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ABSTRACT2

Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at3
remote and hardly accessible places. Such MMIs make use of a virtual environment and can4
therefore make the operator immerse him-/herself into the environment of the robot. In this5
paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in6
task load and task engagement online. Applying our approach of embedded Brain Reading we7
improve user support and efficiency of interaction. The level of task engagement was inferred8
from the single-trial detectability of P300-related brain activity that was naturally evoked during9
interaction. With our approach no secondary task is needed to measure task load. It is based on10
research results on the single-stimulus paradigm, distribution of brain resources and its effect11
on the P300 event-related component. It further considers effects of the modulation caused by12
a delayed reaction time on the P300 component evoked by complex responses to task-relevant13
messages. We prove our concept using single-trial based machine learning analysis, analysis14
of averaged event-related potentials and behavioral analysis. As main results we show (1) a15
significant improvement of runtime needed to perform the interaction tasks compared to a setting16
in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability17
of the event-related potential P300 can be used to measure the changes in task load and task18
engagement during complex interaction while also being sensitive to the level of experience19
of the operator and (3) can be used to adapt the MMI individually to the different needs of20
users without increasing total workload. Our online adaptation of the proposed MMI is based21
on a continuous supervision of the operator’s cognitive resources by means of embedded Brain22
Reading. Operators with different qualifications or capabilities receive only as many tasks as23
they can perform to avoid mental overload as well as mental underload.24
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1 INTRODUCTION

Human-robot interaction with semi-autonomous robots has to be improved to be safe and intuitive. This26
can be achieved by (1) building robots with advanced ”on-board” solutions that support natural interaction27
behavior between human and robot (Kirchner et al., 2015) and (2) by developing intelligent man-machine28
interfaces (MMIs). Especially in cases of tele-operating robots at remote places the MMI has to be easy,29
intuitive and comfortable.30

Usually only experienced people are chosen to remotely operate robotic systems (Cornell et al., 2012),31
since their performance is robust. During remote control of several robots in a complex mission, task load32
and task engagement change tremendously over time, which can lead to mental over- or underload as well33
as fatigue. Therefore, an online-adaptable MMI can be applied to act on these changes. For this, reliable34
measures for online changes in the human’s state must be detected (Allanson and Fairclough, 2004).35
Such realtime indicators have to consider theories about brain capacity and resources (Kahneman, 1973;36
Wickens, 1984, 1992, 2008), which propose that brain resources are limited and must be shared between37
tasks. Comprehensive work showed that certain patterns in the electroencephalogram (EEG), e.g., the38
amplitude of the event-related potential (ERP) P300 (Prinzel et al., 2003), or ratios of EEG power bands39
like alpha, beta or theta bands (Pope et al., 1995), can be used to measure the processing capability40
of the brain, mental workload and task demands. In earlier work from Pope et al. (1995) it is shown41
that an EEG-based index of user engagement and arousal could indeed be used to, i.e., adapt the level42
of system automation in response to changes in mental workload demands. It was found that especially43
the P300 is a reliable measure for changes in task load (Kok, 2001; Prinzel et al., 2003). Earlier work44
that examined the P300 in response to primary and secondary task demands showed that an increase in45
demands on the primary task resulted in fewer resources for the secondary task accompanied by a smaller46
P300 amplitude (Isreal et al., 1980). Many studies make use of the dual-task design (Isreal et al., 1980;47
Prinzel et al., 2003) to detect an increase in workload or task load in the primary task by analyzing the48
P300 amplitude evoked by the secondary task, e.g., listening to auditory stimuli presented in an oddball49
fashion (Prinzel et al., 2003) or P300 that is evoked by ignored probes (Kramer et al., 1995).50

With the focus on online user state detection based on the analysis of brain activity, which is naturally51
evoked during human-machine interaction and deeply embedded into the systems control, embedded52
Brain Reading (eBR) was developed (Kirchner and Drechsler, 2013; Kirchner, 2014, 2015). The main53
focus of embedded Brain Reading is to passively infer on the human’s intention to implicitly improve54
interfaces like an exoskeleton which is used for explicit interaction, such that the intended interaction55
or behavior can be supported best (Folgheraiter et al., 2012; Kirchner et al., 2013a,b, 2014). However,56
embedded Brain Reading can also be applied to passively infer on the users’ neurophysiological state, such57
as their current workload or task load, to adapt an interface implicitly in such a way that the user is neither58
stressed nor bored (Kirchner et al., 2010, 2013b; Wöhrle and Kirchner, 2014a) which would both have59
negative impact on human-robot interaction. We already showed that eBR can utilize P300-related activity60
to infer, whether subjects recognize and will respond to important task messages, which were presented61
interleaved with task-irrelevant messages in an oddball fashion, while performing a complex interaction62
task like playing a labyrinth game (Kirchner et al., 2013b). In a later work we showed that eBR can63
indeed be applied to improve interaction in an application scenario in which subjects had to respond to64
warnings interleaved with task-irrelevant status messages while remotely controlling a robotic arm via an65
exoskeleton (Wöhrle and Kirchner, 2014a). In both cases, the information about the operator’s capability66
of recognizing task-relevant warnings was used to adapt the developed MMI with respect to the timing67
of repetitions of task messages. To this end, the MMI was adapted before the operator would respond68
to the task message. In our previous work, subjects had to perform two tasks: controlling a machine69
and responding to task-relevant warnings. Thus, we did not make use of the primary and secondary task70
design just for the purpose of measuring task load on the user. The second task was indeed required71
to be performed by the user with the goal to estimate an operator’s capability to perform two tasks at72
the same time. We also believe that even when using ignored probes to measure load on the user, i.e.,73
workload (Kramer et al., 1995), any extra stimulation which is only added for the purpose of measuring74
load on the user will likely disturb the operator in a complex and demanding interaction task. Instead, we75
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used the single-trial detectability of the naturally evoked P300 components in case that rare task-relevant76
stimuli were presented (i.e., warnings that anyway requested responses of the operator) and had to be77
answered as index of load, here, task load and task engagement. However, in many real world applications78
the occurrence of task-relevant target stimuli is likely not interleaved consistently with task-irrelevant79
stimuli as it was implemented in the previous studies by using the oddball design. Thus, it is of interest80
to investigate whether single-target stimuli successfully and reliably evoke P300 ERP components during81
human-machine interaction, as suggested by comprehensive work performed under controlled conditions82
of the single-stimulus paradigm (Mertens and Polich, 1997; Polich and Margala, 1997). Polich and83
Margala (1997) for example showed, that single-target stimuli evoke P300 components with similar84
characteristics as target stimuli presented in an oddball fashion as long as the probability and the inter85
target interval (ITI) were kept the same.86

One research interest of the current work is therefore to investigate whether P300 ERP components are87
reliably evoked under application conditions in case of a single-stimulus presentation that was naturally88
embedded into a human-machine interaction task. We further investigate whether eBR can be used to89
adapt the frequency of task messages that are presented to the user by an MMI instead of modulating task90
repetitions as in a former work (Kirchner et al., 2013b; Wöhrle and Kirchner, 2014a). The adaptation91
of the MMI should again be performed online. However, the proposed MMI is designed for multi-robot92
control. Hence, an adaptation of the MMI with respect to the inferred task load and the users current task93
engagement in preceding, still ongoing, tasks for other robots can be investigated. Again, task engagement94
or task load was inferred from P300-related ERP activity that is naturally evoked during interaction. Both95
a high task load and a high task engagement to a preceding task were expected to reduce the amplitude of96
P300-related activity evoked by a new task message. In the presented work, subjects performed only one97
type of task: controlling different robots with respect to different requested tasks. Hence, we break down98
dual-task execution into sequential and timely overlapping task execution to investigate the influence99
of task load and task engagement between subsequent tasks. We again show that it is not necessary to100
artificially add an extra task or probe, like in the dual task or ignored-probe design, to evoke P300-related101
activity for measuring task load and task engagement. Instead we directly infer the task load and task102
engagement of the operator from the P300-activity evoked by task messages.103

Hence, our approach matches natural requirements on the user during robot control since it avoids to104
add potentially disturbing stimuli, like auditory stimuli, just for the goal to measure and adapt for task105
load.106

Figure 1. Immersive virtual 3D multi-robot control using a CAVE supported by embedded Brain Reading
(eBR).
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We further present and describe the developed MMI, which makes use of a virtual control environment,107
i.e., a Cave Automatic Virtual Environment (CAVE) (Fig. 1). This MMI can be adapted based on the108
changes in task engagement of the user measured by EEG, i.e., P300-related ERP activity. While the109
presentation of each task-relevant message was expected to evoke a P300 we further assumed that the110
amplitude of a single-trial P300 evoked by a new task message is reduced in case that the user is still111
involved in executing a previous task. This is due to the fact that mental resources are still bound to the112
previous task. The more frequently such task conflicts occurred the stronger we expected a reduction in113
averaged P300 peak amplitude. We further assumed that the expected changes in P300 amplitude were114
mainly caused by effects like task engagement or task load but not by target probability, since the inter-115
stimulus interval (ISI) between stimuli was very long. Polich (1990) showed by means of an auditory116
discrimination task that the target probability has no effect on P300 amplitude in case of longer ISIs, i.e.,117
ISIs longer than 6 to 8 s (Polich, 2007). For longer ISIs, the probability effect (Duncan-Johnson and118
Donchin, 1977; Tueting et al., 1970) is missing since brain resources can be redirected fast enough to119
process a new target stimulus.120

It is important to state that in the present work the level of task load and task engagement as well as the121
occurrence of task conflicts may strongly depend on different factors, e.g., the general capability of the122
user in controlling the robots, fatigue levels or secondary requirements on attention that are not related123
to the main task, i.e., distractions of any kind that may occur while the operator was controlling the124
robots. While the concept of workload is distinct from the concept of multiple resource theory (Wickens,125
2008), both concepts do overlap in real world applications and it is not always clear what contributes126
most. Moreover, additional mechanisms like confusion, cooperation between task elements like ongoing127
task engagement to the preceding task and unwanted diversion of attention influence the allocation of128
brain resources (Wickens, 2008). Additionally, as known from educational research, changes in the129
motivational state influence perception of workload, task complexity and cognitive strategies (Kyndt130
et al., 2011). Real world applications are therefore not a good paradigm to decouple components and131
dimensions of influencing parameters, but they can be used as a test case on whether certain measures132
can be used to predict the general state and capacities of a subject. Since the goal of our study was to133
measure the current task engagement or task load of an operator and to use this measure to adapt an MMI134
continuously to avoid an overall state of overload, we took measures to avoid excessive workload.135

In summary, the scope of this study was to artificially evoke task conflicts to (I) not only show that P300-136
related activity was naturally evoked when task messages were presented, but also that it was indeed137
modulated by generally high demands on the operator and by task engagement to previous tasks and138
(II) that the detectability of P300-related activity could be used to adapt an MMI with regards to task139
engagement and therefore enabling a kind of steady-state task involvement. This should result in higher140
subjective contentment and high overall task performance.141

The paper is structured as follows. In Sec. 2 we describe the experimental setting, i.e., the developed142
MMI, the kind of human-machine interaction task which can be performed and the interaction tasks that143
the subjects had to solve, the experiments that were performed for this work, and data recording procedure.144
We further describe our research goals and hypotheses in more detail and describe the performed data145
processing and analysis. In Sec. 3 we describe our results with respect to behavioral, machine learning146
and ERP average analysis. Finally in Sec. 4 we will discuss the outcome of our work and its relevance for147
the improvement of MMIs for multi-robot control.148

2 MATERIAL & METHODS

2.1 EXPERIMENTAL DESIGN

We developed an experimental setup in which a subject can control several simulated robots. For this, we149
designed a virtual environment using the in-house developed software ”Machina Arte Robotum Simulans”150
(MARS) (Rommerman et al., 2009; DFKI - RIC, 2015), which can be run as a 3D environment in, e.g.,151
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a CAVE (see Fig. 1), as a 2D environment on a standard personal computer and monitors or a multi-152
screen system (see Fig. 2). In both environments the operator can use different input devices to control153
the robot, e.g., a 3D mouse, a wand, an exoskeleton or an eye tracking device. In the future, the developed154
virtual 3D environment will be used to control real robots. To allow this, we use a physical simulation155
with close to realistic physical simulations of the real robots developed at our institute. In this work a156
2D multi-screen system was used as the environment and a wand was used as the interface to control the157
simulated robots in the simulated environment. The used wand is a hardware device and functions in a 3D158
environment similar to a mouse in a 2D environment. It is tracked in 3D space using an ultrasound-based159
tracking system combined with an IMU and has five buttons as well as a pressure-sensitive joystick as160
input options. We used the inertial-ultrasonic hybrid tracking device InterSense IS-900 (Thales Visionix,161
Inc., Billerica, USA) in our experiments.162

2.1.1 Human-robot-interaction: In general, the task of the operator in the multi-robot control163
environment (see Fig. 2) was to supervise all robots and to assign new tasks to individual robots as164
indicated by messages presented to the user on the screen (see Fig. 3A and B upper part for examples of165
different messages). Individual robots were labeled with different colors. Task messages were presented166
as icon based widgets supporting fast recognition by the operator. The operator used the interface to select167
a robot he or she wanted to control by either selecting the robot directly or by selecting the robot’s icon168
in the upper part of the middle screen (see Fig. 3A: 2). Moreover, information about the chosen system169
was presented to the operator on the right screen via an icon based information panel. Information such as170
the robot’s name, its energy level, its current task as well as robot control commands were presented here171
(see Fig. 3A: middle picture lower right corner). On the left monitor, tasks for the operator were listed as172
soon as the operator confirmed that he/she had seen the message by clicking on the appropriate robot icon173
on the monitor in the middle. By selecting the robot’s icon with a double click, the virtual camera was174
additionally moved such that the chosen robot was in the focus of the operator. After selecting a robot, the175
operator can issue a task by clicking the corresponding robot control command icon. (see Fig. 3A: 4). In176
case that an operator was not sure or did not recognize the robot to whom a task was assigned, he or she177
could select an unknown icon displaying a grey robot with a question mark (see Fig. 3A). After clicking178
the unknown icon, all the missed tasks were displayed in the task list on the left screen. However, in the179
experiments presented here this grey robot button was disabled to force the subjects to focus on the task180
messages as much as possible. In case that a user did not recognize the task message correctly she or he181
had to wait for the automatic repetition of the task message.182

2.1.2 Interaction tasks: As mentioned in section 2.1.1 the operator had to fulfill different tasks with183
the robots. Within the experiment there were three kinds of tasks with varying complexity:184

• Send message The task with the lowest complexity is sending a message. This task can be solved185
by selecting the corresponding robot and clicking on the send-message icon within the robots control186
elements (see Fig. 3A bottom number 4). An example of such a message for the green robot can be187
seen in the upper left part of Fig. 3B.188

• Go to landmark The task with a medium complexity is the navigation task. Within the experiment189
there are five different landmarks (for example see the cube labeled with 1 in Fig. 3A). The goal of190
this task is to navigate the robot to one of these landmarks. Therefore the operator needs to select191
the robot and afterwards plan the path by creating waypoints. Waypoints will be put at the position192
of the cursor, when clicking a specific button. The robot will consecutively travel from waypoint to193
waypoint on straight lines. When the robot reaches the landmark the task is fulfilled. An example of194
such a message for the red robot with target position 3 can be seen in the upper middle part of Fig. 3B.195

• Recharge robot The most complex task is recharging the robot. Again the correct robot needs to be196
selected first. Afterwards the operator has to plan a path to the lander (see in the top right corner of197
Fig. 3A). The path planning is realized as explained above in the ”Go to landmark” section. After198
reaching the lander the robot needs to be selected again and the recharge icon from the robot’s control199
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Figure 2. Experimental setup. Upper part: Virtual multi-robot control in 2D using a multi-PC system
supported by embedded Brain Reading (eBR). Lower part: Interaction is controlled by different software
managers and schedulers. Widget-based icons are used to display information about the robots, messages
for the user and to select robot commands. The user ”Need-to-Know Area” is the part of the system
visible to the user. The robot interface with connection to the real robots (depicted by dotted lines) is not
yet implemented.

elements needs to be activated by clicking on it. This task is more complex than the ”Go to landmark”200
task due to a gap in between the two stages of the task and therefore the operator must track the robot’s201
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Figure 3. Description of experimental setting and tasks performed by the operator. A (top): initial state, a
task message was shown to the operator (1). The message contained information about the type of the task
(e.g., send a message) and the corresponding robot (e.g., the green robot). The subjects had to confirm the
task by clicking on a response button (2). A (middle): after the task was confirmed, it was shown in the task
manager (3). A (bottom): when the green robot was selected, a menu with all possible control commands
was shown. In this example, the mission could be accomplished by clicking on the send-message button
of the control menu (4). When a task was accomplished, it was removed from the task manager (5). B:
The scenario contained three possible tasks, which were depicted by an intuitive symbol. All tasks were
related to a specific robot, encoded by a colored symbol, see the following examples. B (top left): send a
message with the green robot. B (top middle): send the red robot to waypoint 3. B (top right): recharge
the red robot. Different robots (encoded by color) and different task messages were randomly combined.
B (bottom): messages are sorted in order as they are presented. Some messages (repetitions of tasks) get
a higher priority and will be presented earlier.
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state. The operator may also forget to click the recharge icon after the robot reached the lander. An202
example of such a message for the red robot can be seen in the upper right part of Fig. 3B.203

All tasks were pseudo-randomly chosen, such that no more than one task at a time was assigned per robot.204
When creating a new ”Go to Landmark” task for a specific robot the robot’s distance to the landmarks205
will be computed first. In order to solve the task the robot has to be in a specific radius around the chosen206
landmark. If the robot is already within the specific radius the new task would directly be solved when the207
robot is selected. In such a case the target landmark will be chosen among the other landmarks. Further,208
there was an automated mechanism which generated a ”Recharge Robot” task in case that the energy level209
of a robot dropped bellow a certain value. This was necessary to ensure that a robot would remain fully210
functional. If a robot runs out of energy it would get stuck at its position and no more tasks could be211
solved by this robot.212

When a message was presented requesting interaction the first response of the user like selecting the213
correct robot was counted as correct behavior. The message was not repeated. On the other hand, a214
predefined response time (in our experiments 13 s) and a predefined ISI was set for the operator. The215
predefined ISI was important for our experiments and research questions as will be explained in Sec. 2.4.216
Task messages were put into a message queue. To avoid unfair scheduling due to different urgency of217
information pending messages may change their priority over time (see Fig. 3B lower part). So far it is218
implemented that a message is repeated as a warning in case that a complex task with longer duration is219
started, i.e., a robot is sent to a landmark, but does not arrive after a certain amount of time. Since the220
robot might have got stuck the warning is repeated with higher priority. To give the user an overview on221
initiated but still running tasks, they were visualized in a icon panel in the upper left corner of the left222
monitor in the order as they appeared with the newest depicted on the top (see Fig. 3A: 5). As soon as a223
task was fulfilled the task message was removed.224

2.2 PERFORMED EXPERIMENTS

Six subjects participated in the study. All subjects were male with normal or corrected to normal vision225
and aged between 20 and 38 years (mean: 28.74, SD: 6.92). All subjects were intensively trained in the226
scenario on a different day to get used to the tasks, i.e., to control the robots by using the developed MMI.227
On the same day of the study just before data recording subjects were asked to get comfortable with the228
scenario. The study consisted of 6 runs, performed in the same order. In each run, subjects had to complete229
30 tasks. The response behavior was supervised and logged by the message scheduler (see Fig. 2 lower230
part).231

In case no response was detected within 13 s after presentation of a task message, the same task message232
was again attached to the message queue. Since the queue is implemented as a FIFO (first in first out), the233
message is repeated after presentation of all other messages within the queue.234

Task messages (Fig. 3 top illustration and Fig. 3B) were presented for 1.1 s. The duration of presentation235
was determined by empirical tests with a different group of 4 subjects. The goal was to keep the duration236
of message presentation as short as possible to allow the evaluation of event-related activity in the EEG237
while ensuring that subjects were able to recognize and understand the presented messages.238

2.2.1 Adaptation of the inter-stimulus interval (ISI): Between the 6 runs experimental conditions were239
varied with respect to the ISI (Tab. 2-1: EEG data). For runs 1 to 4 ISIs were fixed. We used two different240
ISIs: a long ISI (25 s) in runs 1 and 2 and a short ISI (15 s) in runs 3 and 4. In both cases an additional241
random jitter of ±5 s was added. Appropriate time intervals for long and short ISIs were empirically242
determined beforehand by tests with 4 subjects that were not involved in this study. The time interval243
for the short ISI was chosen such that the overall workload or overall task load caused by the message244
frequency was not too high. We were successful in empirically determining an appropriate time interval245
for short ISIs as supported by results of the evaluation of the NASA Task Load Index questionnaire (see246
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Sec. 3.1.3). The time interval for the long ISI was empirically chosen to be clearly higher in the subjective247
perception of the 4 test subjects. A very low ISI could not be chosen, since we experienced that subjects248
easily gave up the run in cases of very short ISIs, i.e. with a duration of 5 s or even with a duration of249
10 s. Further, no P300 was evoked under extremely stressful circumstances, as in runs with an ISI of 5 s.250
Moreover, to train the classifier qualitatively good training examples were required. And finally, we had251
to limit the number of runs and thus total experiment time to avoid overstraining the subjects.252

For runs 5 and 6 the ISI was adapted online with respect to detectability of the P300 and related ERP253
activity. For the online detection of single-trial ERP activity a classifier was trained on examples from254
either runs 1 and 2 (for application in run 5) or on examples from runs 3 and 4 (for application in run255
6) (see Sec. 2.8 for more details). Adaptation in runs 5 and 6 of the ISI was increased gradually (up to a256
maximum of 35 s in steps of 5 s) in case that an expected P300 was not detected two times in a row after257
a new task message or was decreased stepwise (down to a minimum of 5 s in steps of 5 s) in case that an258
expected P300 was detected two times in a row. For both adapted runs the ISI was preset to 25 s. We always259
startet with the fixed ISI condition with an ISI of 25 s in runs 1 and 2 to allow subjects to get comfortable260
with the control task. This was done since long training sessions just before the experimental session were261
not possible since they would have increased the total experiment time to an unacceptable long duration.262
For our experimental setting it was more important to record all runs in the same session to avoid between-263
session effects on the shape of the ERPs as well as the single-trial classification performance. Although264
subjects were intensively trained, they needed to readapt to the control of the robots, since the control task265
was very complex. Next, in runs 3 and 4 training data was recorded under the fixed ISI condition. We did266
not perform a run with adapted ISI right after the recording of training data with ISI 25 to keep both runs267
with adapted ISI close together and thus condition of the subjects similar. Further, interleaving runs with268
fixed and adapted ISIs were not performed, since this might have had an influence on the motivation of269
the subject during the recording of training data after a run with adapted ISI.270

2.2.2 Ethics statement: The study has been conducted in accordance with the Declaration of Helsinki271
and approved with written consent by the ethics committee of the University of Bremen. Subjects have272
given informed and written consent to participate.273

2.3 RECORDED DATA

During each executed run EEG was recorded with 64 electrodes referenced against electrode FCz. An274
actiCap system (Brain Products GmbH, Munich, Germany) arranged as an extended 10-20 system was275
used for recording. Electrode impedance was kept below 5 kΩ. EEG signals were sampled at 5 kHz,276
amplified by two 32 channel BrainAmp DC amplifiers (Brain Products GmbH, Munich, Germany) and277
filtered with a low cutoff of 0.1 Hz and high cutoff of 1 kHz.278

2.4 RESEARCH GOALS & HYPOTHESES

The presented work addresses two different research goals with specific subgoals. (I) We want to show279
that a P300-related activity is naturally evoked when task messages are presented and recognized. (Ia)280
We investigate whether the evoked P300 is modulated by factors like demands on the operator or the281
operator’s task engagement to previous tasks. (II) We want to show that single-trial detection of P300-282
related activity can be used to adapt the interaction with respect to the task engagement of the operator.283
(IIa) In particular, we investigate whether an individual balanced task involvement of the operator can be284
achieved by adaptation of the ISI resulting in a higher subjective contentment of the operator and in an285
individually optimized overall task performance.286

By means of data recorded in runs 1 to 4 we investigated research goal (I). We artificially modulated the287
current task engagement (on the previous task) by presenting a new task. This was achieved by modulating288
the time interval between both consecutive tasks: long ISIs of 25 seconds in runs 1 and 2; short ISIs of289
15 seconds in runs 3 and 4. Changes in P300 characteristics were investigated by averaged ERP analysis290
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and machine learning methods. To support the usage of single-trial P300 detection we had to assure that291
the detection performance is adequately high and not too strongly influenced by ISI per se such that for292
very short ISIs possibly no P300 would be detectable in single-trial. For this, an offline machine learning293
analysis was performed first with training and test on runs with the same ISI. These results were used as294
a baseline for other experiments. This condition was called ”baseline” condition. Using this analysis, we295
investigated whether P300-related activity is detectable in single-trial under application conditions and for296
different ISIs as well as how strongly different ISIs would influence classification performance.297

Further, we investigated the effect of classifier transfer between runs with different ISIs. More precisely,298
a transfer of classifier between training runs (runs 1 and 2 or runs 3 and 4) and test runs (runs 5 and 6299
with adapted ISI) was applied. This condition was called ”transfer” condition. This offline analysis was300
relevant because under the online condition the classifier was transferred between different ISI conditions.301
Different ISIs were caused by the adaptation of the ISI under the online condition. Results allow to302
estimate the sensibility of the classifier for changes in ISI.303

To achieve research goal (II) we adapted the developed MMI with respect to the current task engagement304
of the user to previous tasks when a new task was presented in runs 5 and 6 (Tab. 2-3: online stCL). Current305
task engagement was measured by the online single-trial classification of P300-related activity evoked by306
recognized target stimuli, i.e., task messages: 1) task engagement to a previous task was expected to be307
high in case that the P300-related activity was weakly evoked by a new task and thus not detected by a308
classifier, 2) task engagement to a previous task was expected to be low in case that P300-related activity309
was more strongly expressed and thus detected by a classifier. Note that in the online case each EEG310
trial after a presented first task message was classified, thus in case the operator completely missed a task311
message no P300 was expected to be evoked and could therefore not be detected. Hence, our approach312
did not only account for reduced P300 activity but also for missed P300 in case of missed target events.313

To prove that the interaction of the user was improved by online adaptation of the ISI, we analyzed the314
total runtime, median reaction time and number of late responses and missed messages. We expected a315
reduction in total runtime by online adaptation of the ISI compared to the case of a fixed long ISI (ISI-25;316
runs 1 and 2). We did not expect a significant difference to be found for reaction times, since our approach317
would avoid user overload and responses were rather complex (see Sec. 2.1). However, we expected some318
late responses and missed messages in cases that the user was strongly involved in ongoing tasks when a319
new task was presented.320

Our approach of online adaptation of the ISI allows to adapt an MMI with respect to the current task321
engagement or task load, improves user performance by equalizing the level of task engagement over322
all tasks and by selectively avoiding task overload. To further support this, we investigated the effect of323
an online adaptation of the ISI on averaged P300-related activity, i.e., we investigated whether expected324
changes related to task engagement in P300 amplitude could be found. For this evaluation, we compared325
averaged activity evoked in case of a fixed ISI of 25 s (runs 1 and 2) and a fixed ISI of 15 s (runs 3 and 4)326
with averaged P300-related activity evoked in runs 5 and 6.327

Based on the research goals, we had three hypotheses: (1) The online adaptation of the ISI reduces total328
runtime if compared to the long fixed ISI condition (ISI of 25 s). (2) The modulation of the ISI influences329
amplitudes of averaged ERP. In particular, we expect differences between ISI types with respect to peak330
amplitudes of the averaged ERP. (3) The usage of historic data is feasible to detect P300 in the current331
data (e.g., a transfer of the classifier trained on historic data to the current data is possible).332

2.5 ANALYSIS OF SUBJECTS’ BEHAVIOR

2.5.1 Analysis of total runtime: The total runtime was measured as the time between the first and the333
30th task message within the experiment. This procedure was chosen since the total number of tasks334
differs slightly. This happens if the last task is from one of the categories ”go to landmark” or ”recharge335
robot” and if the adapted ISI is quite low. Solving one of these more complex tasks may take some time336
since the traveling distance can be rather long. Therefore, all robots may get one of these tasks. When337
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one of the robots reaches its goal position the experiment is finished, but in this way more than 30 task338
messages could have been displayed to the user (see Fig. 5).339

For the statistical analysis, the value of total runtime was merged depending on the ISI type. This leads340
to three groups: ISI-25 (runs 1 and 2), ISI-15 (runs 3 and 4), and ISI-online adaptation (runs 5 and 6). The341
three ISI groups were compared by the Friedman test. For multiple comparison, the Wilcoxon signed-rank342
test was performed (the p value was adjusted by the Bonferroni-Holm correction).343

2.5.2 Analysis of reaction times: To calculate the reaction times, the EEG marker files were analyzed344
in order to deduce all important operator- and scenario-related events. Whenever a message was presented345
to the operator or the operator issued a control command this was marked in the EEG file. Based on346
the markers we calculated the reaction times, i.e., the amount of time the operator required to react to347
a task message by clicking on the correct response button for the robot. Only first task messages were348
considered in the analysis. Repetitions of task messages were not analyzed. The median of reaction time349
was calculated because of strong deviations and outliers. For a comparison with the ERP average analysis350
an additional analysis was performed considering only reaction times after target trials with ISIs that were351
used for the average analysis, i.e., target trials which belonged to one of the both groups: ISI-long or352
ISI-short (see Tab. 1). Note that for the ERP analysis not all trials could be used since in run 5 6.82% of353
the ISI-long trials and 13.33% of the short ISI trials and in run 6 18.57% of the ISI-long trials and 12.05%354
of the ISI-short trials contained artifacts and were discarded from analysis.355

For the statistical analysis, the value of reaction time was merged depending on ISI type and this leads356
to three groups: ISI-25 (runs 1 and 2), ISI-15 (runs 3 and 4), and ISI-online adaptation (runs 5 and 6). The357
three ISI groups were compared by the Friedman test. For multiple comparison, the Wilcoxon signed-rank358
test was performed (the p value was adjusted by the Bonferroni-Holm correction).359

Additionally to median reaction times we calculated late responses after 15 s, and missed messages. EEG360
trials after messages with responses later than 15 s as well as missed message trials were not considered361
during training of the classifier (see Sec. 2.8).362

2.5.3 Questionnaires: Before the experiments started, each subject was instructed to assess its skills363
related to the use of computers by filling out the ”Computer usage questionnaire” (CUQ) (Schroeders364
and Wilhelm, 2011). For the statistical analysis, the Friedman test was performed to compare the365
patterns of computer usages between subjects. For multiple comparison, the Wilcoxon signed-rank test366
was performed (the p value was adjusted by the Bonferroni-Holm correction). Furthermore, after each367
of the six runs of the experimental session, the subjects had to fill out the NASA Task Load Index (TLI)368
questionnaire (Hart and Staveland, 1988). For the statistical analysis, the value of task load index was369
merged depending on the ISI type and this leads to three groups: ISI-25 (runs 1 and 2), ISI-15 (runs 3 and370
4), and ISI-online adaptation (runs 5 and 6). The three ISI groups were compared by the Friedman test.371
For multiple comparison, the Wilcoxon signed-rank test was performed (the p value was adjusted by the372
Bonferroni-Holm correction).373

2.6 ANALYSIS OF THE MMI BEHAVIOR

The behavior of the MMI was analyzed by plotting the changes in the ISI for each subject in case of374
ISI adaptation (run 5 and 6, see Fig. 5). Figure 5 illustrates what kind of tasks were presented to the375
operator and which ISI was used, therefore the trace is the same as it was during the actual experiment.376
The purpose of this analysis was to give an impression of how ”good” the adaptation worked and which377
ISI was most comfortable for the operator over the course of the run. For a comparison of the mean ISI378
between subjects, the mean ISI for each subject and run was calculated and the mean ISI of each run was379
compared between subjects by using the Friedman test. For a multiple comparison, the Wilcoxon signed-380
rank test was performed (the p value was adjusted by the Bonferroni-Holm correction). Furthermore, we381
investigated whether the mean ISI is a useful indicator for the analysis of the MMI behaviors. To this382
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end, the correlation between the mean ISI and the total runtime was calculated using the Spearman’s383
rank correlation. We expected a positive correlation such that a longer ISI leads to a longer total runtime.384
In addition, we investigated task type as another factor with a potential effect on the total runtime. For385
example, the task types ”go to landmark” and ”charging robot” required a longer total runtime compared386
to the task type ”send message”. The frequency and order of task types were randomly chosen. Thus,387
differences in frequency of task types can in principle lead to differences in total runtime between subjects.388
However, we did not expect a strong correlation between task type and total runtime.389

2.7 ERP-AVERAGE ANALYSIS

Continuous EEGs were bandpass-filtered (0.1Hz–30Hz) and segmented into ”target” trials from −100 ms390
to 1000 ms with respect to the stimulus onset (baseline correction: from −100 ms before the stimulus391
onset to 0 ms). As for the machine learning analysis only trials after the first task messages which have392
been responded to within a time period of 15 s were labeled as ”target” trials when analyzing runs 1 to 4.393
For runs 5 and 6 again only trials with answered task messages were used as ”target” trials and averaged394
as explained in Tab. 1. This procedure copies the procedure of the offline analysis. Trials after missed task395
messages were not averaged to exclude their contribution to the average ERP characteristic. We used a396
common average reference (CAR) and recalculated the data from channel FCz. For ERP average analysis397
only artifact-free segments were used (see Tab. 1). Artifact detection was performed semi-autonomously398
with a maximum amplitude of −100µV and 100µV. We compared average artifact-free ERP activity399
evoked in runs with ISI-25 and ISI-15 as well as ISI-long and ISI-short. Trials for ISI-25 were conducted400
in runs 1 and 2 and trials for ISI-15 in runs 3 and 4. An adaptation of the ISI in runs 5 and 6 did not only401
result in various ISIs but also in individual ranges of ISIs for different users (see Tab. 1). Therefore, we402
individually divided the EEG segments of runs 5 and 6 into two ISI groups with respect to trials being403
evoked after short or long ISIs for each subject. For example, from the data of the subject depicted in Fig. 9404
we merged examples after ISI-15 and ISI-20 to calculate average ERP activity after long ISIs and ISI-5405
and ISI-10 to calculate average ERP activity after short ISIs (see Tab. 1). By means of this procedure, we406
could compare averaged P300-related activity for ISI-short and ISI-long of runs 5 and 6 with the activity407
evoked in runs 1 and 2 (fixed ISI of 25 ms: ISI-25) or runs 3 and 4 (fixed ISI of 15 ms: ISI-15) (Tab. 2-2).408
For peak detection, we selected a single window of the interval 0.3 s to 0.7 s after a ”target” trial. The409
positive maximum peak was detected within the selected window.410

For the statistical analysis of average ERP amplitude values with a sample size of 6 (i.e., 6 subjects), we411
performed the Wilcoxon signed-rank test to compare different ISI types (ISI-25 vs. ISI-15 and ISI-long412
vs. ISI-short).413

2.8 MACHINE LEARNING ANALYSIS

The data flow of the machine learning algorithm is depicted in Fig. 4 A. For the analysis the software414
framework pySPACE (Krell et al., 2013a) was used. First the continuous EEGs were processed by a DC415
removal filter, which is an online-capable method for centering the signal around zero. The normalized416
EEGs then were decimated from 5000 Hz to 25 Hz.A cutoff frequency of 4 Hz was used for the anti-alias417
filter in the decimation process (Jansen et al., 2004; Ghaderi et al., 2014). Afterwards the EEGs were418
segmented into chunks of 1 s length. Chunks cut right after a first task message (not after repetitions419
of messages) were labeled as ”targets”. Within the training, these windows were only cut if the operator420
responded to the first task message within 15 s after presentation, in the online case every first task message421
was analyzed. We further cut ”standard” windows of length 1 s while training. These windows were422
needed to train the used binary classifier. The standard windows were cut every second with the constraint423
that no other action relevant for task recognition was performed in a range from [−1, 1] s around the cut424
window. For the task recognition, actions such as the presentation of a task message or the response of425
the operator of one of these messages were used. The segments were further processed with the xDAWN426
spatial filter (Rivet et al., 2009). The xDAWN is a spatial filter especially designed for P300 detection. It427
(1) enhances the separability of the P300 ERP and noise and (2) reduces the dimensionality of the data.428
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Table 1. Number of artifact-free targets for each run and distribution over different ISIs. For average
ERP analysis different ISIs were categorized in two ISI-groups: ISI-short (marked as red) and ISI-long
(marked as blue).

Number of targets for each run
Subject run 1 run 2 run 3 run 4 run 5 run 6

S1 26 25 28 27 32 21
S2 31 30 32 33 29 29
S3 23 19 9 27 23 17
S4 21 24 25 25 38 21
S5 23 19 25 23 25 22
S6 29 22 29 30 29 30

Average 25.50±3.89 23.17±4.17 24.67±8.12 26.83±4.02 29.33±5.32 23.33±5.09

Number of targets for all possible ISI-groups within runs 5 and 6

run 5
Subject ISI-05 ISI-10 ISI-15 ISI-20 ISI-25 ISI-30

S1 4 15 10 3 0 0
S2 14 7 5 2 1 0
S3 0 7 6 6 4 0
S4 0 2 10 20 6 0
S5 0 2 4 10 9 0
S6 8 12 3 4 2 0

Average 4.33±5.72 7.50±5.24 6.33±3.01 7.50±6.75 3.67±3.39 0.00±0.00
run 6

Subject ISI-05 ISI-10 ISI-15 ISI-20 ISI-25 ISI-30

S1 4 9 0 6 2 0
S2 1 12 11 3 2 0
S3 1 4 6 5 1 0
S4 0 1 2 6 7 5
S5 0 0 3 11 7 1
S6 19 6 3 0 2 0

Average 4.17±7.41 5.33±4.63 4.17±3.87 5.17±3.66 3.50±2.74 1.00±2.00
run 5 + run 6

ISI-05 ISI-10 ISI-15 ISI-20 ISI-25 ISI-30
Average 4.25±6.31 6.42±4.85 5.25±3.49 6.33±5.31 3.58±2.94 0.50±1.45

To achieve this, a set of filters maximizing the signal-to-signal-plus-noise ratio is computed on a training429
data set. The resulting filters can be used to create a set of pseudo-channels that contain the filtered signal.430
From the newly created pseudo channels the 8 most relevant channels were used for further processing.431

As features we used local straight line features, i.e., polynomial features. To fit a polynominal function432
EEG data must be segmented (see Fig. 4 B). Earlier investigations showed that the longer the segments are433
chosen, the more coefficients are needed to keep the performance level high. For this paper every 120 ms,434
segments of length of 400 ms within the 1 s segments after stimulus onset were cut. Polynominal features435
of order one, i.e., straight lines were fitted to the 400 ms long segments of the ERP data with 120 ms steps436
to describe the ERP in terms of a series of slope values (see Fig, 4 B). Polynominal features of order one437

Frontiers 13



Kirchner et al. An intelligent man-machine interface

have been chosen since in former investigations of P300 ERP activity the highest value was obtained with438
this low coefficient. Previous analyses, too, as performed for example in Wöhrle and Kirchner (2014b)439
support our choice.440

After this preprocessing a Support Vector Machine (SVM) (Chang and Lin, 2011) was used as441
classifier. During training the complexity of the SVM was optimized with a grid search and an internal442
five-fold cross validation. The possible complexities were 10n with n ∈ 0,−1, . . . ,−6. Further a443
threshold optimization was applied (Metzen and Kirchner, 2011). Further a threshold optimization444
was applied (Metzen and Kirchner, 2011). After building the model of a SVM the decision boundary445
is defined as 0 and the two classes (here target and standard) are at the positive and negative side of446
the boundary. The threshold optimizations gives the opportunity to further improve the classification447
performance with respect to a given metric, here the balanced accuracy. The threshold is shifted into448
the negative or positive direction, in a way that for the training data the highest classification performance449
in terms of balanced accuracy is achieved.450

Segmentation
(window [0s - 1s] 

after stimulus)

DC removal
[alpha = 0.999]

Decimation with 
4 Hz Lowpass-Filter

[5000Hz to 25Hz]

Threshold optimization
Feature Extraction
(local straight line 

features)

Feature Normalization
[mean = 0, SD = 1]

Classification
(SVM)

Spatial Filtering
(xDAWN)

A

B

Figure 4. Data Processing. A: data flow for signal processing and single-trial classification. B: example
of an ERP (black line) being processed as local slopes of a straight line.

We used the balanced accuracy (bACC), i.e., the mean of true positive rate (TPR) and true negative451
rate (TNR), as the performance metric due to the insensitivity of this metric to changes in class452
distribution (Krell et al., 2013b; Straube and Krell, 2014). Area under the curve (AUC) values were453
additionally calculated. Classification performance was compared between all conditions. For details see454
Tab. 2-3 and Tab. 2-4. Although the adaptation of the ISI was evaluated online (Tab. 2-3: online stCL), we455
additionally analyzed the data in the offline mode (Tab. 2-4: offline stCL). This procedure was chosen for456
reasons of fair comparison. While in the online mode data of two runs (runs 1 and 2 or runs 3 and 4) were457
used for training, this was not possible for evaluating the general P300 detectability in case of fixed ISIs458
since here only one run could be used for training while the other was used for testing. By means of the459
chosen offline approach we were able to analyze the no-transfer case (as baseline/control) and the transfer460
case equally.461

For the statistical analysis on single-trial classification performance, two separate comparisons were462
performed by using the Wilcoxon signed-rank test. First, we compared two online cases: online P300463
detection in run 5 vs. run 6 (see (e) vs. (f) in Tab. 2-3: online stCL). Here, two samples per subject464
were obtained for each online case. Altogether, we obtained a sample size of 12 (2 samples x 6 subjects)465
for each online case. Second, two adapted ISI conditions were compared with two fixed ISI-conditions466
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Table 2. Design for the recording of EEG data, evaluation design for ERP analysis and design for the
analysis of single-trial classification performance (online/offline-mode). ERP: event-related potentials,
online stCL: online single-trial classification, offline stCL: offline single-trial classification, and ISI: inter-
stimulus interval. Each run contained 30 trials. For online single-trial classification, 60 trials (e.g., runs
1 and 2) were used to train a classifier and 30 trials (e.g., run 5) were used for evaluation. For offline
single-trial classification, 30 trials were used for training and testing in both cases (no transfer/classifier
transfer).

Table 2-1. EEG data Table 2-2. Evaluation design for ERP analysis
(a) run 1: fixed ISI of 25 s average ERP in (a)

ISI-25: average of (a) and (b)
(b) run 2: fixed ISI of 25 s average ERP in (b)
(c) run 3: fixed ISI of 15 s average ERP in (c)

ISI-15: average of (c) and (d)
(d) run 4: fixed ISI of 15 s average ERP in (d)
(e) run 5: online adapted ISI average ERP in (e) various ISIs are grouped in short and long ISI
(f) run 6: online adapted ISI average ERP in (f) for each subject: (e), (f), or average of (e) and (f)

Table 2-3. Online stCL Table 2-4. Offline stCL
adapted ISI adapted ISI (e) ISI-25 (control) adapted ISI (f) ISI-15 (control)

classifier transfer transfer no transfer transfer red no transfer
training test training test training test training test training test
ISI-25 (fixed ISI of 25 s)

(e)
(a) (e) (c) (e)

(a) + (b) merged (b) (e) (d) (e)
mean (e) (a) (b) mean (e) (c) (d)

training test training test training test training test training test
ISI-15 (fixed ISI of 15 s)

(f)
(a) (f) (c) (f)

(c) + (d) merged (b) (f) (d) (f)
mean (f) (b) (a) mean (f) (d) (c)

in offline mode depending on the type of training data (ISI-25 or ISI-15) used to train the classifier: 1)467
adapted ISI (e) vs. ISI-25 (control) (see in Tab. 2-4: offline stCL) and 2) adapted ISI (f) vs. ISI-15 (control)468
(see in Tab. 2-4: offline stCL). In the offline analysis, the number of training examples for the fixed ISI469
conditions (run 1 or run 2 / run 3 or run 4, see Tab.2-4) was half the number of training examples used for470
the adapted ISI conditions in case of online evaluation (run 5 or run 6, see Tab.2-3). For a fair comparison471
between the adapted and fixed ISI-condition, only one run (run 1 or run 2) was used to train the classifier472
to test it on run 5, and the mean of classification performance obtained by using run 1 or run 2 for training473
was calculated in the case of the adapted ISI(e) (see Tab. 2-4 (e) in offline stCL). Similarly, in the case474
of the adapted ISI(f), only one run (run 3 or run 4) was used to train the classifier to test it on run 6 and475
the mean of classification performance obtained by using run 3 or run 4 for training was calculated (see476
Tab. 2-4 (f) in offline stCL). Each adapted and fixed condition has two samples per subject. Altogether,477
we obtained a sample size of 12 (2 samples x 6 subjects) for each condition.478
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Figure 5. Changes in ISI over each run in case of the adapted ISI condition (runs 5 and 6) for each subject
are depicted.

3 RESULTS

3.1 BEHAVIOR OF SUBJECTS

3.1.1 Total runtime: Figure 5 shows how the ISI changed over one run based on the inferred task479
load and task engagement of the user measured by P300 detectability. Subjects reported that the online480

This is a provisional file, not the final typeset article 16



Kirchner et al. An intelligent man-machine interface

adaptation made them feel to have just the right task frequency. This indicates that online adaptation481
of the MMI has a positive effect on the interaction. The finding was supported by the results of the482
behavioral analysis of the total runtime (see Fig. 6). The online adaptation of the ISI reduced total483
runtime significantly if compared to the ISI-25 condition [p < 0.001]. Moreover, there was no significant484
difference in total runtime between the case of online adaptation of ISI and the case of ISI-15 condition485
[p = n.s.].486

Figure 6. The means of both runs for each ISI type are depicted. The median across all subjects for each
ISI type was 17.59 for ISI-25, 11.49 for ISI-15 and 12.45 for ISI-adapt.

3.1.2 Reaction time: Figure 7-A shows the median reaction time for individual subjects over all runs.487
It can be seen that median reaction times are very similar over all conditions and runs for each subject.488
When merging the two runs of each condition (ISI-25, ISI-15, and ISI-adapt) we found no significant489
difference between ISI types. However, when analyzing median reaction time individually for ISI-long490
and ISI-short groups of runs 5 and 6 as performed for average ERP analysis it can be seen that the reaction491
time on task messages presented after short ISIs showed a higher variance compared to task messages492
presented after long ISIs (see Fig. 7-B).493

A descriptive analysis of the sum of late responses and missed messages per subject for each run is494
visualized in Figure 8. It can be seen that for some subjects the number of late responses and missed495
messages was higher than for others (subjects 3 and 4). Table 3 provides information about the number of496
late responses, missed messages and the sum of both as depicted in Figure 8.497

3.1.3 Questionnaires: The analysis of the ”computer usage questionnaire” shows a significant498
difference between subjects, especially subject 4 differed significantly from the other subjects [p < 0.03].499
The analysis of the ”NASA Task Load Index (TLI) questionnaire” shows no significant differences500
between runs [p = n.s].501

3.2 BEHAVIOR OF MMI

Figure 5 depicts the changes of the ISI for both adapted runs (runs 5 and 6) for each subject. It can be seen502
that the adaptation of the ISI is very individual for each subject and even for each run. While for some503
subjects and runs, as for subject 2 in run 5, the ISI goes down to the minimum of 5 s and stays there for504
almost 20 trials, for other subjects the ISI is not reduced that much (see for example subject 5 for both505
runs). In most cases the ISI gradually decreases just to later increase. However, there are exceptions from506
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Figure 7. Median response time. A: median reaction times for each run and each subject are depicted. B:
median reaction times for each run and each subject sorted with respect to trials with short and long ISI
as defined for average ERP analysis are depicted.

these findings. For example subject 1 shows a reduction of ISI at the end of run 6 and subject 6 stays with507
a low ISI during both runs. For all subjects the ISI starting with 25 s was reduced to a lower mean ISI with508
average values of 14.67 s and 15.62 s (runs 5 and 6) (see Tab. 5). Moreover, we could also find differences509
in the mean ISI between subjects. For example, while the mean ISI for subject 4 and subject 5 is around510
19 s and 22 s (runs 5 and 6), the mean ISI for subject 6 is at 10.45 s and 8.43 s (runs 5 and 6) and for subject511
2 at 9.85 s and 12.42 s (runs 5 and 6). The mean ISI for Subject 4 and subject 5 was significantly higher512
compared to the other subjects [p < 0.017]. Furthermore, the mean ISI correlated strongly with the total513
runtime [r = 0.874, p < 0001], but not the task type (e.g., send message, go landmark, etc.).514
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Figure 8. Sum of late responses and missed messages for each run and each subject is depicted.

Table 3. Number of tasks with late or no response in runs 5 and 6

run 5 run 6
subject late missed total late missed total

S1 4 0 4 2 0 2
S2 0 0 0 2 2 4
S3 4 0 4 8 0 4
S4 5 0 5 8 0 8
S5 0 1 1 1 0 1
S6 1 0 1 0 2 2

3.3 AVERAGE P300-RELATED ACTIVITY

As shown in Fig. 9 and Fig. 10, we observed differences in averaged ERP shape depending on the ISI515
condition (short/long ISI). Note that the ISI in case of long ISIs and short ISIs differ for both average516
analysis conditions (fixed-ISI condition and adapted-ISI condition, see Tab. 5). While for ISI-long average517
analysis condition the ISI is set to 25 s, ISI-long for the adapted-ISI condition is around 19 s. Similar518
differences can be found for the ISI-short average analysis condition (fixed short ISI: 15 s versus adapted519
ISI around 10 s). The peak amplitude of the averaged P300-related activity was not significantly reduced520
in case of ISI-15 (runs 3 and 4) compared to ISI-25 condition (runs 1 and 2) [p = n.s.]. However, we521
observed a significant reduction in averaged P300 amplitude in run 5 and run 6 for short ISI groups522
compared to long ISI groups [p < 0.04]. Furthermore, there was a significant difference between ISI-15523
and ISI-short [p < 0.04], but not between ISI-25 and ISI-long [p = n.s.].524

3.4 ONLINE P300 DETECTABILITY

Finally, we achieved high classification performances in both the online and offline analysis. In the online525
evaluation, we found no significant difference between both online runs [adapted ISI (e) vs. adapted ISI526
(f): bACC of 0.77 vs. bACC of 0.78, p = n.s., see adapted ISI (e) vs. adapted ISI (f) in Tab. 4-1]. In the527
offline evaluation, classification performance obtained by using the classifier trained on ISI-25 statistically528
differed from classification performance obtained in case of no transfer [ISI-25 vs. adapted ISI: bACC of529
0.84 vs. bACC of 0.75: p < 0.003, see adapted ISI (e) vs. ISI-25 in Tab. 4-2]. However, we found no530
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Table 4. Online and offline classification performance

Table 4-1. Online single trial classification performances (cf. Table 2-3. Online stCL)
bACC AUC

adapted ISI (e) adapted ISI (f) adapted ISI (e) adapted ISI (f)
classifier transfer classifier transfer classifier transfer classifier transfer

S1 0.7646 0.7586 0.8481 0.8343
S2 0.8403 0.8177 0.8692 0.8596
S3 0.7892 0.7422 0.8516 0.8681
S4 0.6486 0.7083 0.7620 0.7365
S5 0.7981 0.7631 0.8790 0.8621
S6 0.7931 0.9021 0.9292 0.9375

mean 0.7723 0.7820 0.8565 0.8497

Table 4-2. Offline single trial classification performances (cf. Table 2-4. Offline stCL)
bACC AUC

adapted ISI (e) ISI-25 adapted ISI (f) ISI-15 adapted ISI (e) ISI-25 adapted ISI (f) ISI-15
transfer no transfer transfer no transfer transfer no transfer transfer no transfer

S1 0.7057 0.8086 0.7595 0.7725 0.8063 0.8815 0.7979 0.7966
S2 0.7690 0.9536 0.8366 0.9361 0.8183 0.9873 0.8870 0.9604
S3 0.6987 0.7568 0.7912 0.7406 0.8643 0.8923 0.476 0.8159
S4 0.6772 0.7310 0.7195 0.7187 0.7670 0.7451 0.7170 0.8459
S5 0.7722 0.8135 0.7685 0.7650 0.8054 0.8942 0.8193 0.8745
S6 0.8625 0.9600 0.8843 0.8864 0.9037 0.9692 0.9549 0.9045

mean 0.7476 0.8373 0.7933 0.8032 0.8275 0.8951 0.8373 0.8663

significant difference in classification performance when using the classifier trained on ISI-15 compared531
to the case of no transfer (ISI-15) [ISI-15 vs. adapted ISI: bACC of 0.80 vs. bACC of 0.79: p = n.s.,532
see adapted ISI (f) vs. ISI-15 in Tab. 4-2]. There was no significant difference between the online and533
offline evaluation for the case of ISI-adaptation [adapted ISI (e) in Tab. 4-1 vs. adapted ISI (e) in Tab. 4-2:534
p = n.s. ; adapted ISI (f) in Tab. 4-1 vs. adapted ISI (f) in Tab. 4-2: p = n.s.]. In summary, we found a535
transfer effect on classification performance in case that the classifier was trained on data from the ISI-25536
runs. However, such an effect was missing when the classifier was trained on data from the ISI-15 runs. It537
must be emphasized that the classification performance was very similar in case of both classifier transfer538
analyses, i.e., adapted ISI (e) and adapted ISI (f) (see Tab. 4-1).539

4 DISCUSSION

4.1 IMPROVEMENT OF INTERACTION

Supporting our hypothesis (1) behavioral data showed that total runtime in runs with adapted ISI was540
significantly shorter compared to an unadapted condition with an ISI of 25 s. Although there was no541
significant difference between the adapted ISI and the fixed shorter ISI of 15 s the mean total runtime542
was still very low considering the fact that runs with ISI adaptation did start at an ISI of 25 s. Significant543
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Table 5. Mean ISIs in case of online ISI-adaptation (runs 5 and 6). Table 5-1: mean over all trials. Table 5-
2: mean over a selected group of trials with ISI-short and ISI-long as defined for average ERP analysis
(see Table 1).

Mean ISI in sec.
Table 5-1. Table 5-2.

subject run 5 run 6 run 5 run 6
ISI-long ISI-short ISI-long ISI-short

S1 12.7±5.01 13.94±5.47 16.15 8.95 21.25 8.46
S2 9.85±5.97 12.42±5.09 16.47 6.67 16.07 9.62
S3 16.25±4.84 15.15±5.43 22.00 12.31 17.27 9.00
S4 19.22±5.46 21.94±5.63 21.15 14.17 22.69 13.33
S5 19.55±4.33 21.82±3.44 22.37 13.33 25.63 8.57
S6 10.45±6.08 8.43±5.95 17.86 8 .00 15.00 6.20

Average 14.67±4.29 15.62±5.35 19.33±2.84 10.57±3.10 19.65±4.19 9.20±2.33
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Figure 9. Adaptation of the ISI over one run and the evoked averaged ERP activity at Pz for one subject:
(a) depicts online adaptation of ISI in case of using the classifier trained on data with ISI of 25 s (i.e.,
training data: ISI-25, test data: run 5, see (e) in Tab. 2-3: online stCL) and (b) the corresponding averaged
ERP curve evoked during the same run (Tab. 2-2: ERP analysis). Only artifacts-free trials were used: 7
trials for ISI of 15 s and ISI of 20 s; 21 trials for ISI of 5 s and ISI of 10 s. Different types of tasks (tasks of
type: message, way point and charging, see Fig. 3 for details) had to be solved by the subjects.

differences in the total runtime between runs with adapted ISI and the fixed shorter ISI of 15 s were not544
expected, since the time needed until a task was performed by a robot does (although not strongly) depend545
on the type of task. For example, sending data was very fast and instant while reaching a certain landmark546
could take a long time depending on the current position of the robot and the landmark. Thus, some547
deviation in runtime depending on the kind of tasks that had to be performed by the robot, was expected.548
On the other hand, we did not choose subjects with a certain qualification but chose subjects independent549
of their experience in robot control or video gaming. Thus, we expected differences in the subjects’550
performances resulting in different ”suitable” ISIs and hence also in different total runtimes. Important551
was that a significantly shorter runtime could be achieved compared to the fixed ISI-25 condition under552
which all the subjects could perform the tasks without being stressed.553
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Figure 10. Averaged ERP activity over all subjects at electrode Pz under offline condition (left side) and
under online condition (right side). Grand averages over all subjects are depicted. Each run contained 30
trials. Only artifacts-free trials were used: 292 trials for ISI-25 and 313 trials for ISI-15, 139 trials for
ISI-long and 164 trials for ISI-short.

Besides, the goal was not to reduce the total runtime to a minimum but to adapt the ISI with respect554
to the demands of the user of the MMI. Indeed, for some subjects the mean ISI was reduced to mean555
values around 10 s while for other subjects, i.e., subjects 4 and 5, the ISI was clearly above 15 s (around556
19 s, see Sec. 3.2). On the other hand, even for subjects for whom the ISI was not reduced that much,557
mean ISI was clearly below 25 s, supporting our presupposition from the 4 test subjects that were not558
included in this study that a fixed ISI of 25 s ensures that all subject can easily perform the tasks but559
will probably make the subjects feel bored. An interesting finding is that subject 4 for which the ISI was560
reduced only to a still high value (around 19 s) significantly differed from the other subjects with respect561
to computer usage as evaluated by the Computer usage questionnaire (CUQ). This finding supports our562
assumption that the MMI could be adapted based on the detectability of the P300 to support the user with563
respect to her or his general capabilities. Note that subject 4 showed the lowest classification performance564
in both runs compared to the other subjects (although no significant differences between subjects could565
be found, see Tab. 4). Moreover, subject 4 had a high amount of late responses and missed messages566
(see Fig. 8). Another interesting finding is that the median reaction time does not significantly differ567
between subjects. This finding suggests that in our application behavioral data is probably not a good568
indicator for task load. Moreover, it shows that using our approach subjects were exposed to an appropriate569
workload. In summary, the results suggest that by using the developed MMI utilizing embedded Brain570
Reading, the MMI cannot only be adapted to the general capabilities of the user (e.g., experienced or571
rather inexperienced in computer usage) but also to the changes in task load over time.572
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4.2 CHANGES IN THE CHARACTERISTIC OF AVERAGE P300 DEPENDING ON THE ISI

Applying average ERP analysis, we were able to show that during a complex multi-robot control task573
a P300-related activity is evoked by task messages which are presented to the operator. This finding is574
the most important basis for our approach to adapt an MMI based on P300 detectability. As expected we575
found no significant differences in the averaged-peak P300 amplitude for both fixed ISI conditions. This576
supports earlier findings that the ISI has no influence on the P300 amplitude in case of long ISIs (longer577
than 6 to 8 s as found by Polich (2007)). More importantly this finding supports our assumption that on578
both fixed ISI conditions the general workload on the subjects was rather modest and comparable. Hence,579
any found differences in the P300 peak amplitude should be caused by changes in the current task load580
and task engagement. This finding is supported by the fact that in case of an ISI adaptation the average581
P300 peak amplitude was significantly reduced for trials after short ISIs compared to trials after long ISIs.582

Our results from the average ERP analysis support hypothesis (2): we could show differences in the583
P300 peak amplitude for average conditions with a high task load (averaged ERP activity after ISI-long584
in adapted ISI condition) compared to average conditions with low task load (averaged ERP activity after585
ISI-long in adapted ISI condition).586

The finding that the peak amplitude of the average P300 activity after trials with ISI-short (adapted587
ISI condition) is significantly smaller compared to the peak amplitude of the average P300 activity of588
both fixed ISI conditions (ISI-25 and ISI-15) suggests that for all subjects the MMI was indeed adapted589
to achieve the best performance without enhancing the workload too much such that no P300 would590
be evoked. Tests on 4 subjects (not included in this study) showed that in cases in which the workload591
was too high no P300 was evoked on average or could not be detected in single-trial while subjects592
reported that they were very stressed and could not perform the tasks. Hence, the MMI is adapted such593
that subjects perform best while avoiding an excessive general workload. Some subjects were able to594
keep their performance high with a short ISI all through the experiment while others did not. For the595
latter, the MMI was again adapted to longer ISIs reducing the task load back to normal. The task load and596
thus the general workload being modest under the adapted condition after long ISIs is supported by the597
finding that the average P300 peak amplitude evoked after long ISI trials under the adapted ISI condition598
is comparable to the average P300 peak amplitude under the fixed ISI conditions (ISI-25 and ISI-15). This599
was even the case although the mean long and short ISI differed strongly between subjects (see Tab. 1 and600
Tab. 5). Based on these findings we suggest that the P300 ERP is indeed a good indicator for the current601
and individually different task load of a subject while controlling the robots.602

4.3 DETECTABILITY OF P300 IN SINGLE-TRIAL

The results of the offline machine learning analysis support that the P300-related activity which was603
evoked by task messages can be detected in single-trial even in case that the classifier is transferred604
between different ISI conditions. Thus, the results support hypothesis (3).605

When comparing online classification with offline classification a performance drop can be observed.606
This can be explained as follows: In the online case each first message was classified independently607
of having been responded to. Therefore, trials after missed task messages which likely did not contain608
a P300 were classified, leading to ”false negative” results. It was therefore expected that classification609
performance was lower for the online case, since the approach is sensitive to missed targets. The small610
difference between online and offline results support that the MMI was well designed such that only few611
target events (messages) were completely missed (see also Tab. 3).612

Besides this, in both transfer cases similar classification performance can be achieved. Hence, for an613
application it is not that relevant for the classification on which data a classifier is trained. While we614
found no significant differences between subjects for online classification performance it is noticeable that615
subject 4 had the worst classification performance in both runs compared to the other subjects (discussion616
see Sec. 4.1).617
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4.4 P300 DETECTABILITY AS INDEX FOR TASK LOAD OR TASK ENGAGEMENT

By reducing the ISI to way shorter ISIs compared to the ISI-15 condition (see Tab. 5) we strongly enhanced618
the task load and likelihood of conflicts since subjects might still be engaged in a former task when a new619
task message was presented. This is supported by two findings: (1) the higher variance in reaction time620
found for the ISI-short group (based on grouping for average analysis) and (2) the smaller average P300621
evoked after short ISI trials in the adapted ISI condition (see Fig. 10). Likely, subjects were still involved622
in a previous task and often could therefore respond to a new task only with a delay.623

We found a similar effect in a previous study (Kim and Kirchner, 2012). In this previous study, subjects624
played a labyrinth game and had to respond to target stimuli which were presented in an oddball design.625
However, subjects were not allowed to respond to target events right away. We asked the subjects to steer626
the ball in a save corner first before answering a target event. When analyzing the average P300 potential627
we grouped the data with respect to reaction time such that the first group consisted of EEG trials with628
only short reaction times up to 1.4 s, for the second group trials were added which had reaction times up629
to 1.6 s, for the third group up to 1.8 s, the fourth up to 2.0 s, and the fifth up to 7.0 s. Although keeping630
the trials with short reaction times up to 1.4 s for the second group and up to 1.6 s for the third group, we631
still found descriptive differences in average peak amplitude of the P300 component between all groups632
with highest amplitude for the group of 1.4 s and lowest for the group of 7.0 s. When classifying between633
standard and target trials we found significant differences between the group of 1.4 s compared to all other634
groups with the exception of group 1.4 s compared to group 1.6 s and significant differences between the635
group of 7.0 s compared to all other groups with highest classification performance of 0.85 for the group636
of 1.4 s and lowest classification performance of 0.76 for the group of 7.0 s. These results suggest that637
ongoing task engagement, i.e., playing the labyrinth game, reduced the P300 evoked by a new target638
stimulus tremendously and would also reduce classification performance.639

4.5 SUMMARY AND OUTLOOK

In summary, our results show that complex interaction between humans and robotic systems can be640
improved by the application of an MMI adapted by eBR. The time between tasks can be adjusted such641
that a reduction of run time compared to a safe mode is possible. The strength of adaptation does further642
correlate with the experience of the user. Thus, the MMI can be adapted to the needs of the user within a643
range of workload that can otherwise not be resolved. Our approach shows that EEG activity like the P300-644
related activity that is naturally evoked during interaction can be used to adapt an MMI with respect to645
online changes in task load or task engagement of an operator. Thus, the dual-task design (with a primary646
and usually artificially introduced secondary task) that is often applied to infer on current processing647
capacity of the brain must not be applied to adapt for task engagement. The ERP activity can be used648
rather naturally, similar to approaches that make use of ratios of EEG power bands (Pope et al., 1995)649
while being specific to certain stages of information processing (Prinzel et al., 2003). Hence, for the user,650
our approach of measuring brain states and task engagement remains invisible and avoids any possible651
additional load on the user, since the task itself is used to measure task load, without any additional task.652

In the future, we will have a closer look at the long term effect of adaptation of the ISI compared to a high653
task load condition, i.e., ISI of 10 s or even lower. For this, it is required to avoid the recording of extra654
training data since this requires a considerable amount of time. The total time for one experiment (6 runs)655
was already between three to four hours including preparation. Thus, for a long term study, preparation and656
especially training of the classifier must be kept to a minimum. This can be achieved by using zero-training657
approaches (Krauledat et al., 2008; Kindermans et al., 2012) or by using old training data from either658
previous recordings of the same subject or other subjects (Devlaminck et al., 2011; Lotte and Guan,659
2010; Samek et al., 2013). To reduce transfer effects (between sessions and between subjects) adaptive660
algorithms for the spatial filter (Rivet et al., 2011; Ghaderi and Straube, 2013), the classifier (Li et al.,661
2008; Lu et al., 2009; Tabie et al., 2014) or both (Wöhrle et al., 2015) can be applied. Moreover, we662
want to investigate whether adaptive measures can be used to even improve the classification performance663
and the support for the user as we could already show for the prediction of movement onsets (Tabie et al.,664
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2014). Finally, we will investigate transferability of the final approach to a mobile analysis system which665
makes use of hardware accelerators as already tested for the current application. Even for an adaptive666
approach hardware accelerators have shown to be feasible for the detection of both the P300 event-related667
potential (Wöhrle et al., 2013b,a, 2014a) and the movement-related ERP activity (Wöhrle et al., 2014b).668
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