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Abstract

Coreference resolution for event men-
tions enables extraction systems to process
document-level information. Current sys-
tems in this area base their decisions on rich
semantic features from various knowledge
bases, thus restricting them to domains
where such external sources are available.
We propose a model for this task which
does not rely on such features but instead
utilizes sentential features coming from
convolutional neural networks. Two such
networks first process coreference candi-
dates and their respective context, thereby
generating latent-feature representations
which are tuned towards event aspects rel-
evant for a linking decision. These rep-
resentations are augmented with lexical-
level and pairwise features, and serve as
input to a trainable similarity function pro-
ducing a coreference score. Our model
achieves state-of-the-art performance on
two datasets, one of which is publicly avail-
able. An error analysis points out direc-
tions for further research.

1 Introduction

Event extraction aims at detecting mentions of real-
world events and their arguments in text documents
of different domains, e.g., news articles. The sub-
sequent task of event linking is concerned with
resolving coreferences between recognized event
mentions in a document, and is the focus of this
paper.

Several studies investigate event linking and re-
lated problems such as relation mentions spanning
multiple sentences. Swampillai and Stevenson
(2010) find that 28.5 % of binary relation mentions
in the MUC 6 dataset are affected, as are 9.4 % of

relation mentions in the ACE corpus from 2003.
Ji and Grishman (2011) estimate that 15 % of slot
fills in the training data for the “TAC 2010 KBP
Slot Filling” task require cross-sentential inference.
To confirm these numbers, we analyzed the event
annotation of the ACE 2005 corpus and found that
approximately 23 % of the event mentions lack ar-
guments which are present in other mentions of
the same event instance in the respective document.
These numbers suggest that event linking is an im-
portant task.

Previous approaches for modeling event men-
tions in context of coreference resolution (Bejan
and Harabagiu, 2010; Sangeetha and Arock, 2012;
Liu et al., 2014) make either use of external feature
sources with limited cross-domain availability like
WordNet (Fellbaum, 1998) and FrameNet (Baker
et al., 1998), or show low performance. At the
same time, recent literature proposes a new kind
of feature class for modeling events (and relations)
in order to detect mentions and extract their argu-
ments, i.e., sentential features from event-/relation-
mention representations that have been created by
taking the full extent and surrounding sentence of
a mention into account (Zeng et al., 2014; Nguyen
and Grishman, 2015; Chen et al., 2015; dos Santos
et al., 2015; Zeng et al., 2015). Their promising
results motivate our work. We propose to use such
features for event coreference resolution, hoping
to thereby remove the need for extensive external
semantic features while preserving the current state-
of-the-art performance level.

Our contributions in this paper are as follows:
We design a neural approach to event linking which
in a first step models intra-sentential event men-
tions via the use of convolutional neural networks
for the integration of sentential features. In the next
step, our model learns to make coreference deci-
sions for pairs of event mentions based on the pre-
viously generated representations. This approach



does not rely on external semantic features, but
rather employs a combination of local and senten-
tial features to describe individual event mentions,
and combines these intermediate event representa-
tions with standard pairwise features for the corefer-
ence decision. The model achieves state-of-the-art
performance in our experiments on two datasets,
one of which is publicly available. Furthermore, we
present an analysis of the system errors to identify
directions for further research.

2 Problem definition

We follow the notion of events from the ACE 2005
dataset (LDC, 2005; Walker et al., 2006). Consider
the following example:

British bank Barclays had agreed to buy
Spanish rival Banco Zaragozano for 1.14 billion
euros. The combination of the banking operations
of Barclays Spain and Zaragozano will bring to-
gether two complementary businesses and will hap-
pen this year, in contrast to Barclays’ postponed
merger with Lloyds.1

Processing these sentences in a prototypical,
ACE-style information extraction (IE) pipeline
would involve (a) the recognition of entity men-
tions. In the example, mentions of entities are
underlined. Next, (b) words in the text are pro-
cessed as to whether they elicit an event reference,
i.e., event triggers are identified and their seman-
tic type is classified. The above sentences contain
three event mentions with type Business.Merge-
Org, shown in boldface. The task of event extrac-
tion further requires that (c) participants of rec-
ognized events are determined among the entity
mentions in the same sentence, i.e., an event’s ar-
guments are identified and their semantic role wrt.
the event is classified. The three recognized event
mentions are:

E1: buy(British bank Barclays, Spanish rival Banco
Zaragozano, 1.14 billion euros)

E2: combination(Barclays Spain, Zaragozano, this year)
E3: merger(Barclays, Lloyds)

Often, an IE system involves (d) a disambiguation
step of the entity mentions against one another in
the same document. This allows to identify the
three mentions of “Barclays” in the text as referring
to the same real-world entity. The analogous task
on the level of event mentions is called (e) event
linking (or: event coreference resolution) and is
the focus of this paper. Specifically, the task is

1Based on an example in (Araki and Mitamura, 2015).

to determine that E3 is a singleton reference in
this example, while E1 and E2 are coreferential,
with the consequence that a document-level event
instance can be produced from E1 and E2, listing
four arguments (two companies, buying price, and
acquisition date).

3 Model design

This section first motivates the design decisions
of our model for event linking, before going into
details about its two-step architecture.

Event features from literature So far, a wide
range of features has been used for the represen-
tation of events and relations for extraction (Zhou
et al., 2005; Mintz et al., 2009; Sun et al., 2011;
Krause et al., 2015) and coreference resolution (Be-
jan and Harabagiu, 2010; Lee et al., 2012; Liu et
al., 2014; Araki and Mitamura, 2015; Cybulska
and Vossen, 2015) purposes. The following is an
attempt to list the most common classes among
them, along with examples:

• lexical: surface string, lemma, word embeddings, con-
text around trigger

• syntactic: depth of trigger in parse tree, dependency
arcs from/to trigger

• discourse: distance between coreference candidates,
absolute position in document

• semantic (intrinsic): comparison of event arguments
(entity fillers, present roles), event type of coreference
candidates

• semantic (external): coreference-candidates similarity
in lexical-semantic resources (WordNet, FrameNet) and
other datasets (VerbOcean corpus), enrichment of ar-
guments with alternative names from external sources
(DBpedia, Geonames)

While lexical, discourse, and intrinsic-semantic fea-
tures are available in virtually all application sce-
narios of event extraction/linking, and even syn-
tactic parsing is no longer considered an expen-
sive feature source, semantic features from exter-
nal knowledge sources pose a significant burden
on the application of event processing systems, as
these sources are created at high cost and come
with limited domain coverage.

Fortunately, recent work has explored the use of
a new feature class, sentential features, for tackling
relation-/event-extraction related tasks with neural
networks (Zeng et al., 2014; Nguyen and Grishman,
2015; Chen et al., 2015; dos Santos et al., 2015;
Zeng et al., 2015). These approaches have shown
that processing sentences with neural models yields
representations suitable for IE, which motivates
their use in our approach.
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Figure 1: The two parts of the model. The first part computes a representation for a single event mention.
The second part is fed with two such event-mention representations plus a number of pairwise features for
the input event-mention pair, and calculates a coreference score.

Data properties A preliminary analysis of one
dataset used in our experiments (ACE++; see
Section 5) further motivates the design of our
model. We found that 50.97 % of coreferential
event-mentions pairs share no arguments, either
by mentioning distinct argument roles or because
one/both mentions have no annotated arguments.
Furthermore, 47.29 % of positive event-mention
pairs have different trigger words. It is thus im-
portant to not solely rely on intrinsic event proper-
ties in order to model event mentions, but to addi-
tionally take the surrounding sentence’s semantics
into account. Another observation regards the dis-
tance of coreferential event mentions in a document.
55.42% are more than five sentences apart. This
indicates that a locality-based heuristic would not
perform well and also encourages the use of sen-
tential features for making coreference decisions.

3.1 Learning event representations

The architecture of the model (Figure 1) is split into
two parts. The first one aims at adequately repre-
senting individual event mentions. As is common
in literature, words of the whole sentence of an
input event mention are represented as real-valued
vectors viw of a fixed size dw, with i being a word’s
position in the sentence. These word embeddings

are updated during model training and are stored in
a matrix Ww ∈ Rdw×|V |; |V | being the vocabulary
size of the dataset.

Furthermore, we take the relative position of to-
kens with respect to the mention into account, as
suggested by (Collobert et al., 2011; Zeng et al.,
2014). The rationale is that while the absolute posi-
tion of learned features in a sentence might not be
relevant for an event-related decision, the position
of them wrt. the event mention is. Embeddings vip
of size dp for relative positions of words are gener-
ated in a way similar to word embeddings, i.e., by
table lookup from a matrix Wp ∈ Rdp×smax∗2−1 of
trainable parameters. Again i denotes the location
of a word in a sentence; smax is the maximum sen-
tence length in the dataset. Embeddings for words
and positions are concatenated into vectors vit of
size dt = dw + dp, this means that now every word
in the vocabulary has a different representation for
each distinct distance with which it occurs to an
event trigger.

A sentence with s words is represented by a ma-
trix of dimensions s × dt. This matrix serves as
input to a convolution layer. In order to compress
the semantics of s words into a sentence-level fea-
ture vector with constant size, the convolution layer
applies dc filters to each window of n consecutive



words, thereby calculating dc features for each n-
gram of a sentence. For a single filter wc ∈ Rn∗dt

and particular window of n words starting at posi-
tion i, this operation is defined as

vic = relu(wc · vi:i+n−1
t + bc), (1)

where vi:i+n−1
t is the flattened concatenation of

vectors v(·)t for the words in the window, bc is a bias,
and relu is the activation function of a rectified
linear unit. In Figure 1, dc = 3 and n = 2.

In order to identify the most indicative features
in the sentence and to introduce invariance for the
absolute position of these, we feed the n-gram rep-
resentations to a max-pooling layer, which identi-
fies the maximum value for each filter. We treat
n-grams on each side of the trigger word separately
during pooling, which allows the model to han-
dle multiple event mentions per sentence, similar
in spirit to (Chen et al., 2015; Zeng et al., 2015).
The pooling step for a particular convolution fil-
ter j ∈ [1, dc] and sentence part k ∈ {←[, 7→} is
defined as

vj,km = max (vic), (2)

where i runs through the convolution windows of
k. The output of this step are sentential features
vsent ∈ R2∗dc of the input event mention:

vsent = (v1,←[
m , . . . , vdc,←[

m , v1, 7→m , . . . , vdc, 7→m ) (3)

Additionally, we provide the network with
trigger-local, lexical-level features by concatenat-
ing vsent with the word embeddings v(·)w of the trig-
ger word and its left and right neighbor, resulting in
vsent+lex ∈ R2∗dc+3∗dw . This encourages the model
to take the lexical semantics of the trigger into ac-
count, as these can be a strong indicator for coref-
erence. The result is processed by an additional
hidden layer, generating the final event-mention
representation ve with size de used for the subse-
quent event-linking decision:

ve = tanh(Wevsent+lex + be). (4)

3.2 Learning coreference decisions
The second part of the model (Figure 1b) processes
the representations for two event mentions v1e , v2e ,
and augments these with pairwise comparison fea-
tures vpairw to determine the compatibility of the
event mentions. The following features are used, in
parentheses we give the feature value for the pair
E1, E2 from the example in Section 1:

• Coarse-grained and/or fine-grained event type agree-
ment (yes, yes)

• Antecedent event is in first sentence (yes)
• Bagged distance between event mentions in #sen-

tences/#intermediate event mentions (1, 0)
• Agreement in event modality (yes)
• Overlap in arguments (two shared arguments)

The concatenation of these vectors

vsent+lex+pairw = (v1e , v
2
e , vpairw) (5)

is processed by a single-layer neural network which
calculates a distributed similarity of size dsim for
the two event mentions:

vsim = square(Wsimvsent+lex+pairw + bsim). (6)

The use of the square function as the network’s
non-linearity is backed by the intuition that for
measuring similarity, an invariance under polarity
changes is desirable. Having dsim similarity dimen-
sions allows the model to learn multiple similarity
facets in parallel; in our experiments, this setup
outperformed model variants with different activa-
tion functions as well as a cosine-similarity based
comparison.

To calculate the final output of the model, vsim is
fed to a logistic regression classifier, whose output
serves as the coreference score:

score = σ(Woutvsim + bout) (7)

We train the model parameters

θ = {Ww,Wp, {wc}, {bc},We, be,Wsim, bsim,Wout, bout} (8)

by minimizing the logistic loss over shuffled mini-
batches with gradient descent using Adam (Kingma
and Ba, 2014).

3.3 Example generation and clustering

We investigated two alternatives for the genera-
tion of examples from documents with recognized
event mentions. Figure 2 shows the strategy we
found to perform best, which iterates over the event
mentions of a document and pairs each mention
(the “anaphors”) with all preceding ones (the “an-
tecedent” candidates). This strategy applies to both
training and inference time. Soon et al. (2001) pro-
pose an alternative strategy, which during training
creates positive examples only for the closest ac-
tual antecedent of an anaphoric event mention with
intermediate event mentions serving as negative
antecedent candidates. In our experiments, this



1: procedure GENERATEEXAMPLES(Md):
2: Md = (m1, . . . ,m|Md|)
3: Pd ← ∅
4: for i = 2, . . . , |Md| do
5: for j = 1, . . . , i− 1 do
6: Pd ← Pd ∪ {(mi,mj)}
7: return Pd

Figure 2: Generation of examples Pd for a docu-
ment d with a sequence of event mentionsMd.

1: procedure GENERATECLUSTERS(Pd, score):
2: Pd = {(mi,mj)}i,j
3: score : Pd 7→ [0, 1]
4: Cd ← {(mi,mj) ∈ Pd : score(mi,mj) > 0.5}
5: while ∃(mi,mk), (mk,mj) ∈ Cd : (mi,mj) 6∈ Cd do
6: Cd ← Cd ∪ {(mi,mj)}
7: return Cd

Figure 3: Generation of event clusters Cd for a
document d based on the coreference scores from
the model. Pd is the set of all event-mention pairs
from a document, as implemented in Figure 2.

strategy performed worse than the less elaborate
algorithm in Figure 2.

The pairwise coreference decisions of our model
induce a clustering of a document’s event men-
tions. In order to force the model to output a
consistent view on a given document, a strategy
for resolving conflicting decisions is needed. We
followed the strategy detailed in Figure 3, which
builds the transitive closure of all positive links. Ad-
ditionally, we experimented with Ng and Gardent
(2002)’s “BestLink” strategy, which discards all
but the highest-scoring antecedent of an anaphoric
event mention. Liu et al. (2014) reported that for
event linking, BestLink outperforms naive tran-
sitive closure, however, in our experiments (Sec-
tion 5) we come to a different conclusion.

4 Experimental setting, model training

We implemented our model using the TensorFlow
framework (Abadi et al., 2015, v0.6), and chose
the ACE 2005 dataset (Walker et al., 2006, later:
ACE) as our main testbed. The annotation of this
corpus focuses on the event types Conflict.Attack,
Movement.Transport, and Life.Die reporting about
terrorist attacks, movement of goods and people,
and deaths of people; but also contains many more
related event types as well as mentions of business-
relevant and judicial events. The corpus consists
of merely 599 documents, which is why we cre-
ate a second dataset that encompasses these doc-
uments and additionally contains 1351 more web

ACE ACE++

# documents 599 1950
# event instances 3617 7520
# event mentions 4728 9956

Table 1: Dataset properties.

dw 300 η 10−5

dp 8 β1 0.2

dc 256 β2 0.999

de 50 ε 10−2

dsim 2 batch size 512

n 3 epochs ≤ 2000

Dropout no `2 reg. no

Table 2: Hyperparameter settings.

documents annotated in an analogous fashion with
the same set of event types. We refer to this sec-
ond dataset as ACE++. Both datasets are split 9:1
into a development (dev) and test partition; we
further split dev 9:1 into a training (train) and vali-
dation (valid) partition. Table 1 lists statistics for
the datasets.

There are a number of architectural alternatives
in the model as well as hyperparameters to opti-
mize. Besides varying the size of intermediate
representations in the model (dw, dp, dc, de, dsim),
we experimented with different convolution win-
dow sizes n, activation functions for the similarity-
function layer in model part (b), whether to use
the dual pooling and final hidden layer in model
part (a), whether to apply regularization with `2
penalties or Dropout, and parameters to Adam
(η, β1, β2, ε). We started our exploration of this
space of possibilities from previously reported hy-
perparameter values (Zhang and Wallace, 2015;
Chen et al., 2015) and followed a combined strat-
egy of random sampling from the hyperparameter
space (180 points) and line search. Optimization
was done by training on ACE++

train and evaluating on
ACE++

valid. The final settings we used for all follow-
ing experiments are listed in Table 2. Ww is ini-
tialized with pre-trained embeddings of (Mikolov
et al., 2013)2, the embedding matrix for relative
positions (Wp) and all other model parameters are
randomly initialized. Model training is run for
2000 epochs, after which the best model on the
respective valid partition is selected.

2
https://code.google.com/archive/p/word2vec/



BLANC B-CUBED MUC Positive links

4 ∗ (Precision / Recall / F1 score) in %

This paper 71.80 75.16 73.31 90.52 86.12 88.26 61.54 45.16 52.09 47.89 56.20 51.71
(Liu et al., 2014) 70.88 70.01 70.43 89.90 88.86 89.38 53.42 48.75 50.98 55.86 40.52 46.97
(Bejan and Harabagiu, 2010) — — — 83.4 84.2 83.8 — — — 43.3 47.1 45.1
(Sangeetha and Arock, 2012) — — — — — 87.7 — — — — — —

Table 3: Event-linking performance of our model & competitors on ACE. Best value per metric in bold.

5 Evaluation

This section elaborates on the conducted experi-
ments. First, we compare our approach to state-of-
art systems on dataset ACE, after which we report
experiments on ACE++, where we contrast varia-
tions of our model to gain insights about the impact
of the utilized feature classes. We conclude this
section with an error analysis.

5.1 Comparison to state-of-the-art on ACE

Table 3 depicts the performance of our model,
trained on ACEtrain, on ACEtest, along with the per-
formance of state-of-the-art systems from the liter-
ature. From the wide range of proposed metrics for
the evaluation of coreference resolution, we believe
BLANC (Recasens and Hovy, 2011) has the high-
est validity, as it balances the impact of positive
and negative event-mention links in a document.
Negative links and consequently singleton event
mentions are more common in this dataset (more
than 90 % of links are negative). As Recasens and
Hovy (2011) point out, the informativeness of met-
rics like MUC (Vilain et al., 1995), B-CUBED
(Bagga and Baldwin, 1998), and the naive positive-
link metric suffers from such imbalance. We still
add these metrics for completeness, and because
BLANC scores are not available for all systems.

Unfortunately, there are two caveats to this com-
parison. First, while a 9:1 train/test split is the com-
monly accepted way of using ACE, the exact docu-
ments in the partitions vary from system to system.
We are not aware of any publicized split from previ-
ous work on event linking, which is why we create
our own and announce the list of documents in
ACEvalid/ACEtest at https://git.io/vwEEP.
Second, published methods follow different strate-
gies regarding preprocessing components. While
all systems in Table 3 use gold-annotated event-
mention triggers, Bejan and Harabagiu (2010) and
Liu et al. (2014) use a semantic-role labeler and
other tools instead of gold-argument information.
We argue that using full gold-annotated event men-

tions is reasonable in order to mitigate error propa-
gation along the extraction pipeline and make per-
formance values for the task at hand more informa-
tive.

We beat Liu et al. (2014)’s system in terms of F1
score on BLANC, MUC, and positive-links, while
their system performs better in terms of B-CUBED.
Even when taking into account the caveats men-
tioned above, it seems justified to assess that our
model performs in general on-par with their state-
of-the-art system. Their approach involves random-
forest classification with best-link clustering and
propagation of attributes between event mentions,
and is grounded on a manifold of external feature
sources, i.e., it uses a “rich set of 105 semantic
features”. Thus, their approach is strongly tied to
domains where these semantic features are avail-
able and is potentially hard to port to other text
kinds. In contrast, our approach does not depend
on resources with restricted domain availability.

Bejan and Harabagiu (2010) propose a non-
parametric Bayesian model with standard lexical-
level features and WordNet-based similarity be-
tween event elements. We outperform their system
in terms of B-CUBED and positive-links, which in-
dicates that their system tends to over-merge event
mentions, i.e., has a bias against singletons. They
use a slightly bigger variant of ACE with 46 addi-
tional documents in their experiments.

Sangeetha and Arock (2012) hand-craft a simi-
larity metric for event mentions based on the num-
ber of shared entities in the respective sentences,
lexical terms, synsets in WordNet, which serves as
input to a mincut-based cluster identification. Their
system performs well in terms of B-CUBED F1,
however their paper provides few details about the
exact experimental setup.

Another approach with results on ACE was
presented by Chen et al. (2009), who employ a
maximum-entropy classifier with agglomerative
clustering and lexical, discourse, and semantic fea-
tures, e.g., also a WordNet-based similarity mea-



Model Dataset BLANC

(P/R/F1 in %)

1) Section 3 ACE 71.80 75.16 73.31
2) Sec. 3 + BestLink ACE 75.68 69.72 72.19

3) Section 3 ACE++ 73.22 83.21 76.90
4) Sec. 3 + BestLink ACE++ 74.24 68.86 71.09

Table 4: Impact of data amount and clustering.

Pw Loc Sen Dataset BLANC

(P/R/F1 in %)

1) X ACE++ 57.45 68.16 56.69
2) X X ACE++ 62.24 76.23 64.12
3) X X X ACE++ 73.22 83.21 76.90
4) X X ACE++ 82.60 70.71 74.97
5) X X ACE++ 59.67 66.25 61.28
6) X ACE++ 58.38 55.85 56.70

Table 5: Impact of feature classes; “Pw” is short
for pairwise features, “Loc” refers to trigger-local
lexical features, “Sen” corresponds to sentential
features.

sure. However, they report performance using a
threshold optimized on the test set, thus we decided
to not include the performance here.

5.2 Further evaluation on ACE and ACE++

We now look at several aspects of the model perfor-
mance to gain further insights about it’s behavior.

Impact of dataset size and clustering strategy
Table 4 shows the impact of increasing the amount
of training data (ACE → ACE++). This increase
(rows 1, 3) leads to a boost in recall, from 75.16%
to 83.21%, at the cost of a small decrease in preci-
sion. This indicates that the model can generalize
much better using this additional training data.

Looking into the use of the alternative cluster-
ing strategy BestLink recommended by Liu et al.
(2014), we can make the expected observation of
a precision improvement (row 1 vs. 2; row 3 vs.
4), due to fewer positive links being used before
the transitive-closure clustering takes place. This is
however outweighed by a large decline in recall, re-
sulting in a lower F1 score (73.31→ 72.19; 76.90
→ 71.09). The better performance of BestLink
in Liu et al.’s model suggests that our model al-
ready weeds out many low confidence links in the
classification step, which makes a downstream fil-
tering unnecessary in terms of precision, and even
counter-productive in terms of recall.

Model Dataset BLANC

(P/R/F1 in %)

Section 3 ACE++ 73.22 83.21 76.90
All singletons ACE++ 45.29 50.00 47.53
One instance ACE++ 4.71 50.00 8.60
Same type ACE++ 62.73 84.75 61.35

Table 6: Event-linking performance of our model
against naive baselines.

Impact of feature classes Table 5 shows our
model’s performance when particular feature
classes are removed from the model (with re-
training), with row 3 corresponding to the full
model as described in Section 3. Unsurprisingly,
classifying examples with just pairwise features
(row 1) results in the worst performance, and
adding first trigger-local lexical features (row 2),
then sentential features (row 3) subsequently raises
both precision and recall. Just using pairwise fea-
tures and sentential ones (row 4), boosts precision,
which is counter-intuitive at first, but may be ex-
plained by a different utilization of the sentential-
feature part of the model during training. This part
is then adapted to focus more on the trigger-word
aspect, meaning the sentential features degrade to
trigger-local features. While this allows to reach
higher precision (recall that Section 3 finds that
more than fifty percent of positive examples have
trigger-word agreement), it substantially limits the
model’s ability to learn other coreference-relevant
aspects of event-mention pairs, leading to low re-
call. Further considering rows 5 & 6, we can con-
clude that all feature classes indeed positively con-
tribute to the overall model performance.

Baselines The result of applying three naive base-
lines to ACE++ is shown in Table 6. The all sin-
gletons/one instance baselines predict every input
link to be negative/positive, respectively. In partic-
ular the all-singletons baseline performs well, due
to the large fraction of singleton event mentions
in the dataset. The third baseline, same type, pre-
dicts a positive link whenever there is agreement
on the event type, namely, it ignores the possibility
that there could be multiple event mentions of the
same type in a document which do not refer to the
same real-world event, e.g., referring to different
terrorist attacks. This baseline also performs quite
well, in particular in terms of recall, but shows low
precision.



Error analysis We manually investigated a sam-
ple of 100 false positives and 100 false negatives
from ACE++ in order to get an understanding of
system errors.

It turns out that a significant portion of the false
negatives would involve the resolution of a pronoun
to a previous event mention, a very hard and yet un-
solved problem. Consider the following examples:

• “It’s crazy that we’re bombing Iraq. It sickens me.”
• “Some of the slogans sought to rebut war supporters’

arguments that the protests are unpatriotic. [...] Nobody
questions whether this is right or not.

In both examples, the event mentions (trigger
words in bold font) are gold-annotated as coref-
erential, but our model failed to recognize this.

Another observation is that for 17 false negatives,
we found analogous cases among the sampled false
positives where annotators made a different anno-
tation decision. Consider these examples:

• The 1860 Presidential Election. [...] Lincoln won a
plurality with about 40% of the vote.

• She lost her seat in the 1997 election.

Each bullet point has two event mentions (in bold
font) taken from the same document and refer-
ring to the same event type, i.e., Personnel.Elect.
While in the first example, the annotators identified
the mentions as coreferential, the second pair of
mentions is not annotated as such. Analogously,
22 out of the 100 analyzed false positives were
cases where the misclassification of the system
was plausible to a human rater. This exemplifies
that this task has many boundary cases were a pos-
itive/negative decision is hard to make even for
expert annotators, thus putting the overall perfor-
mance of all models in Table 3 in perspective.

6 Related work

We briefly point out other relevant approaches and
efforts from the vast amount of literature.

Event coreference In addition to the competitors
mentioned in Section 5, approaches for event link-
ing were presented, e.g., by Chen and Ji (2009),
who determine link scores with hand-crafted com-
patibility metrics for event mention pairs and a
maximum-entropy model, and feed these to a spec-
tral clustering algorithm. A variation of the event-
coreference resolution task extends the scope to
cross-document relations. Cybulska and Vossen
(2015) approach this task with various classifica-
tion models and propose to use a type-specific

granularity hierarchy for feature values. Lee et al.
(2012) further extend the task definition by jointly
resolving entity and event coreference, through sev-
eral iterations of mention-cluster merge operations.
Sachan et al. (2015) describe an active-learning
based method for the same problem, where they de-
rive a clustering of entities/events by incorporating
bits of human judgment as constraints into the ob-
jective function. Araki and Mitamura (2015) simul-
taneously identify event triggers and disambiguate
them wrt. one another with a structured-perceptron
algorithm.

Resources Besides the ACE 2005 corpus, a num-
ber of other datasets with event-coreference annota-
tion have been presented. Hovy et al. (2013) reports
on the annotation process of two corpora from the
domains of “violent events” and biographic texts;
to our knowledge neither of them is publicly avail-
able. OntoNotes (Weischedel et al., 2013) com-
prises different annotation layers including coref-
erence (Pradhan et al., 2012), however intermin-
gles entity and event coreference. A series of re-
leases of the EventCorefBank corpus (Bejan and
Harabagiu, 2010; Lee et al., 2012; Cybulska and
Vossen, 2014) combine linking of event mentions
within and across documents, for which Liu et al.
(2014) report a lack of completeness on the within-
document aspect. The ProcessBank dataset (Berant
et al., 2014) provides texts with event links from
the difficult biological domain.

Other A few approaches to the upstream task
of event extraction, while not considering within-
document event linking, still utilize discourse-level
information or even cross-document inference. For
example, Liao and Grishman (2010) showed how
the output of sentence-based classifiers can be fil-
tered wrt. discourse-level consistency. Yao et al.
(2010) resolved coreferences between events from
different documents in order to make a global
extraction decision, similar to (Ji and Grishman,
2008) and (Li et al., 2011).

In addition to convolutional neural networks,
more types of neural architectures lend themselves
to the generation of sentential features. Recently
many recursive networks and recurrent ones have
been proposed for the task of relation classification,
with state-of-the-art results (Socher et al., 2012;
Hashimoto et al., 2013; Ebrahimi and Dou, 2015;
Xu et al., 2015; Li et al., 2015).



7 Conclusion

Our proposed model for the task of event linking
achieves state-of-the-art results without relying on
external feature sources. We have thus shown that
low linking performance, coming from a lack of
semantic knowledge about a domain, is evitable.
In addition, our experiments give further empirical
evidence for the usefulness of neural models for
generating latent-feature representations for sen-
tences.

There are several areas for potential future work.
As next steps, we plan to test the model on
more datasets and task variations, i.e., in a cross-
document setting or for joint trigger identification
and coreference resolution. On the other hand,
separating anaphoricity detection from antecedent
scoring, as is often done for the task of entity coref-
erence resolution (e.g., by Wiseman et al. (2015)),
might result in performance gains; also the gener-
ation of sentential features from recurrent neural
networks seems promising. Regarding our medium-
term research agenda, we would like to investigate
if the model can benefit from more fine-grained in-
formation about the discourse structure underlying
a text. This could guide the model when encoun-
tering the problematic case of pronoun resolution,
described in the error analysis.
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