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Abstract
The situation on the interoperability of Natural Language Processing software is outlined through a use-case on Quality Estimation
of Machine Translation output. The focus is on the development efforts for the QUALITATIVE tool, so that it integrates a multitude
of state-of-the-art external tools into one single Python program, through an interoperable framework. The presentation includes 9
approaches taken to connect 25 external components, developed in various programming languages. The conclusion is that the current
landscape lacks important interoperability principles and that developers should be encouraged to equip their programs with some of the
standard interaction interfaces.
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1. Introduction
Software development in Computational Linguistics and
Natural Language Processing (NLP) has been for many
years a means for scientific experimentation, primarily con-
fined on an academic environment. This often had as a re-
sult that the software written and the data collected for this
purpose lack most software engineering principles, as they
mainly address the need for performing research experi-
ments that can get results in a timely manner. During the
last decade, Language Technology (LT) has jumped from
the research labs to the industry and many open-source
tools and data that had originally been written for research
purposes have ended being used in a wide scale, albeit lead-
ing to a very diverse and multilateral landscape.
For both industry and academic research, re-using software
and data seems the obvious solution. It means saving effort
and time in development to focus on the innovation, but also
easily reproducing (and therefore confirming) state-of-the-
art methods. Luckily, most of the tools and data are avail-
able with open or reusable licenses, but combining many
of them into one LT application remains a challenge: every
tool may be written in a different programming language,
utilizing a different file format or providing a different (or
no) external interface.
Our current contribution outlines the situation through
a use-case on Quality Estimation of Machine Transla-
tion (MT) output. We look on the QUALITATIVE tool
(Avramidis et al., 2014), that combines a multitude of state-
of-the-art tools into one single application, which can be
used both for research and real-time use. We describe the
approaches taken to achieve an interoperable framework
that bridges the communication between the several com-
ponents in order to achieve the desired processing of data
in a functional way. Although we do not provide a uni-
fied wide-scale solution, by sharing the experience of our
own development from the perspective of MT Evaluation,
we aim to highlight a part of the ecosystem and raise the
awareness of how difficult and challenging it is to get ev-
erything together without re-writing from scratch.

2. Previous work
The idea of complex interoperable pipelines is not new in
NLP or MT specifically. Most of such tasks consist of many
tools in order to process the data and extract all sorts of lin-
guistic knowledge and analyses. Among the most popular
tools are the pipelines for training and evaluating Statisti-
cal Machine Translation systems. Consequently, we are re-
viewing some of the most prominent relevant frameworks.
EMS (Koehn, 2010) is the pipeline for training models for
Statistical MT through Moses. Originally written as a sin-
gle very long Perl script, it has been extended and adapted
through the years to include more than 30 components.
EMS wraps each external tool in a bash script launched
through the shell, whereas data transfer between the com-
ponents is done through temporary files on the disk or shell
pipes. The majority of the launched programs are written
in Perl and C++, whereas there are also some in Python
and Java. The advantages of EMS are that it is very modu-
lar and it can wrap any program that operates on the Linux
commandline. Additionally, it can run as an injection script
for the Sun Grid in order to distribute and parallelize tasks
across many computational servers. EMS could in principle
be adapted to function for other type of experiments apart
for MT, though not many examples have been reported.
TREEX (Popel and Žabokrtský, 2010) is a similar pipeline
offering sentence-level processing, a Perl API and a socket
server, whereas its main use is focused on Statistical MT
with deep transfer methods. LOONYBIN (Clark and Lavie,
2010) follows a similar approach. Coded in Jython, it al-
lows the user to use modules in Python for wrapping tools
in hyper-workflows. Similar approaches are followed by
tools such as EMAN (Bojar and Tamchyna, 2013). One dis-
advantage of such tools is that bash wrappers, temporary
files and pipes can mostly operate efficiently for batches of
data and not for single sentences, as the case is for many
user-oriented applications. Additionally, such a pipeline
itself cannot be very efficiently incorporated in another
pipeline, unless it is written in the same tool. There are
other experiment pipeline tools such as DagMan, Dryad,
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DuctTape, PCL, Pegasus, SoapLab, Taverna and UIMA,
but we won’t focus on them, since they have not been
widely used in MT research.
An interesting contribution towards interoperability was the
Open Machine Translation Core (Johnson, 2013) which
attempted to define an abstract interface that standardizes
functionality common to all MT systems. Despite the fact
that a Java prototype was presented, to our knowledge no
progress has been shown in the direction of this standard-
ization by now.
QUEST (Specia et al., 2013) was the first software that ap-
peared to wrap many tools for Quality Estimation. Writ-
ten in Java, it incorporates directly a few other Java appli-
cations as libraries, whereas other tools are also wrapped
by using the bash shell and intermediate temporary batch
files. The machine learning part is held by a separate
Python script. For this reasons, running a unified pipeline
with realtime user requests (e.g. server mode) is non-trivial.

3. Basic architecture
In our approach, the main core of the program is writ-
ten in Python. Python has been chosen because it offers
the flexibility of dynamic programming, which allows for
quick and relatively easy experimentation in many NLP
tasks. Functionality from several powerful scientific and
machine learning toolkits is available through imported li-
braries. Additionally, a Python script can be connected
to real user applications, either through a web server (e.g.
Django), or by offering its functionality via a socket ser-
vice. This choice offers a flexible framework for both ex-
perimentation and practice, although it has got its own limi-
tations (e.g. processing cannot be distributed in many com-
putational machines without additional engineering).
As explained in Avramidis et al. (2014), the program is
internally organized in several modules:

• data reading receives a file and loads the data in the
memory via the respective data structures

• preprocessing sends a sentence for the required pre-
processing task (e.g. tokenization, compound split-
ting, truecasing etc.)

• machine translation sends source sentences to MT
engines and receives their translation

• feature generation sends the source sentences and
their translations to feature generatior classes and tools
and receives the respective vectors of numerical fea-
tures

• machine learning serves for the communication with
machine learning toolkits for two functions: training
and testing. During training, it sends a batch of vec-
tors, each one with a golden label and it receives a
model. During testing, the model is loaded and given
a vector, the predicted label is returned.

For each module, the commands are organized so that they
form a specific interface as a principle of internal modular-
ity. This way, the same functionality can be implemented
by different classes. For example, every feature generator

class has to implement at least one function that receives a
source sentence and its translations and returns a vector of
numerical features.

4. Connecting external components
We present two main categories of communicating with ex-
ternal software components, based on whether the execu-
tion of the external software is controlled by the our Python
script, which we will call the “host”, or whether it is run as
a remote service.

4.1. Inherent integration
In these functions, the execution of the external software
is encapsulated into the host. The goal is to keep the ex-
ternal tool running in the background so that it can receive
requests from the host. It gets automatically unloaded when
the host program is finished. The part of the host program
or the code which handles the specifities of the communi-
cation is referred to as at “connector”.

4.1.1. Native Python libraries
Many pieces of Python open-source software already offer
their functionality in openly available libraries. This is the
easiest and most efficient type of integration, as all of the
public functions of the included software can be directly
called from within our host Python code. The software
served by this method includes:

• BLEU (Papineni et al., 2001), Levenshtein Distance
(Levenshtein, 1966) and RgbF (Popović, 2012) for
MT evaluation scores

• HJERSON (Popović, 2011) for automatic detection of
MT errors

• KENLM (Heafield, 2011) for language modelling

• MLPYTHON1, ORANGE (Demšar et al., 2004)and
SCIKIT-LEARN (Pedregosa et al., 2011) for machine
learning functions.

• NLTK (Loper and Bird, 2002) for several simple NLP
tasks

• NUMPY (Van Der Walt et al., 2011) for memory-
efficient handling of numerical arrays and SCIPY
(Oliphant, 2007) for scientific (e.g. complex mathe-
matical or statistical) functions.

4.1.2. Java programs
Py4j2 was chosen as a solution to integrate functionality
from open-source Java programs into Python. The Java Vir-
tual Machine (JVM) starts in the background including the
required Java Packages (jar) in the classpath. Then, a Py4j
gateway connects with the JVM via a socket and makes
all public classes and functions loadable and callable from
within Python. Python types are automatically converted to
Java types and vice versa. If the processes are thread-safe

1http://www.dmi.usherb.ca/˜larocheh/
mlPython/

2http://www.py4j.org
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on the Java side, they can be also parallelized in several
Python threads.
This method is used to connect with:

• BERKELEY PARSER (Petrov et al., 2006) for parsing
with Probabilistic Context Free Grammars (PCFG),

• LANGUAGE TOOL (Naber, 2003; Miłkowski, 2012)
for rule-based language checking and

• METEOR (Lavie and Agarwal, 2007; Denkowski and
Lavie, 2014) for MT evaluation scoring.

This method is efficient and allows wide access and
parametrization to the functionality of the external Java pro-
gram. Nevertheless, it also requires good knowledge to its
internal structure, e.g. via a Java API documentation or by
reading the Java source code. This is needed because the
imported objects, functions and variables have to be treated
in Python the same way they would do in Java. Addition-
ally, the host needs to know or maintain a knowledge of
the system socket where the JVM operates, which makes it
complicated to run many hosts on the same JVM. In a few
cases, parts of the source code had to be modified and be
re-build, since not all required functions were declared as
public, which is a major requirement.

4.1.3. SWIG
Simplified Wrapper and Interface Generator (SWIG) al-
lows wrapping C++ code as a Python library. Creating such
a connector allows to parse C/C++ interfaces and gener-
ate the ’glue code’ for Python to call into the C/C++ code.
In our program we have not developed such a connector,
but we have experimented with SWIG-SRILM (Madnani,
2009), an existing wrapper around SRILM (Stolcke, 2002).

4.1.4. Pipes
An external commandline-based software is launched by
the host as a sub-process in the background. The stan-
dard input, the standard output and the error output can
be captured within a Python object (a pipe). Therefore, a
program-specific connector needs to be written. It should
be aware of the commandline behaviour of the software and
simulate that through the pipe. The sub-process is treated as
a black-box, i.e. no access to particular internal functions
is possible.
For example, a standard tokenizer from the MOSES scripts
would read from the standard input all characters, waiting
for and “end of line”. Once the “end of line” is received, the
tokenization takes place and the tokenized string is returned
through the standard output.
This approach is mainly used for Perl scripts and C++ pro-
grams but can be adapted for any commandline application.
Such software includes:

• MOSES scripts for pre-processing and post-
processing, such as punctuation normalizer, tokenizer,
compound splitter (Koehn and Knight, 2003), true-
caser (Och et al., 2003), de-truecaser, de-tokenizer etc.
Although re-implementations for most of these exist
in Python and therefore could be directly included
in our code, one may still require to stick to the

original MOSES Perl scripts, if they want to re-use
pre-trained MOSES translation models or acquire
results comparable with other scientific works that
use these state-of-the-art Perl scripts.

• TREETAGGER for POS tagging (Schmid, 1994) inte-
grated via the TreeTaggerWrapper (Pointal, 2015).

The advantage of this method is that it can be adapted for
many programs without requiring knowledge of their inter-
nal coding or functioning, while it still allows loading a tool
into memory once and sending individual requests when
the host program needs it. The disadvantage is that the only
way of interaction is through the standard input and out-
put, which offer no flexibility for parametrization or pass-
ing more complex types. Additionally, reading standard
output often requires excessive use of regular expressions
to understand some complex output, which would other-
wise be intended for the visual understanding of the user.
Unexpected errors and exceptions are hard to capture, too.
We should also mention that some tools only work with
input and output files (batch mode) and do not support per-
request communication with standard input and output. Fi-
nally, serious deficiencies have been noted concerning the
buffering support of the pipes, which may cause prevent
data to be transferred through the standard input/output.

4.1.5. Shell with external files
The data to process is written by the host on a temporary
file. The external program is launched once, asked to pro-
cess the given temporary file as an input and write its output
in another temporary file, which consequently gets read by
the host. This is the last resort for having the host commu-
nicate with external tools, since loading the entire program
per request and writing external files is not efficient for sin-
gle sentences and is useful only for processing batches of
requests. We also noticed that some programs of this kind
do not allow many instances to be run in parallel (e.g. be-
cause they require an exclusive lock on some internal files,
whose location is often non-parametrizable).
We used this method for aligning sentences with GIZA++
(Och and Ney, 2003), acquiring baseline features from
QUEST and doing PCFG parsing with BITPAR (Schmid,
2004) with the help of a wrapper (van Cranenburgh, 2010).
This method was useful only for experiments that did not
require parallelization and single requests.

4.2. Integrating functionality as a remote service
An additional possibility of integrating an external tool is
by sending requests to it as a remote service. In this case,
the external tool must provide a server which initially loads
the program and implements a network protocol of requests
and responses. It waits until a request is received from the
host, in order to run the required functions. The result of
the functions is then sent with a corresponding response.
Four such protocols and the respective tools we have used
are:

• JSON: with MT-MONKEY (Tamchyna et al., 2013),
which acts as a hub and a load balancer for fetching
translations from several MT engines
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Figure 1: Full diagram of the components that have been integrated into the application

• SOAP: with ACROLINX IQ (Siegel, 2011) for lan-
guage checking

• REST: with the LUCY rule-based MT system (Alonso
and Thurmair, 2003).

• XML-RPC: with MOSES (Koehn et al., 2006) for Sta-
tistical MT, with LM-SERVER (Madnani, 2009) for
language model scoring, with our own XML-RPC
wrapper of BERKELEY PARSER and with MOOD,
(Weissenborn et al., 2015) a Word Sense Disambigua-
tion analyzer.

Such an integration is straightforward if the tool already
provides such a protocol interface, since the protocols al-
low for easy mapping of function and variable types across
many different programming languages. This solution is
based on a network connection, so it is also desirable when
one needs to distribute different computationally or mem-
ory intensive modules to many computational servers. Nev-
ertheless, such a network communication may be consid-
erably slower due to the network overhead. Additionally,
starting and stopping remote services cannot be easily con-
trolled by the host, unlike to the encapsulation described in
the previous section.

5. Discussion
The ecosystem is indeed complicated. Integrating existing
software saves time from re-implementing it and can con-
firm replicability of scientific experiments. Nevertheless,
as we outlined in our use-case, the different types of soft-
ware may require different kind of integration. Such an
integration often requires low-level or even backwards en-
gineering, which means a lot of non-creative effort.
An obvious conclusion through our experience is that re-
usability and efficient interoperability mostly depends on
the will of the original developer. Adding support for a net-
work service or exporting a Python library is straightfor-
ward for the original developers of a software, in contrast
to the huge effort required for a third-party developer to un-
derstand the functionality and wrap it one way or another.
It suffices to mention that out of the 25 external tools and li-
braries that we integrated, only 5 provided original support
(remote service or library) for being integrated with a pro-
gramming language other than the one they were originally
developed in.
In that direction, the specification of a unified way to com-
municate across different code and platforms would be pre-
cious. Whatsoever, even encouraging developers to con-
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sider serious solutions for the interoperability of their soft-
ware would be a major first step. Among the most obvious
solutions, we would consider wrapper libraries in the most
popular scripting languages (e.g. Python, Perl) and expos-
ing full functionality through a ReSTful service (Richard-
son and Ruby, 2008), possibly along with “autodiscovery”
API functions via the WSDL (Christensen et al., 2001).
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