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ABSTRACT

Camera pose estimation is the cornerstone of Augmented Reality
applications. Pose tracking based on camera images exclusively has
been shown to be sensitive to motion blur, occlusions, and illumina-
tion changes. Thus, a lot of work has been conducted over the last
years on visual-inertial pose tracking using acceleration and angu-
lar velocity measurements from inertial sensors in order to improve
the visual tracking. Most proposed systems use statistical filter-
ing techniques to approach the sensor fusion problem, that require
complex system modelling and calibrations in order to perform ad-
equately. In this work we present a novel approach to sensor fusion
using a deep learning method to learn the relation between camera
poses and inertial sensor measurements. A long short-term memory
model (LSTM) is trained to provide an estimate of the current pose
based on previous poses and inertial measurements. This estimate
is then appropriately combined with the output of a visual track-
ing system using a linear Kalman Filter to provide a robust final
pose estimate. Our experimental results confirm the applicability
and tracking performance improvement gained from the proposed
sensor fusion system.

Index Terms: I.4.8 [Scene Analysis]: Sensor fusion—tracking;
I.2.10 [Vision and Scene Understanding]: Motion—Modeling
and recovery of physical attributes; I.2.6 [Artificial Intelligence]:
Learning—Connectionism and neural nets

1 INTRODUCTION

Accurate camera pose tracking is a core enabling technology for
Augmented Reality (AR) applications using handheld or wearable
devices [1]. Precise estimation of the camera’s six Degree of Free-
dom pose (6DoF) consisting of camera position and orientation al-
lows realistic rendering of virtual objects in the observed scene [2].

Vision-based systems for tracking using markers or natural fea-
tures generally perform well in scenarios with slow camera motion
[3, 4, 5]. However, in situations where the image quality is com-
promised, for example during fast camera movements that cause
blurring or during sudden illumination changes, pure visual track-
ing systems tend to fail. On the other hand, pose tracking us-
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ing inertial sensors (accelerometers and gyroscopes) is more suit-
able for following fast motion since the sensors can operate at a
much higher frequency, but usually provide biased measurements
with high noise levels. For this reason, there has been a lot of re-
search on sensor fusion pose tracking systems attempting to com-
bine measurements from visual trackers and inertial sensors in order
to achieve more robust tracking [6, 7, 8, 9, 10, 11].

Commonly, statistical filtering approaches such as the Extended
Kalman Filter (EKF), Unscented Kalman Filter (UKF) or Particle
Filters (PF) are used in sensor fusion systems. A tightly coupled
fusion system that processes measurements from the visual and in-
ertial sensors in an EKF framework is proposed in [12]. In their
work, four different previously proposed system models for fusion
are compared, with some of them using only the gyroscope and
others using both inertial sensors. The system model treating the
inertial measurements (acceleration and angular velocity) as con-
trol inputs to the time update of the EKF is shown to achieve the
best performance considering tracking accuracy and computational
overhead.

A simultaneous motion and structure estimation system using
sensor fusion is given in [8]. Both the EKF and the UKF were used,
showing similar tracking accuracy with the EKF being much faster
in computation time. A visual tracking marker-based system where
inertial tracking is deployed as a substitute only when the visual
target is occluded is given in [13]. Another loosely coupled fusion
approach is presented in [11] and applied to visual-inertial fusion in
smartphones. An adaptive Kalman filter with abrupt error detection
is used to fuse the output of an inertial and a visual tracker, however
only the case of tracking a planar 2D target is considered. Another
apporach is to use the inertial tracking only to provide guidance to
the visual tracking system as to where tracked features are expected
to be detected [14]. In more recent work, the integration of inertial
measurements is done by solving an optimization problem or vari-
ations of the EKF [15, 16]. These advanced methods still employ a
parametric inertial sensor error model of bias and Gaussian noise.

Adding inertial measurements in a visual tracking framework is a
task that requires a lot of preparatory high precision work. A hand-
eye calibration consisting of a rotation and a translation between the
camera and the inertial sensors has to be computed in order to be
able to bring the measurements from the visual and inertial sensors
to the same reference coordinate system [17, 18, 19]. This calibra-
tion was added to the filtering framework state in [20]. Thus, self-
calibration between camera and inertial sensor is performed dur-
ing operation of the tracking system by adding however additional
complexity to the filtering. Another calibration from the inertial
measurement unit coordinate system to the global coordinate sys-
tem has to be computed in order to be able to remove gravity from



Figure 1: Proposed Fusion System Architecture.

the accelerometer measurements based on the current orientation of
the sensor and obtain linear acceleration [12].

Furthermore, in commercially available inertial sensors the mea-
surements are not only disturbed by noise, but have also orienta-
tion dependent biases and possibly an incorrect axis alignment [21].
Non-linearity and noise scaling over the measurement range can
also be encountered [22]. Modeling this behaviour and estimating
noise covariances and biases in order to integrate the measurements
in a statistical filtering framework can lead to a very complex sys-
tem model. Additionally, synchronization of inertial sensors mea-
surements and camera video frames is also desirable.

The main contribution of our work is a novel approach to visual-
inertial fusion that uses deep learning techniques in order to model
the correspondence of the measurements from an inertial sensor to
the tracked camera pose. A long short-term memory (LSTM) [23]
is trained to estimate the current camera pose using previous esti-
mates and measurements from the inertial sensors. This allows for
rapid deployment of a visual-inertial pose tracking system since a
lot of calibration and noise estimation work for the inertial sensors
is replaced by a simple LSTM training phase from a set of recorded
data. Furthermore, we verify the applicability and tracking accu-
racy improvement of our sensor fusion tracking in comparison to a
purely visual pose estimation tracking system.

To our knowledge, this is the first time that deep learning tech-
niques are applied to the visual-inertial sensor fusion pose tracking
problem. In the recent work of Kendall et al. [24] a Convolutional
Neural Network (CNN) was trained to solve the problem of 6DoF
pose tracking using images as input showing promising results but
not achieving the required accuracy for an indoor AR application.

This paper is structured as follows: In the next section we for-
mulate the problem at hand and the made assumptions. In Section 3
our approach to visual-inertial fusion is presented. The architecture
of the proposed fusion pose tracking system is explained and its in-
dividual components are analyzed. In Section 4, the experimental
setup used to evaluate the performance of the proposed system is
described and the experimental results are presented and discussed.
The paper ends with some concluding remarks.

2 PROBLEM FORMULATION

This work addresses the problem of 6DoF camera pose tracking us-
ing a visual input and corresponding measurements from the iner-
tial sensors. The problem consists of estimating the rotation matrix
RRR ∈R3x3 and translation vector ttt ∈R3 that relates the camera coor-
dinate frame to an object coordinate frame. Using a homogeneous
representation of 3D points PPP ∈ R4 in the object coordinate system

Figure 2: Architecture of the proposed LSTM for camera pose esti-
mation from inertial measurements.

and a homogeneous representation of 2D points ppp ∈R3 in the cam-
era image coordinate system, the camera pose estimation problem
is finding a camera pose [RRR|ttt] such that the mapping

ppp = KKK[RRR|ttt]PPP, (1)

best fits a set of known 3D to 2D correspondences C = {PPPi↔ pppi}
with KKK ∈ R3x3 being the camera instrinsics matrix computed from
camera calibration. In the case of visual-inertial fusion for pose
estimation apart from the set of 3D/2D correspondences C, an array
SSS ∈ RNx7 of vectors sssi ∈ R7 of inertial measurements is available
where

sssi = [τi,αxi ,αyi ,αzi ,ωxi ,ωyi ,ωzi ], (2)

where τi denotes the timestamp of an inertial measurement and α

and ω denote the acceleration and angular velocity measured in x,y
and z direction of the inertial sensor coordinates frame respectively.
The dimension N of the inertial measurements array SSS is defined
by the number of inertial measurements that the sensors provide
per every camera frame. Thus, the sensor fusion problem consists
of finding a function F that optimally estimates the pose [RRR|ttt]k at
camera frame k using the pose [RRR|ttt]k−1 from camera frame k−1, a
set Ck of 3D/2D correspondences for frame k provided by the visual
tracking systems and the inertial sensor measurements SSSk collected
between frames k−1 and k:

[RRR|ttt]k = F ([RRR|ttt]k−1,Ck,SSSk) (3)

In the following the quaternion representation of rotation matrices
is used, with a quaternion qqq ∈ R4 consisting of four scalar com-
ponents qqq = [qw,qx,qy,qz] and qqq(RRR) denoting the corresponding
quaternion to a rotation matrix RRR. Thus, in the following the pose
at camera frame k will be described by a translation vector ttt and an
orientation quaternion qqq as [ttt|qqq]k.

3 PROPOSED APPROACH

In this section, the proposed sensor fusion camera pose tracking
system using images and inertial data is described. First, the ar-
chitecture of the entire system is presented in Section 3.1. Subse-
quently, a description of the individual system components is given
in Sections 3.2 to 3.4.

3.1 Fusion System Architecture
The architecture outline of the proposed visual-inertial pose track-
ing system is given graphically in Figure 1. The data capturing
for the system is done by an inertial sensor device comprising an



accelerometer and a gyroscope, and a camera to capture images.
We assume that camera and inertial sensors are synchronized in the
sense that recording is initiated at the same time for both and the
inertial sensors frequency of measurements fs is a multiple of the
camera frame capturing frequency fc so that N = fs/ fc , N ∈ N .

When the kth camera frame is captured, the image data of this
frame Ik is passed to the visual tracking module that provides
an estimate of the camera pose [ttt|qqq]vision

k consisting of a transla-
tion vector ttt and orientation quaternion qqq, based on detection and
matching of visual features from the image. In parallel an array
SSSk of N vectors of inertial measurements recorded between frames
k−1 and k as described in Section 2 is passed to the LSTM module.
The LSTM also receives as feedback the final pose estimate of the
system [ttt|qqq]k−1 corresponding to the previous frame k− 1. Based
on a number of previous system outputs and inertial measurements
the LSTM is trained to provide an estimation of the current camera
pose [ttt|qqq]LSTM

k .
A comparison module is used to detect failures of the visual

tracking system by comparing it to the output of the LSTM. The
inertial tracking done by the LSTM can slowly drift away from the
correct pose. However, it does not abruptly produce highly erro-
neous outputs. On the other hand the visual tracking system can
output estimates with high error for some frames. In order not
to allow these errors to contaminate the fusion system output the
comparison module calculates two distance metrics dt ,dq between
the LSTM output and the visual output, where dt is the euclidean
distance between the estimated positions and dq is the distance be-
tween the corresponding angles of the estimated quaternions. If
one of dt ,dq are found to exceed a threshold it is taken as an in-
dication of failure of the visual system, and only the output of the
LSTM is passed to the next module. This comparison module is
only used as a safeguard against heavily erroneous poses from the
visual tracker and is activated very rarely. The system is thus able
to retain a correct pose for some video frames even if visual track-
ing fails. However, because of the drift of inertial tracking, if no
correct pose is given from the visual system for a large number of
consecutive the system would have to be reinitialized.

Finally, the Kalman Filter module is used to combine the esti-
mated pose from the LSTM with the estimated pose from the visual
system and provide a smoothed output. Since both inputs to this
module are already given as camera poses, a simple linear Kalman
filter model is used in contrast to approaches using the EKF or UKF
for pose estimation [12, 8]. The unitary quaternions qqq representing
orientation are always renormalized at the output of the LSTM and
the Kalman Filter.

In total, the use of inertial sensors measurements in our system,
allows to filter out bad poses of the visual tracking system through
comparison and also replace the visual tracking by inertial tracking
when the visual tracking fails completely and thus deal with visual
target occlusions, motion blur in images, and illumination changes.
The trained LSTM model corresponds to a specific hardware type,
however the training procedure only has to be applied once if the
camera and inertial sensors are rigidly attached to each other. Fur-
thermore, the training procedure can be automated for any given
camera-inertial sensor device. An in depth description of the indi-
vidual components of our fusion system follows.

3.2 Visual Tracker

A visual tracking system using natural features of objects is used in
our approach. During registration, ORB [25] features are extracted
from given images of 2D registration targets, e.g. posters. By set-
ting the positions of these targets in a common three-dimensional
coordinate system, the extracted features can be registered as a set
of feature descriptors with corresponding 3D coordinates in this co-
ordinate system.

During runtime, features are extracted from each received frame

image I and matched to the registered features based on descriptor
similarity. Subsequently, a ratio test between first and second match
similarity is performed in order to exclude ambiguous matches. Us-
ing the selected matched features 2D points in the current image
and their known 3D correspondences from registration, refined pose
estimation is achieved within a RANSAC scheme that iteratively
solves the perspective PnP Problem while excluding outliers [3].

The visual tracker outputs a camera pose estimate [ttt|qqq]vision
k for

every frame consisting of a rotation quaternion qqq and translation
vector ttt with respect to the registered targets’ coordinate system, or
an error message indicating failure of the visual tracker. This can be
the case when feature matches could not be established due to e.g.
image blurring, or when the number of outliers between matches
did not allow achieving the convergence criteria of the RANSAC
process.

3.3 LSTM
A neural network architecture with an LSTM layer is trained as a
regressor. The neural network is such that the input vector includes
all the sensor outputs over the time period in which the optical sys-
tem makes a camera-pose estimation. A ground truth with inertial
measurements and accurate camera pose is recorded for training.
At time instance k the LSTM receives the estimated camera pose
[ttt|qqq]k−1 system output through the feedback channel as seen in Fig-
ure 1 and a number of N measurements SSSk from the inertial sensors.
N depends on the ratio between the inertial sensor and the camera
capturing frequencies, N = fs/ fc. Given this input, the neural net-
work is trained to produce an estimate of the current camera pose
[ttt|qqq]LSTM

k . The regression estimates of the neural network are made
by minimising the error function used in [24]. This is practically a
mean square error function with a scaling parameter for the quater-
nions error in order to bring position and quaternion error values
to approximately the same level. Various neural network architec-
tures were trained and the one providing the best results is further
described in detail. The training uses the RPROP Algorithm for the
optimization process [26].

The architecture of our LSTM implementation is given in Fig-
ure 2. The network input is fed into a 67 node fully connected
linear layer. The 67 inputs correspond to 10× 6 inertial measure-
ments( N = fs/ fc = 10 in our implementation) plus 7 inputs for
the last output pose of the system (feedback). The input layer is
followed by an LSTM layer which captures the temporal relation-
ship between the input. The LSTM layer has 256 nodes. Three
more fully connected layers are further added to the network. The
output layer is a seven node layer, representing the spatial location
ttt and the orientation quaternion qqq of the camera. Non-linearity is
added to the network by using a tanh activation function with each
layer apart from the output layer. The LSTM network is unwrapped
such that the input is fed as a sequence of vectors generated from
the sensors and the camera pose. Decision predictions are made in
a moving window style, such that the window slides over the in-
coming sequence. The network is trained on a training dataset with
ground truth camera poses obtained from observation of fiducials
and corresponding inertial measurements. The learned function of
the LSTM is a subfunction F of the sensor fusion problem func-
tion F defined in Equation 3, without the visual tracking system
correspondences set C:

[ttt|qqq]LSTM
k = F ([ttt|qqq]k−1] : [ttt|qqq]k−i],SSSk) (4)

F gives a pose estimate in frame k using the previous pose esti-
mates from frames k−1 to k− i where i is the depth of the regres-
sion and inertial sensor measurements.

3.4 Kalman Filter
Our sensor fusion system uses a linear Kalman Filter to fuse the
estimated poses [ttt|qqq]LSTM

k and [ttt|qqq]vision
k from the LSTM and the



visual tracking respectively, into a final system output pose estimate
[ttt|qqq]k. The filter state is also a vector consisting of a position ttt and
orientation quaternion qqq . During the prediction step of the filter,
instead of using the previous state of the filter the pose estimate
from the LSTM is used. The prediction equations are

ˆ[ttt|qqq]k = FFFk[ttt|qqq]LSTM
k (5a)

ΣΣΣk|k−1 = FFFkΣΣΣk−1|k−1FFFT
k +QQQk, (5b)

where FFFk is the state transition matrix which we set to an identity
matrix, ΣΣΣk is the state covariance matrix, and QQQk is the process noise
covariance matrix which we set to a diagonal matrix containing the
variance of the noise estimated at the outputs of the LSTM. The
update of the filter is performed by using the output of the visual
tracking system [ttt|qqq]vision

k as the measurement. The equations of
the filter update step are

ỹyy = [ttt|qqq]vision
k −HHHk

ˆ[ttt|qqq]k (6a)

EEEk = HHHkΣΣΣk|k−1HHHT
k (6b)

GGGk = ΣΣΣk|k−1HHHT
k EEE−1

k (6c)

[ttt|qqq]k = ˆ[ttt|qqq]k +GGGk ỹyy (6d)

ΣΣΣk|k = (III−GGGkHHHk)ΣΣΣk|k−1, (6e)

where ỹyy denotes the innovation, EEEk denotes the innovation covari-
ance, HHHk is the observation matrix set to identity here, and GGGk de-
notes the Kalman gain. The state of the filter [ttt|qqq]k after the update
is the final pose estimation output of the proposed fusion system for
each frame. When the visual tracker fails as explained in Section
3.2, there is no measurement available to perform the update step.
In this case, the output of the system is the Kalman filter state after
the prediction step ˆ[ttt|qqq]k.

4 TRACKER EVALUATION

In this section we first describe our experimental setup and sensors
used in order to evaluate the proposed sensor fusion system pre-
sented in Section 3. In the experimental results section, we first
evaluate the LSTM training in terms of error between the estimated
pose from the LSTM and the ground truth pose. Subsequently, we
evaluate our entire system by presenting a comparison between a
purely visual tracking approach using our visual tracker and our
sensor fusion approach. This evaluation is done by comparing the
overlap between a quadrangle drawn around the 2D target using the
estimated pose and a quadrangle drawn using the ground truth pose.

4.1 Experimental Setup
The sensing device used in our experiments is a trivisio colibri in-
ertial sensor (accelerometer and gyroscope) combined with a uEye
camera in a common casing as shown in Figure 3. The camera
image capturing can be triggered by the inertial sensors using an
internal hardware signal in order to capture frames that are synchro-
nized with inertial measurements. Throughout our experiments we
set the inertial sensor frequency to fs = 100Hz. The camera is trig-
gered every N = 10 inertial measurements and thus captures frames
at frequency fc = fs/N = 10Hz. The resolution of captured im-
ages is 1280×1024 pixels. The data received from inertial sensors
and camera were directly used in the experiment without any pre-
processing. The camera and inertial sensor respective coordinate
frames are not aligned and no hand-eye calibration [17] between
them was used, as this is indirectly contained in the learned func-
tion of the LSTM. The same holds for gravity removal from accel-
eration measurements. In common sensor fusion approaches that
use accelerometer measurements in order to estimate position, the

Figure 3: The inertial sensor with camera system used in this work.

gravity has to be removed from the measurements using the cur-
rent orientation in order to retain only free acceleration from the
measurements [12]. In our approach, this is also learned by the
LSTM. A prerequisite for this, is that the direction of gravity in the
tracked plane should be the same during the training and the de-
ployment of the system. We aligned the negative z-direction with
gravity throughout our experiments. Even if this is not the case, a
simple transformation can be applied on the data to ensure this.

Our experimental setup consists of a printed poster image that
is surrounded by a number of fiducials as shown in Figure 4. The
poster is used as the target of our visual tracking system described
in Section 3.2. ORB features are extracted and registered as 3D
points from the poster and matched in every frame to estimate the
camera pose from the 2D/3D correspondences. The fiducials are
exclusively used for the purpose of obtaining ground truth measure-
ments of the camera pose. These measurements serve for training
the LSTM and having a reference for comparison for the evalua-
tion of the system. The proposed tracking system does not require
fiducials for pose estimation during runtime. Using three marker
fiducials ensures that at least one of them is always visible on the
recorded frames to provide ground truth. When more than one fidu-
cials are visible the final ground truth pose is obtained by appropri-
ately combining all fiducials’ poses which makes it very robust in
our experiments. The used fiducials are described in detail in [27].

During the experiments 3 sets of image sequences and corre-
sponding synchronized inertial measurements were captured using
the aforementioned device. Out of these datasets, the first one with
a length of 9800 video frames and 98000 inertial sensor measure-
ments was used for training the LSTM, and the other datasets of
shorter duration (3389 and 3106 video frames) were used for eval-
uation of the LSTM and of the system as a whole. The evaluation
results are presented next. All datasets were recorded with the cap-
turing device hand-held and contain fast translational motion in all
directions, as well as fast rotational motion along all three axes, and
combinations of translational and rotational motion.

4.2 Experimental Results

In Table 1 an evaluation of the LSTM training is given. Ground
truth poses and inertial measurements are given at the input of the
LSTM and the mean absolute error to the ground truth is measured
at the output. The error for the sequence used to train the LSTM
and two other sequences used was measured as position error (in
cm) and orientation error. As expected, the error on the training
sequence is lower than the error for the two validation sequences.



Figure 4: Camera frames during execution of the experiments. The green rectangle is drawn around the expected area of the poster based on
the pose obtained from the visual natural feature tracking system. The red rectangle is drawn using the ground truth measurements from the
marker fiducials.

Table 1: LSTM pose estimation errors are given as mean absolute errors in position and orientation between the LSTM output and the ground
truth pose. The errors indicate that an LSTM can be trained to perform inertial tracking.

position error orientation error
x (cm) y (cm) z (cm) qw qx qy qz

training sequence 0.708 0.587 0.409 0.0043 0.0021 0.0065 0.0049
validation sequence 1 (slow) 1.695 1.433 0.881 0.011 0.0067 0.0196 0.0135
validation sequence 2 (fast) 1.760 1.492 0.921 0.012 0.0068 0.0206 0.0134

Table 2: Tracking accuracy comparison between a pure visual ap-
proach and our proposed visual-inertial tracking system. Overlap
corresponds to the average overlap between a quadrangle drawn
around the 2D tracking target (poster) and a quadrangle drawn based
on the ground truth (Figure 4). Failed Frames correpsonds to the
number of frames where the system could not provide a pose esti-
mate at all.

Overlap % Failed Frames #
sequence 1(slow) visual 86.3% 249/3389 7.3%
sequence 1(slow) fusion 90.8% 0/3389 0%
sequence 2(fast) visual 77.1% 487/3106 15.7%
sequence 2(fast) fusion 85.6% 0/3106 0%

However, the errors in general indicate that an LSTM can indeed be
succesfully trained to predict camera poses from inertial measure-
ments and previous poses. An increase in the size of the training
sequence should naturally lead to a decrease in the presented er-
rors.

The function that has to be learned by the LSTM to model the
mapping of inertial measurements to poses is a rather complex one
since apart from noise, biases and non-linearities of the inertial sen-
sors, the hand-eye calibration between the camera coordinate frame
and the inertial sensor coordinate frame has to be learned as well as
the effect of the orientation of the device to the measured acceler-
ation because of gravity. We can also observe that the orientation
predictions from the LSTM are more reliable. The reason for this
is the higher accuracy of the gyroscope in comparison to the ac-
celerometer and also the fact that the function that has to be learned
for the orientation is only dependant on the gyroscope measure-
ments, whereas the function for position estimation needs to take
into account the orientation of the device for the removal of gravity
from acceleration measurements.

In Table 2 we present an evaluation of the tracking accuracy of
our proposed visual-inertial tracking system (Section 3) and com-

pare it to the tracking accuracy of an equivalent purely visual track-
ing system using the approach presented in Section 3.2. Since the
targeted application area of the proposed camera tracking is aug-
mented reality we evaluate the tracking accuracy based on the qual-
ity of reprojection on the image by means of the estimated pose
using an overlap metric proposed in [11]. For every frame, the four
corners of the tracking target (2D poster, see Figure 4) are repro-
jected to their current image pixel coordinates using the estimated
camera pose and a quadrangle is drawn Vest to connect them. Simi-
larly, another quadrangle Vtrue is drawn using the ground truth mea-
surements. The percentage of overlap between them is then com-
puted as the intersection of the quadrangles divided by their union
given by

Overlap(Vtrue,Vest) =
|Vtrue∩Vest|
|Vtrue∪Vest|

×100%. (7)

The average overlap precentage between the visual tracker and the
inertial-visual tracker is compared for two sequences of images.
One sequence with smoother motion (slow) and one with more
abrupt motion (fast). The results show that using the fusion ap-
proach an increase can be achieved in the overlap percentage in
both the slow and the fast sequence. This increase is mainly due
to the fact that inertial tracking provides pose predictions that can
be used when visual tracking fails completely in the case when mo-
tion blurring or target occlusion occurs. Thus, in the fusion system
the missed frames (7.3% in the slow sequence and 15.7% in the
fast sequence) were replaced using inertial pose estimations. Apart
from the missed frames, there are a few frames where the visual
system provides poses with a very high error when there are too
many outliers among the matched features. In this case, the com-
parison of the visual tracker output with the inertial tracking output
of the LSTM allows the detection of such false visual system poses
and enables the use of the inertial estimation instead. For most
of the frames however the visual tracker produces pose estimates
that are very close to the ground truth. The Kalman Filter (Section
3.4) process noise levels are set much higher than the measurement



noise levels so that the more precise visual tracking system will be
weighted more than the inertial tracking prediction at the filter up-
date step.

Finally, we have measured the average time required by the
LSTM to compute a pose prediction to be 3.5 msec. on an Intel
Core i7 processor. This verifies that the proposed system can per-
form pose tracking in real time at very high image frame rates.

5 CONCLUSION

In this work an alternative approach to visual-inertial camera pose
tracking using deep learning techniques is presented. An LSTM is
trained to learn the mapping from previous camera pose and ensu-
ing inertial measurements to next camera pose. A linear Kalman
filter is then used to fuse the inertial tracking pose estimation to
the visual pose estimation and provide a final pose estimate that
is robust to fast motion blurring, occlusions, and illumination vari-
ations. Most importantly, the proposed system is able to integrate
inertial measurements in the tracking framework, without a need for
complex modelling of the sensors noises, biases and non-linearities,
camera and sensor coordinate frames calibration, and gravity re-
moval from acceleration measurements based on orientation. The
temporal data procesing of the LSTM should also allow learning
and compensation of timing errors between camera and sensors,
however sensor drift cannot be compensated for in the current sys-
tem implementation. The presented experimental results indicate
the succesful training of the LSTM even with a limited amount of
data, and the benefits in tracking performance obtained through the
integration of inertial tracking in the system. Future work includes
training on larger sequences of images and inertial measurements,
and integration of the approach in more demanding tracking sys-
tems, e.g. a SLAM system. Also, the effects of adding some con-
straints on the training of the LSTM should be investigated.
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