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ABSTRACT

Discrepancy check is a well-known task in industrial Augmented
Reality (AR). In this paper we present a new approach consisting
of three main contributions: First, we propose a new two-step depth
mapping algorithm for RGB-D cameras, which fuses depth images
with given camera pose in real-time into a consistent 3D model.
In a rigorous evaluation with two public benchmarks we show that
our mapping outperforms the state-of-the-art in accuracy. Second,
we propose a semi-automatic alignment algorithm, which rapidly
aligns a reference model to the reconstruction. Third, we propose
an algorithm for 3D discrepancy check based on pre-computed dis-
tances. In a systematic evaluation we show the superior perfor-
mance of our approach compared to state-of-the-art 3D discrepancy
checks.

Index Terms: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Depth cues; I.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding—3D/stereo scene analysis;

1 INTRODUCTION

Real-time 3D discrepancy check is required in many industrial ap-
plications such as prototyping, manufacturing and assembly con-
trol. With this detection one can verify with the help of a cam-
era whether the 3D geometry of a real object exactly corresponds
to a reference 3D model (e.g. CAD model). For example, after a
building element or a technical installation was constructed, 3D dis-
crepancy check can be used to check whether the constructed and
installed elements comply to their 3D specification [15]. Like many
other industrial applications [7] such a detection can be designed as
an Augmented Reality (AR) system to increase the usability consid-
erably. The detected discrepancies are directly augmented into the
current camera view to enable an interactive system. This leads to
the requirements of a precise real-time reconstruction of the scene
and a real-time discrepancy check.

Many AR systems use standard 2D color cameras, which is suffi-
cient for augmenting a scene. However, for the analysis of the scene
geometry precise depth values are required. Thus, in industry often
expensive laser scanners are used. While laser scanners offer a very
high accuracy, they are only able to capture depth measurements
for a single point or along a single scan line in time. To acquire
a complete 3D point cloud time-consuming registration algorithms
or mechanically rotating scan heads are required. Both approaches
are not suitable for an interactive AR system. In this paper we make
use of a RGB-D camera to capture a real object, since it provides
dense depth and color images at a high frame rate. However, they
suffer from a high level of noise and a limited resolution, leading
to a rare distribution in industrial applications. Thus, we propose
a new mapping approach to cope with the high sensor noise and
achieve high quality reconstruction results. In order to enable the
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Figure 1: We present our new AR discrepancy check, which is able to
capture scene geometry in real-time using an RGB-D camera. Dis-
crepancies are detected while capturing with our new semi-automatic
alignment and distance computation.

AR application the reconstruction has to be running online, mean-
ing that continuous input can be processed, and in real-time. Our
reconstruction approach can be divided into two main parts: First,
we create a precise partial reconstruction from a subset of subse-
quent depth images, which removes the sensors noise. Second, we
fuse all partial reconstructions to a globally consistent and accurate
3D model of the scene. With this approach we can achieve a much
higher accuracy compared to the state-of-the-art [24, 29] and are
not restricted to a fixed reconstruction volume.

In order to detect discrepancies between the reconstruction and
a given reference, these two models must be aligned while captur-
ing. In general, these models can have an arbitrary pose, where no
assumptions can be made. In the state-of-the-art the alignment is
done by marker detection in the scene [15] or by measuring cor-
responding points with an external coordinate measuring system
[16, 28, 34]. In this paper we present a new semi-automatic ap-
proach for reference alignment to increase the usability of our sys-
tem considerably. The alignment can again be subdivided into two
main parts: First, we coarsely align the two models by computing
corresponding points with the help of 3D feature descriptors. In
a second step, we refine the alignment with variants of ICP. After
alignment the discrepancies are detected by measuring the distances
of all points in the reconstruction to the reference. In general, this
is time-consuming and impedes an interactive discrepancy estima-
tion. Thus, we propose a new approach to detect discrepancies by
pre-computing distances in an elaborated way enabling an interac-
tive visualization.

Summarized, our main contributions are:
• A new two-step online mapping algorithm, which is able to

accurately reconstruct surfaces with an RGB-D camera like
the Microsoft Kinect v2 in real-time and outperforms state-
of-the-art methods in the reconstruction accuracy.

• A new semi-automatic approach to rapidly align a reference
model with the reconstruction.

• A new and fast approach to detect discrepancies of the whole
reconstruction to a given reference.

2016 IEEE International Symposium on Mixed and Augmented Reality

978-1-5090-3641-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ISMAR.2016.15

125



Figure 2: System overview of our new AR discrepancy check. As an input the system uses a reference model as well as depth and color images
of the Kinect v2, whereas the camera pose is estimated by an external motion capture system. The current scene is reconstructed with our new
online two-step approach consisting of partial and global reconstruction. In parallel the reference model is aligned to the reconstruction with our
new semi-automatic approach. Discrepancies are estimated in real-time with our new discrepancy check approach.

• A systematic and rigorous evaluation of all algorithm parts
with well-known publicly available benchmarks including
real and synthetic data.

The complete pipeline is shown in Figure 2 and can be subdi-
vided into three main parts: In Section 3 our two-step reconstruc-
tion approach is presented. Section 4 details our alignment process
of reconstruction and reference model, whereas Section 5 describes
our detection of discrepancies. All algorithm parts are evaluated in
detail in Section 6. See our supplementary video for a short demo
of the proposed system.

2 RELATED WORK

The usage of Augmented Reality (AR) to support humans in indus-
trial applications has a long history [7, 32]. Different kinds of dis-
crepancy checks were already investigated in the relevant literature
as introduced in this section. Discrepancy check is also sometimes
referred to as disparity estimation or difference detection [15, 35].

The first AR systems for discrepancy check were based on 2D
color images. Georgel et al. [8, 9] proposed a system for construc-
tion planning, where 3D models are superimposed into 2D images.
However, with this augmentation a discrepancy check can only be
performed visually and an analysis of the 3D geometry is impos-
sible. Webel et al. [35] presented a system with a stereo camera,
where single points in the scene can be marked with a laser pointer,
triangulated and compared. Thus, only single points can be com-
pared but no dense 3D model.

More advanced systems are based on 3D information captured
by depth cameras [15, 28], camera-projector-systems [37] or laser
scanners [11]. Simple approaches are limited to static camera po-
sitions [37] or demand manual alignment of single reconstructions
[1]. Kahn et al. [15, 16, 17] presented the first system compet-
ing with our approach. They reconstruct the scene geometry in 3D
in real-time with a Kinect v1 and the KinectFusion algorithm [24]
coupled with an external motion capture system for a precise cam-
era odometry. With this approach they capture good-looking dense
3D models in real-time, but suffer from the known drawbacks of
KinectFusion like limited accuracy [4] or restriction to a limited
reconstruction volume [29]. They align the reference model with
the reconstruction with the help of an external coordinate measure-
ment system. Disparities are detected by raycasting both the recon-
struction and the reference model from the current camera pose to
artificial depth images and comparing their per-pixel depth. This
approach runs in real-time on the GPU, but considers only the cur-
rently captured pixels and suffers from a viewpoint dependency.
The viewpoint dependency was resolved by Stahl [28] by comput-
ing closest points on the reference model for each pixel in the ar-
tificial depth image with a GPU shader. However, surfaces are not
considered and still only points in the current view are compared.

3 RECONSTRUCTION

In order to compare a real object with a virtual 3D reference model
we have to capture the 3D geometry of the real object. RGB-D cam-
eras capture dense depth images representing the surface geometry,
but suffer from a high level of noise and a limited resolution. For
our proposed system we use the Microsoft Kinect v2 [21], which
has a higher accuracy, precision and resolution than its predeces-
sor [39] or competing devices. However, the quality is still too
low, even when using advanced depth filtering technologies. Using
depth images directly for discrepancy check leads to imprecise and
incomplete results. Thus, we capture the complete real object out
of a high number of images by reconstructing it, similar to Kahn et
al. [16] and Stahl [28] (cp. Section 2).

In the literature several algorithms for 3D reconstruction with
RGB-D cameras were proposed. The 3D reconstruction problem
can be subdivided into two main problems: The camera odometry
(estimating the pose of the camera) and the mapping (fusing several
depth images to one consistent global model). Some approaches try
so solve these problems independently by first computing the cam-
era pose [6, 12, 18, 36] and then fusing the depth images with the
given pose [29, 30]. Other approaches, so-called SLAM (Simul-
taneous Localization And Mapping) algorithms, try to solve both
problems simultaneously [24], since these can be treated as a con-
voluted problem. In this paper we use like Kahn et al. [16] and
Stahl [28] an external system for the camera odometry to achieve
high precision pose estimates. Thus, our contribution is a new two-
step depth mapping, which achieves highly accurate results while
keeping the real-time constraint as detailed in Section 3.2.

3.1 Camera Odometry

For a precise 3D reconstruction we must accurately compute the
pose of the camera. The application of AR discrepancy check re-
quires to retrieve the camera pose in real-time. The literature de-
scribes several approaches for real-time camera odometry based on
the captured images [6]. However, even sophisticated approaches
[12, 18] incorporate errors of multiple centimeters in the pose esti-
mation, which is not feasible for our accuracy requirements.

Hence, we make use of a precise external coordinate measure-
ment system like Kahn et al. [16] and Stahl [28] did. These sys-
tems are common in the context of industrial AR [7, 16]. Whereas
[16, 28] use an robotic measurement arm, we utilize an active
marker tracker system of OptiTrack [25] (see Figure 3b).This sys-
tem is composed of twelve Flex 13 cameras with a resolution of
1280×1024 at 120 Hz and tracks passive spherical markers, which
are rigidly attached to the Kinect as shown in Figure 3a. To de-
tect the passive markers robustly and precisely, the motion capture
cameras emit infrared light into a capture volume of up to 10 × 10
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(a) Kinect v2 with Attached Markers (b) Motion Capture System (c) Hand-Eye Calibration

Figure 3: In our AR discrepancy check we use a (a) Microsoft Kinect v2 [21], whose pose is estimated with a (b) motion capture system [25]. In
order to use this system a (c) hand-eye calibration is necessary.

meter. The system achieves a sub-millimeter and sub-degree preci-
sion. We verified that the infrared light of the Kinect and the motion
capture system do not interfere. Compared to a robotic measure-
ment arm [16, 28] our system is more flexible and has a much wider
operating range. Nevertheless, the operating range is restricted to a
(large but finite) capture volume. Although the system price is ap-
prox. e 15k, it is still cheaper than a robotic arm (approx. e 100k).

Since all external measurement systems are not able to track the
camera centers pose directly, an additional calibration step is nec-
essary. The motion capture system tracks only the pose of the rigid
collection of the attached reflective markers. To use the depth im-
ages for the reconstruction, the pose of the camera center is re-
quired, which is not necessarily the pose of the reflective marker
collection. Nonetheless, it exists a rigid transformation between
these two poses (see Figure 3c) that can be estimated with a so-
called hand eye calibration. Here, we follow the approach of Tsai
and Lenz [31] and capture a fixed pattern (in our case a checker-
board) from n perspectives, while recording the depth images C1:n
and the detected pose Hw2m,1:n of the marker collection in world
coordinates. The camera poses Hc2p,1:n with respect to the pattern
can be easily determined with the PnP algorithm from the images
C1:n. Since the position Hw2p of the pattern is fixed, one can build
the equation system

Hc2p,1:n ∗Hm2c ∗Hw2m,1:n = Hw2p (1)

for all n perspectives and solve it for the transformation Hm2c.

3.2 Depth Mapping
After retrieving the camera pose, the acquired depth images must
be mapped into one consistent 3D model. The application of AR
discrepancy check requires a high accuracy from the reconstructed
model as well as a real-time performance. The challenge is to cope
with the high level of noise of the Kinect v2 depth sensor. The
random errors in the depth measurement rise up to multiple cen-
timeters as shown in Figure 4. When projecting 120 depth images
(this equals 4 seconds of capturing) with precisely estimated pose
into world coordinates, a noisy point cloud is generated (see Figure
7a). Thus, sophisticated filter and fusion approaches are required to
essentially reduce that noise.

In the corresponding literature several approaches with differ-
ent runtime performances were proposed. In general, real-time ap-
proaches integrate the depth images into a voxel grid with an im-
plicit surface representation. Doing this, they can cope with huge
numbers of depth images in terms of runtime and noise. The most
common approach is the KinectFusion algorithm [24], where the
depth maps are fused into a dense voxel grid on the GPU. This
algorithm was also used in the AR discrepancy check of Kahn et
al. [16] and Stahl [28]. However, KinectFusion suffers from the
restriction to a limited reconstruction volume, due to the limited
available memory on the GPU. Whelan et al. [36] overcame this

problem by dynamically shifting the dense voxel volume, whereas
Steinbrücker et al. [29, 30] used an adaptive sparse voxel volume.
Recently, Newcombe et al. [23] extended their algorithm to non-
rigid scenes.

Another approach in the literature is to compute an optimal sur-
face between a set of depth images by mathematical optimization.
Sometimes this is also referred to as superresolution [5, 20]. In gen-
eral, these approaches align several subsequent depth images and
then compute an optimal surface by energy minimization. They
deliver high quality results, but have a high runtime of several
seconds. Another approach are joint bilateral filtering algorithms
[19, 33], which require an aligned color image to increase the qual-
ity of a single depth image in real-time. However, in tests with real
data these approaches did not perform better than the superresolu-
tion out of multiple depth images.

Our new idea is to split the depth mapping into a sophisticated
two-step approach. First, a partial reconstruction from a small sub-
set of the depth images is created like in the superresolution ap-
proaches without a voxel grid to achieve the maximum quality. Sec-
ond, all partial reconstructions are integrated into an adaptive sparse
voxel volume in a global reconstruction to cope with the huge num-
ber of points.

3.2.1 Partial Reconstruction
The input for the partial reconstruction are n (n = 10 in all experi-
ments) subsequent depth images of the Kinect v2. Inspired by su-
perresolution algorithms [5, 20], the goal is to fuse them into a high
quality partial reconstruction. The main challenges are the runtime,
since state-of-the-art methods require seconds, and the high noise
level of the Kinect v2.

First, we analyze the noise properties of the Kinect v2 as visible
in Figure 4. The outer pixels of the depth images have a high stan-
dard deviation as well as a high absolute deviation. Thus, they can
not be treated as reliable. For our application of AR discrepancy
check we require high quality results, where it is better to capture
no geometry instead of wrong geometry. Consequently, we simply
remove the outer pixels with a circular filter that removes all pixels
more than 90% of the image height away from the image center.
The lost image content comprehends no problem, since the camera
center can be pointed to any interesting region by the user in our
interactive AR application.

The next step is to reduce the random noise in the images. This
incorporates high frequent noise like flying pixels and midrange
noise on surfaces. Flying pixels are erroneous depth estimates
which occur close to depth discontinuities. All time-of-flight cam-
eras suffer from this problem. To remove these pixels, we check the
one-ring neighborhood for similar values. More formally, a point B
in the point cloud P is removed if

P ∈ R3 B ∈ P @A ∈ P with
‖A−B‖< ε ∧ ‖Ax−Bx‖< 1 ∧ ‖Ay−By‖< 1, (2)
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Figure 4: Evaluation of the per-pixel error in depth images of Kinect
v2 [21]. Outer pixels have a much lower accuracy and precision.

where ε (ε = 0.01m in the experiments) is the threshold defining the
minimal distance of neighboring points. In order to remove the re-
maining noise the concepts of the superresolution algorithms [5, 20]
are very well suited. However, we must considerably increase the
runtime. First, subsequent depth images must be aligned. State-
of-the-art methods minimize therefore the distance of two point
clouds, e.g. with ICP [26]. This is runtime intensive and is dif-
ficult to be done in real-time. Indeed, alignment of depth images
can be done in our system using camera pose data from the external
motion capture system. As soon as the transformations between the
depth images are known, they can be transformed within a millisec-
ond in order to be congruent. After alignment the optimal surface
must be found. State-of-the-art methods try to find a surface that
minimizes the errors to all depth values. This is again computa-
tionally intense and difficult regarding real-time performance. Our
idea is to compute a stack of n depth values for each pixel retrieved
from the n aligned depth images. Then, the median value of the
stack is used as the new depth pixel. The median of a stack can
be computed very efficiently. Furthermore, the median is compared
to mean more robust against outliers. Although this is a simple al-
gorithm, it achieves comparable results to complex superresolution
algorithms [5, 20]. But, the runtime is essentially lower and enables
real-time performance as depicted in the evaluation in Section 6.1.
Exemplary results of our new partial reconstruction are shown in
Figure 6.

3.2.2 Global Reconstruction

The result of the partial reconstructions can be assumed to be almost
free of high-frequent noise as visible in Figure 6. However, when
combining all partial reconstructions, the number of points is too
high to be treated in real-time. In addition, small systematic low-
frequent errors like distortions remain in the partial reconstruction
just as well as for Cui et al. [5]. Thus, we make use of a voxel grid
to cope with the number of points and with small errors.

Following the works of [24, 29], the surface is stored implicitly
as a truncated signed distance function in a 3D volume approxi-
mated by a finite number of voxels. At every voxel in the volume
the function indicates how far away the closest surface is. Voxels
in front of an object have a negative sign and voxels inside a pos-
itive one, whereas the zero crossing indicates the location of the
surface. The signed distance representation has the benefit of being
able to handle an arbitrary surface topology, in contrast to e.g. a
surface mesh. As most space in the 3D voxel volume is far away
from a surface, we make use of the approach of Steinbrücker et
al. [29, 30]. The signed distance function is represented in an
octree, where only cells close to the surface are allocated. As dif-
ferent parts of the scene will be reconstructed at different distances,
we save geometry information at different resolutions of the voxel
volume.

The signed distance function is incrementally updated with each
new input partial reconstruction PRt and its corresponding camera

pose Ht . For each voxel v in the 3D volume the center point is
transformed at time t to the current camera pose Ht by

vt = Htv. (3)

The pixel location x of each voxel center vt in the camera view at
time t can be determined with the pinhole camera projection func-
tion π by

xt = π (vt) . (4)

Thus, for every voxel centers vt the reconstructed point of the par-
tial reconstruction PRt can be determined using the inverse pinhole
projection function π−1 (xt ,PRt (xt)) by

pt = π
−1 (π (vt) ,PRt (π (vt))) . (5)

The signed distance λ at the voxel center vt can be determined with
a truncation threshold µ by

λ = max{min{µ, |vt − pt |},−µ}. (6)

The truncation threshold µ must be adjusted according to the ex-
pected noise in the reconstruction. Like [29] we set µ to the dou-
bled voxel size.

In addition, we use a weighting function w(λ ) to model the re-
liability of the truncated distance. The function assigns a weight
of one to all pixels in front of the captured surface and a linearly
decreasing weight behind the surface [29]. The distance D(v, t) and
the weight D(v, t) at time t are computed by

W (v, t) = w(λ )+W (v, t−1), (7)

D(v, t) =
W (v, t−1)D(v, t−1)+w(λ )λ

W (v, t)
. (8)

As a result we achieve high-quality reconstruction results in real-
time, which outperform state-of-the-art algorithms as detailed in
the evaluation in Section 6.1.

4 ALIGNMENT

In order to enable a discrepancy check we must align the recon-
struction of the scene with a reference 3D model. In our scenario
this includes several challenges: Since we establish an online dis-
crepancy check, we must be able to align the two models as early as
possible after starting capturing. Our system should be interactive,
which requires short computation time for the alignment. In addi-
tion, our system must be robust and accurate, since detected dis-
crepancies should not be originated by imprecise alignment. While
aligning we must treat different kinds of noise, only partially over-
lapping scenes and - inherited from the application - discrepancies
between the models. The state-of-the-art systems of Kahn et al.
[16] and Stahl [28] require a manual alignment with an external
coordinate measurement tool. Therefore, they measure predefined
points on the real object and compute a transformation.

Our semi-automatic alignment can be divided into two parts:
First, initial alignment that does not make any assumptions on
the relative poses of the reconstruction and the reference model,
but typically lacks the accuracy required for a precise discrepancy
check. The second step compensates for that by doing a fine align-
ment with an iterative approach. Since we design an interactive AR
system, we give the user the possibility to trigger both parts of the
alignment independently. With this we can improve the alignment
in case more points were reconstructed or compensate misalign-
ments.

128



4.1 Initial Alignment
The result of the initial alignment is a transformation, which
coarsely aligns the reconstruction and the reference model. Com-
mon approaches try to find features in both models, match them and
estimate a rigid transformation out of the matches [14]. We are lim-
ited to geometric features, since our system should work with every
kind of reference model, e.g. CAD models, laser scans, etc. Thus,
we need features, that do not make use of any color or texture infor-
mation. The feature extraction, description and matching works as
follows: First, the feature extraction selects a subset of points from
each point cloud, which are designated as features. These points are
then described by an as unique as possible descriptor. For finding
corresponding features, the descriptors of two clouds are compared.
The technique is detailed in the following.

For feature extraction we use a simple downsampling with a
voxel grid. Because model and scene are provided by different data
sources downsampling is an instrument to make them more simi-
lar. This way of downsampling yields uniformly distributed data
and provides a priori knowledge of the point cloud density without
computing it via average nearest neighbor search. Thus, controlling
the parameters for the feature descriptor is easier and can be set as
linear dependence of the voxel grid resolution. Additionally, this is
a way to get reasonable results despite the remaining noise in the
reconstructed model (see Figure 7). Furthermore, downsampling is
used as a method to reduce computational cost. In the evaluation in
Section 6.2 we investigate the influence of the voxel grid resolution.

We ran several experiments with different kind of features, but at
the end we make use of FPFH features [27] since they showed the
best performance in our scenario. FPFH features goal is to gen-
eralize both the surface normals and the curvature estimates. This
works as follows: The first step is to compute k-nearest neighbors
qi of each feature point p. A point pair (p,qi) defines a reference
frame consisting of the three unit vectors (ui,vi,wi) centered on p.
The unit vectors (ui,vi,wi) are defined by

ui = np, vi = (p−qi)×ui, wi = ui× vi. (9)

Using this reference frame (ui,vi,wi), the difference between the
normals at np and nq can be represented by

αi = vi ·np (10)

φi =
ui× (p−qi)

‖p−qi‖
(11)

θi = arctan
(
wi ·np,ui ·np

)
(12)

The angles αi,φi,θi are computed for all pairs (p,qi) in the k-
neighborhood of point p. These angles are binned into a so-called
Simplified Point Feature Histogram (SPFH) by considering that
each of them can fall into 5 distinct bins, and the final histogram
encodes in each bin a unique combination of the distinct values for
each of the angles. Then, for each point p the values of the SPFH
of its k-neighbors qi are weighted by their distance wi = p− qi to
produce the FPFH by

FPFH(p) = SPFH(p)+
1
k

k

∑
i=1

1
wi
·SPFH(qi). (13)

For more details on FPFH we refer to [27].
As a last step, corresponding features in the two point clouds

need to be detected. For this we follow Buch et al. [3] with their
prerejective RANSAC. We choose a random polygon from the re-
construction point cloud and extract the k most similar points with
respect to features similarity for each polygon vertex. For this
matching step a cache is used to store correspondences, so matching
is only done when a reconstruction point is chosen for the first time.

In the next step a random correspondence for each vertex is chosen,
such that a polygon consisting of reference points is implied. A
transformation is only estimated if the reconstruction and reference
polygons are congruent (i.e. if they can be brought to overlap up to
a certain degree). In case of a discrepancy in the scene, which was
caused by a translation and/or translation, simple feature matching
would return matches where no transformation exists. However,
checking for congruent polygons detects transformations of single
points and discards them. The final transformation is only accepted
as a pose estimation if afterwards enough reconstruction points are
within a distance threshold to its euclidean nearest neighbors from
the reference cloud model. The pose estimation can be used as
a coarse alignment, but still requires improvement in a fine align-
ment (cp. Section 4.2) to be applicable for a discrepancy check.
The quality of this coarse pose estimation is evaluated in Section
6.2.

4.2 Fine Alignment
The goal of the fine alignment is to determine a precise alignment
between reconstruction and reference model given an initial coarse
alignment (cp. Section 4.1). Therefore, we utilize variants of
the Iterative Closest Point (ICP) algorithm [26] for this task. In
its general formulation the algorithm proceeds as follows. For the
reconstruction point cloud S and reference point cloud T , a function
Φ representing the quality of alignment is to be minimized.

min
C⊂S×T,t∈R3,R∈SO(3)

Φ(C,R, t)

with Φ(C,R, t) = ∑
(x,y)∈C

µ(Rx+ t,y) (14)

This is a hard optimization problem, considering that the indepen-
dent choice of C or t and R influence the optimal choice of the other
under the function Φ. Therefore, the simplification taken by ICP
is to alternate between optimizing the transformation, given by t
and R, and the choice of corresponding points C in reconstruction
and reference cloud. In a most simple form, often referred to as the
ICP algorithm, µ is chosen as the squared euclidean distance of two
points:

µ(x,y) = ‖x− y‖2
2 (15)

The optimization of the transformation is a least-squares solution of
an overdetermined equation system. However, least squares mini-
mization is very sensitive to far distant points. In our application
the reconstruction is affected by small outliers due to remaining
imprecisions in the reconstruction, as well as clutter caused by dis-
crepancies between reconstruction and reference. The challenge is
to cope with these distant points.

One way is to use iterative reweighting strategies, which com-
pute a robust weight w : R+

0 7→ [0,1] on the distance of each point
pair after matching. The resulting function µ for minimization is

µ(x,y) = w(‖x− y‖) · ‖x− y‖2, (16)

where w(x) is a weighting function. This function should neglect
the influence of high distant points, whereas short distant points
should have a huge impact. In our system we use a Tukey weight
function

wq(x) =

{
0, if x <= q
(1− x

q
2)2, otherwise

, (17)

where q (q = 0.1m in the experiments) is a threshold defining from
which distance on points are neglected.

Another way to cope with distant points is Sparse Iterative Clos-
est Point (SICP) proposed by Bouaziz et al. [2] using

µ(x,y) = ‖x− y‖p
2 , with p ∈ [0,1) (18)
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(a) Input Images (b) Partial Recon. (c) Global Recon.

Figure 5: Evaluation of our new two-step reconstruction approach
using the Human (H2) scene of CoRBS [34]. (a) 100 input images
are combined to (b) 10 partial reconstructions and afterwards to (c)
one global reconstruction. The quality increases in each step.

for minimization. The term can be explained by looking at the con-
vergence behavior of the p-th root with respect to p.

lim
p→∞

x1/p = 1,x ∈ R+ and lim
p→∞

01/p = 0 (19)

Consequently, for p = 0 the function Φ from Equation 14 simply
returns the number of elements from C with vanishing distance.
Thus, minimizing the function returns transformations such that a
good match is found, however on a small subset. We evaluated the
effect of the two approaches in Section 6.2.

The distance functions in Equation 15, 16 and 18 use a point-to-
point distance. However, a point-to-surface distances lead to faster
and more precise results [26], because of their higher precision in
the near-field. The point-to-point distances between two points x
and y are computed based on the connection vector ψ(x,y) = x−y.
In order to consider point-to-surface distances the connection vector
can be projected to normals by

ψ(x,y) = nT · (x− y). (20)

For the AR application as well as the evaluation we use only point-
to-surface distances. Using this distance measurement enables us
also to downsample the point clouds with a voxel grid before fine
alignment, since missing points are compensated by the projection
of Equation 20. This speeds up the fine alignment, while the align-
ment results enhance. An evaluation on the voxel size is given in
Section 6.2.

5 DISCREPANCY CHECK

After reconstructing the scene (Section 3) and aligning the refer-
ence model (Section 4), the last step in our application is to de-
termine the local discrepancies between the reconstruction and the
reference model. This task can be reduced to finding corresponding
points in the two models and analyzing their distance. The chal-
lenge is again the real-time requirement of an AR application. A
straightforward approach would be to compute for each point in the
reconstruction the closest point in the reference model. This can
be done relatively fast with kd-trees, but does not reach sufficient
performance as shown in Section 6.3.

Golparvar-Fard et al. [10] store occupancies in a voxel grid en-
abling them to detect coarse differences, but a quantification of the

(a) Raw Input (b) Cui: ∼4500ms (c) Ours: ∼20ms

Figure 6: Partial Reconstruction: Close-up view of the Electrical Cab-
inet of the CoRBS dataset [34]. The raw input contains heavy noise
introduced by the Kinect v2. The approaches of Cui et al. [5] and
ours remove the noise considerably and archive comparable results,
whereas ours is real-time capable.

discrepancies is not possible. Kahn et al. [15, 16] compare recon-
struction and reference by raycasting them with the identical cam-
era pose to an artificial depth image. Discrepancies are estimated
by the per-pixel difference of the two depth images. This approach
runs in real-time on the GPU, but contains major drawbacks. First
of all, only the pixels visible in the current view are compared, lead-
ing to a partial comparison. This makes it hard to conclude state-
ments about the complete real object. Furthermore, the approach
is view-point dependent, since the per-pixel computation measures
along the view direction and not along shortest distances. Stahl
[28] resolved the viewpoint dependency with the help of a GPU
shader. For every visible point the closest point in the reference
model is computed. However, this incorporates only point-to-point
distances, which are - especially for small differences - not precise.
In addition, the limitation of partial comparison remains.

In this paper we propose a new approach for AR discrepancy
check by using pre-computed distances. Since the reference model
stays unchanged during runtime, the distance of a given point to the
reference is fixed. Thus, we pre-compute a voxel volume, which
stores in each voxel the distance of the voxel center to the refer-
ence surface. This has the advantage of precise distance measure-
ments (compared to pure occupancies or point-to-point distances),
is viewpoint independent and compares the complete reconstruction
against the reference. On the other hand, the voxel volume must be
created in advance and the access to the values must be fast. There-
fore, we make use of a VDB voxel structure [22]. Basically, this is
a data structure that combines concepts of B+ trees and space par-
titioning structures like voxels and is designed for storage of sparse
volumetric data. To this end it divides space into a voxel grid and
builds a tree on top. The voxel grid is spare, meaning that only vox-
els within a given band around the surface are allocated. The huge
advantage of such a voxel grid is the fast and constant query time,
which is independent of the number of voxels. A critical point is
the voxel size, since for smaller voxels the memory consumption is
higher, whereas for larger voxels the accuracy decreases. In Sec-
tion 6.3 we analyze the influence of the voxel size. The voxel grid
must be constructed only once and can be stored like a geometry
file. Thus, for our AR discrepancy check the grid is loaded in the
beginning and during reconstruction (Section 3) the distances of all

130



Algorithm Part Runtime
partial reconstruction 0.02s(combination of 10 images)
global reconstruction 0.01s(fusion of one partial reconstruction)
complete reconstruction of 10 images 0.35s(capture and partial + global recon.)
initial alignment 0.1s - 1.5s(depending on reconstruction size)
fine alignment 0.002s - 0.01s(depending on reconstruction size)
discrepancy query

7.8e−8s(for one point)
discrepancy pre-computation 10s(for one point)

Table 1: Summary of the runtimes of each single algorithm part. We
spent much effort on achieving fast runtimes (without loosing quality)
in order to enable an interactive AR system.

points to the reference are queried from the grid at frame rate.
The discrepancies are visualized based on the queried distances

using a color mapping (red-yellow-green). Since we can recon-
struct scenes with an accuracy of around 0.01m (see Section 6.1),
we colorize discrepancies up to that distance in green. Distances
greater than 0.03m are treated as large discrepancy and thus col-
ored in red, while all distances in between are visualized in yellow.
Figure 9 shows an exemplary discrepancy visualization.

6 EVALUATION

In this section we evaluate all parts of our new approach for AR
discrepancy check. In order to obtain meaningful results we make
use of two publicly available benchmarks, namely CoRBS [34] and
ICL-NUIM [4, 13]. The CoRBS benchmark [34] was recently pub-
lished and is the only dataset providing real image data together
with ground truth trajectories for the camera and ground truth re-
constructions of the scene. This is an ideal basis for the evaluation
of our new system. The ground truth trajectory of CoRBS was ac-
quired with an external motion capture system as we do it in our
online AR application. The ground truth reconstructions of CoRBS
can be used as a reference model, since they have high quality (sim-
ilar to CAD) and are already aligned to the depth images. Thus, also
the evaluation on the alignment is possible with this dataset. In ad-
dition, we recorded a new dataset of a modified Electrical Cabinet
by adding four components. The data will also be published on
the CoRBS website [34]. Since state-of-the-art reconstruction al-
gorithms were mainly benchmarked with synthetic data in the past,
we also use the synthetic ICL-NUIM benchmark [4, 13]. It provides
two large-scale scenarios each with two trajectories.

All experiments in this paper were performed on a 64 bit Win-
dows computer with a quad core CPU with 3.5GHz and 16GB main
memory. In the following we discuss the qualitative results as well
as the runtimes (see also Table 1) of each single algorithm part.

6.1 Reconstruction
First, we evaluate the reconstruction of objects with our system. As
detailed in Section 3.2 we proposed a new online two-step approach
consisting of a partial and a global reconstruction. Results of the
partial reconstruction can be seen in Figure 6. The raw input im-
age on the left contains heavy noise, whereas the algorithm of Cui
et al. [5] and ours remove the noise with comparable results. For
both algorithms we used the alignment of the external motion cap-
ture system to make the results comparable. Whereas the results are
similar, the runtime differs essentially. Our new algorithms needs
only around 20ms for the combination of n = 10 depth images, but

KinectFusion Steinbrücker Ours
mean RMSE mean RMSE mean RMSE

E5 0.017 0.026 0.020 0.029 0.012 0.019
D2 0.018 0.027 0.032 0.042 0.011 0.019
H2 0.015 0.025 0.019 0.031 0.010 0.021

Table 2: Mean distance and RMSE (in meters) of each reconstructed
model to the ground truth surface using the CoRBS benchmark [34].
Identical image and pose data was used for all algorithms. Our two-
step mapping outperforms state-of-the-art algorithms like KinectFu-
sion [24] or Steinbrücker [30]. A visualization is given in Figure 7.

Kintin- DVO* SUN3D Choi* Ours
uous* SLAM SfM*

LivingRoom1 0.22 0.21 0.09 0.04 0.008
LivingRoom2 0.14 0.06 0.07 0.07 0.008
Office1 0.13 0.11 0.13 0.03 0.008
Office2 0.13 0.10 0.09 0.04 0.007

* This algorithm uses an own pose estimation.

Table 3: Mean distance (in meters) of each reconstructed model
to the ground truth surface using the ICL-NUIM benchmark [4, 13].
Note: Kintinuous [36], DVO SLAM [18], SUN3D SfM [38] and the ap-
proach of Choi [4] estimate also the camera trajectory, whereas ours
uses the trajectory of an external motion capture system for evalua-
tion as well as for our AR application.

Steinbrücker Ours
mean RMSE mean RMSE

LivingRoom1 0.009 0.012 0.008 0.008
LivingRoom2 0.010 0.015 0.008 0.009
Office1 0.008 0.011 0.008 0.008
Office2 0.008 0.011 0.007 0.008

Table 4: Mean distance and RMSE (in meters) of each reconstructed
model to the ground truth surface using the ICL-NUIM benchmark
[4, 13]. Our new online two-step algorithm outperforms the state-of-
the-art algorithm of Steinbrücker et al. [30]. Identical image and pose
data was used for both algorithms.

state-of-the-art methods [5, 20] need seconds of runtime. Conse-
quently, our partial reconstruction is real-time capable.

Next, we evaluate the reconstruction quality of our whole sys-
tem. We compare our results on the ICL-NUIM benchmark [4, 13]
against state-of-the-art algorithms [4, 18, 36, 38], which also es-
timate the camera pose. These algorithms can clearly be outper-
formed as visible in Table 3. This is not only an achievement
of our new mapping but rather of using a high precision pose es-
timation like the external motion capture system. In the following
experiments we always use identical camera poses and image input
in order to investigate only the influence of the new depth mapping.

In Table 2 we compare our two-step mapping with real data on
the CoRBS benchmark against KinectFusion [24] and Steinbrücker
et al. [30]. Our algorithm has an essentially reduced mean and root
mean squared error (RMSE) compared to the state-of-the-art. Es-
pecially the RMSE indicates that points with huge distance are re-
constructed more accurately, which is of particular importance for
our application. Figure 7 visualizes the accuracy improvements.
KinectFusion is not able to reconstruct several parts of the scene,
whereas Steinbrücker et al. contains a high noise level, since out-
liers are poorly treated. In contrast, the new two-step mapping is
able to reconstruct almost all parts of the scene and simultaneously
removing the heavy noise. Incorrect reconstructions are only gained
if the sensor captures wrong depth measurements as visible on the
black screen in the Desk scene. We also compared our new recon-
struction approach on the synthetic ICL-NUIM benchmark. Table
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(a) KinectFusion [24] (b) Steinbrücker [30] (c) Ours (d) KinectFusion [24] (e) Steinbrücker [30] (f) Ours

0.03m

0.00m

Figure 7: Evaluation of the mapping accuracy on the D2 (2380 frames) and E5 (2209 frames) sequences of the CoRBS benchmark [34].
Identical input images and camera poses are used for this evaluation. Our new two-step depth mapping is more accurate than the state-of-the-
art algorithms KinectFusion [24] and Steinbrücker [30]. A quantitative evaluation is given in Table 2.

4 shows comparable results as for the real-world data. In addi-
tion, these reconstructions verify the large-scale capability of our
system. KinectFusion [24] was not able to reconstruct that large
scenes. For the accuracy analysis the ground truth alignment is used
for reproducibility. Own alignments would obtain slightly better
results, but the quintessence would not change. Our reconstruction
(partial and global together) need around 350ms to process 10 im-
ages on our computer. This confirms the real-time performance.
Summarized, we showed that our algorithm considerably pushes
forward the state-of-the-art for large-scale online reconstruction in
real-time. Thus, our system is also more precise than Kahn et al.
[16] and Stahl [28], since they rely on KinectFusion.

6.2 Alignment

In this section we evaluate the accuracy of our new semi-automatic
alignment of a reference model. As detailed in Section 4 our ap-
proach is composed into an initial and a fine alignment. We evalu-
ated our algorithm on several scenes and image sequences. In this
paper we show exemplified evaluation results using the Electrical
Cabinet (E5) and Desk (D2) scene of the CoRBS benchmark.

For the initial alignment a downsampling with a voxel grid is
used as a feature extractor. The size of the grid influences the re-
sult as shown in Figure 8a,e. Whereas 0.01m voxel size leads to
a misalignment, all other scales succeed. The lowest errors were
achieved for 0.03m voxel size. Using this voxel size Figure 8b,f
shows the translational and rotational error of the initial alignment
at given time stamps. In the first 4s the alignment fails, since too
few points are available. Afterwards the Electrical Cabinet can be
aligned with on average 0.02m and the Desk with 0.04m transla-
tional error. This is sufficiently precise for the following fine align-
ment. In our experiment the initial alignment took between 0.1s
and 1.5s depending on the number of points in the reconstruction.
This is maintainable for an interactive AR system.

For the fine alignment again a downsampling per voxel grid is
used, which influences the achieved accuracy. In our experiments
a voxel size of 0.02m showed best results (cp. Figure 8c,g). Us-
ing this voxel size, Figure 8d,h shows the translational and rota-

tional error of the fine alignment at given time stamps. The initial
pose for ICP was taken from our initial alignment (cp. Section 4.1).
However, for some datasets the Tukey weight showed better results,
for some the Sparse ICP. Thus, we give the user the possibility to
trigger both algorithms. At the end we are able to align the ref-
erence with less than 0.01m translational error. Please note, this
error incorporates also the reconstruction error, since the reference
is aligned against this cloud. The reconstruction error is also in the
range of 0.01m following that the alignment is very precise. A vi-
sual check confirms this. In our experiment the fine alignment took
between 0.002s and 0.01s depending on the initial alignment and on
the number of points in the reconstruction. This is almost real-time
and thus well suited for our interactive AR system.

6.3 Discrepancy Check

In this section we evaluate our new discrepancy check using pre-
computed distances. As described in Section 5 we use a VDB
voxel grid [22] storing in each voxel the distance of its center to the
surface. Depending on the voxel size also the accuracy changes.
We compare our VDB distance computation against Approximate
Nearest Neighbors (ANN), which is also known to be fast. In order
to determine the accuracy of the distance measurement, we select
random points and compute the actual distance to the surface as
well as make VDB and ANN queries. The query time of our ap-
proach is substantially faster for all accuracies as shown in Figure
10a. In our application an accuracy of around 0.001m is sufficient.
In this range our VDB queries are approximately 15-times faster
than ANN. With this we are able to determine the distances for
all points in a complete reconstruction of an object at frame-rate.
For example, the final reconstruction of the D2 sequence in CoRBS
contains 295,000 points, leading to a total query time of around
23ms with our VDB queries (cp. ANN ≈ 340ms).

However, the fast query time is accompanied by a longer initial
construction time as shown in Figure 10b. While the construction
time of the ANN structure is almost constant for different accura-
cies, the construction time of our VDB structure increases exponen-
tially with higher accuracies. For an accuracy of 0.001m the Desk
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(a) Initial Alignment: Scale Influence (b) Initial Alignment over Time (c) Fine Alignment: Scale Influence (d) Fine Alignment: Sparse ICP

(e) Initial Alignment: Scale Influence (f) Initial Alignment over Time (g) Fine Alignment: Scale Influence (h) Fine Alignment: Tukey Weights

Figure 8: Evaluation of the alignment with the CoRBS benchmark [34] using the Electrical Cabinet (E5) in the first row and the Desk (D2) in the
second row. The statistics for other image sequences look similar.

Figure 9: Exemplary visualization of discrepancies detected on a modified Electrical Cabinet (four discrepancies) and Desk (one discrepancy).

(a) Query Time (b) Construction Time

Figure 10: Comparison of our VDB distance computation against
ANN using the Desk scene of CoRBS [34]. The query time of our ap-
proach is 15-times faster enabling a real-time performance. However,
our VDB grid requires a more time-consuming initial construction.

scene of CoRBS [34] took around 10s. Since this construction must
only be performed once, this can either be done after the program
start or the grid can also be stored and loaded. Summarized, we
proposed a new method for 3D discrepancy check, which is able to
compute all point distances from the reconstruction to the reference

cloud in real-time (see Figure 9).

7 CONCLUSION

In this paper we propose a new Augmented Reality discrepancy
check using a RGB-D camera. With a new two-step reconstruction
algorithm the system is able to capture the geometry of a given
object with high accuracy. The algorithm is not restricted to a
given volume and can handle online input images in real-time. We
showed on public benchmarks that our two-step approach clearly
outperforms state-of-the-art algorithms in matters of mapping ac-
curacy. Furthermore, we propose a semi-automatic alignment algo-
rithm, which is able to align a reference model fast and accurately.
With this no manual alignment is necessary and the discrepancies
can be directly detected. In addition, we propose a new approach
to compute discrepancies based on pre-computed distances. Here-
with, we are able to detect discrepancies at frame-rate for the whole
reconstruction. At the end our system is able to detect discrepancies
in the range of ∼ 0.01m. For a short demo of the system, see the
supplementary video.

Summarized, compared to existing approaches [16, 28, 35] our
discrepancy check has the following advantages while fulfilling the
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constraints for an interactive AR system. We achieve a more accu-
rate geometry capturing, since the mapping accuracy outperforms
the state-of-the-art (see Section 6.1). The capture volume is not re-
stricted by the geometry reconstruction (see Section 3.2) but solely
the motion capture system is the limit. Furthermore, the alignment
of a reference model is done semi-automatically (see Section 4).
Discrepancies are detected for the whole reconstruction, instead of
visible (or sparse) points only (see Section 5). In addition, discrep-
ancies are determined based on point-to-surface distances without
any view-point dependence (see Section 5).
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