-
ated. Extra segments may be caused from not fluently executed movements from
the demonstrator in situations in which he slowed down his movement to think
about the exact position to place an object. Such extra segments could be merged
by identifying that only their concatenation belong to one of the known movement
classes.

Furthermore, it is desirable that the manual effort needed for classification is
further minimized by classifying the movement segments using an unsupervised
approach. Nonetheless, annotations, like move object, are needed in many appli-
cations, e.g. to select segments that should be imitated by a robot. Ideally, this
annotation is done without manual interference, e.g., by analyzing features of the
movement arising from different modalities. Besides the analysis of motion data,
psychological data like eye-tracking or EEG-data could be used for this annotation.

Simple approaches as the here presented one become highly relevant for the
development of embedded multimodal interfaces. They allow to use miniaturized
processing unites with relatively low processing power and energy consumption.
This is most relevant since in many robotic applications extra resources for inter-
facing are limited and will thus restrict the integration of interfaces into a robotic
system. On the other hand, wearable assistive devices are also limited in size,
energy and computing power. Hence, future approaches must not only focus on
accuracy but also on simplicity. Apart from that, our results show that both, accu-
racy and simplicity can be accomplished.
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