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Abstract

Kinematically complex robots such as legged robots provide a large degree of mobility and flexibility, but
demand a sophisticated motion control, which has more tunable parameters than a general planning and
decision layer should take into consideration. A lot of parameterizations exist which produce locomotion
behaviors that fulfill the desired action but with varying performance, e.g., stability or efficiency. In addition,
the performance of a locomotion behavior at any given time is highly depending on the current environmental
context. Consequently, a complex mapping is required that closes the gap between robot-independent actions
and robot-specific control parameters considering the environmental context and a given prioritization of
performance indices.

In the proposed approach, the robot learns from experiences made during its interaction with the environment.
A knowledge base is created which links locomotion behaviors with performance features for visited contexts.
This behavior library is utilized by a case-based reasoner to select motion control parameters for a desired
action within the current context. The paper provides an overview of the control approach, the algorithms
used to determine the current context and the robot’s performance, as well as a description of the reasoner
which selects appropriate locomotion behaviors.

In experiments, different behavior libraries were automatically built when operators had to control a walking
robot manually through obstacle courses. Afterwards, the collected experiences and a trajectory follower
were used to traverse an obstacle course autonomously. The provided experimental evaluation shows the
performance dependency of the autonomous control with respect to different sizes and qualities of utilized
behavior libraries and compares it to manual control.

Please note that the corresponding paper is published in:

Ezperience-based adaptation of locomotion behaviors for kinematically complex robots in unstructured terrain;
A. Dettmann, A. Born, S. Bartsch, and F. Kirchner; In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015.

92



‘EXPERIENCE-BASED ADAPTATION OF LOCOMOTION BEHAVIORS FOR KINEMATICALLY COMPLEX

3.2
RoOBOTS IN UNSTRUCTURED TERRAIN’ — Alezander Dettmann

Thank you
for your attention!

Motivation

et valingpars

Outlook

S ———

Thank you
for your attention

Experience-Based Behavior Adaptation of Locomotion Behaviors
for Kinematically Complex Robots in Unstructured Terrain

Alexander Dettmann; Anna Born’, Sebastian Bartsch? and Frank Kirchner **

:University of Bremen, Germany
DFKI Robotics Innovation Center , Germany

Director: Prof. Dr. Frank Kirchner
www.dfki.de/robotics
robotics@dfki.de

93



3 ‘LocoMoOTION & MOBILITY’

94

Motivation

Legged robots can use
numerous walking patterns

A sophisticated motion control
combined with suitable
parameterizations are required

Gap in hierarchical
control approach

Different behaviors Optimal solution hard to find

can result in same ehavior performance

action but with depending on context

different performance " - Simulsdicny Really,
e ——

HyQ, IIT, www.iit.it

Cheetah, Bosten Dynamics, ww.bostondynamics.com



3.2 ‘EXPERIENCE-BASED ADAPTATION OF LOCOMOTION BEHAVIORS FOR KINEMATICALLY COMPLEX

RoOBOTS IN UNSTRUCTURED TERRAIN’ — Alezander Dettmann

KIng patterns

(OVERHEAD

Atlas, TracLabs, www.theroboticschallenge.org

A soph

combir

Sherpa, DFKI, www.robotik.dfki-bremen.de

shisticated motion control
)ined with suitable

95



3 ‘LocoMoOTION & MOBILITY’

96

Motivation

Legged robots can use
numerous walking patterns

A sophisticated motion control
combined with suitable
parameterizations are required

Gap in hierarchical
control approach
5;” % Different behaviors Optlmal solution hard to find
%

can result in same Behavior performance
action but with depending on context
different perfo.rmance

Gap in hierarchical
control approach




3.2 ‘EXPERIENCE-BASED ADAPTATION OF LOCOMOTION BEHAVIORS FOR KINEMATICALLY COMPLEX
RoOBOTS IN UNSTRUCTURED TERRAIN’ — Alezander Dettmann

Different behaviors
can result in same B
action but with de
different performance

97



3 ‘LocoMoOTION & MOBILITY’

98

\ 4
Behavior performance

depending on context




3.2 ‘EXPERIENCE-BASED ADAPTATION OF LOCOMOTION BEHAVIORS FOR KINEMATICALLY COMPLEX
RoOBOTS IN UNSTRUCTURED TERRAIN’ — Alezander Dettmann

v

Optimal solution hard to find

Simulation Reality

Gap

Motivation

Legged robots can use
numerous walking patterns

A sophisticated motion control

combined with suitable
parameterizations are required

Gap in hierarchical
control approach

Different behaviors Optlmal solution hard to find
can result in same Behavior performance
action but with depending on context

different performance Simulation Reality

99



3 ‘LocoMoOTION & MOBILITY’

Goal

Kinematically-complex robots should autonomously
adapt their behavior depending on the desired action
and the current context to maximize their performance
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Performance Estimation

Performance features characterize locomotion behaviors

- Action performance features - Meta performance features

- Characterizing movement - Characterizing stability
+ Velocity x - Static stability margin (ssm)
- Velocity y - Force-angle stability measure
« Turn rate (dsa)

+ Characterizing posture - Characterizing efficiency
+ Body height - Power
- Body width - Energy per distance (epd)

- Body vibration
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State Context Estimation

State context features characterize the environment

« MLS map from point cloud data and robot pose
- Region of interest
- Area beneath robot
« Area in direction of movement within next step cycle

- Max step height, roughness, slope x, slope y
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Behavior Library
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State Context
Features

- Behavior experience update
« Initiated when behavior was constant during evaluation period
- State context and performance features are averaged and
linked to a behavior

Generating Behavior Libraries

Methodology
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Methodology

- Learning from demonstration by collecting experiences while
operators control SpaceClimber through obstacle courses
- Evaluation of operator skills
- Path following capability [0.5, 0.1] m

- Energy efficiency [1.4, 0.14] Wh/m
- Stability [0, 45]°

State Context

load in kg

obs. size in mm
roughness in %
slope xin*
slopeyin®
soil type

Operator Evaluation
10+

Acknowledge §7

Test Tracks

DRC mobility test track replicate
for operator selection

Outdoor test track Indoor test track
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Resulting Behavior Libraries

library name | behaviors | contexts | total evaluations
in_opl 26 15 36
in_op2 26 31 39
in_op3 57 45 174
in_op4 21 14 27
in_op5 24 19 56
inLib 154 93 332
out_opl 41 18 81
out_op2 46 17 86
out_op3 49 24 93
out_op4 52 20 90
out_op5 41 21 63
outLib 229 77 413
fullLib 383 157 745
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Case-Based Selection

- Input query in form of two vectors
« Current state context features
« Current desired action described by action
performance features
- Meta performance features constant at optimum
+ Additional weight vectors to manipulate feature
importance

for each behavior_eval in behavior_library do

for each contexrt_eval in behavior_eval do
Simft‘”e = getStateContextSimilarity()

end for
SimStete = getMaxStateSimilarity()
emaz = getMostSimilarContextEvaluation()
SimAction — get ActionSimilarity()
Sim = get Behavior Similarity()

end for

applyMostSimilar Behavior(blend_time)

Autonomous Control

- Operator replaced by
- Trajectory follower to generate motion commands
+ velocity x from 0 to 0.15 m/s
- turn rate from -10°/s to 10°/s
- Behavior configurator for autonomous behavior adaptation
- 2 s blend time between behaviors

>> depending on orientation error

feature \weight

velocity x 0.8
velocity y 0.2
turn rate 1.0

body height| 0.0
body width | 0.0

ssm 0.0
dsa 0.1
power 0.0
epd 0.1
vibration 0.1
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State Conkext Performance
Name Value MName Value
load in kg 0.0 velocity xinmm/fs |0
obs.sizeinmm [0 veloctyyinmmfs [0
roughnessin% [0 turn rate in °fs |0.0
slope xin * 0.0 | epd in Whfm 00
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soil type 0 S5 in mm
Operator Evaluation dsain® .l
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Conclusion & Outlook

- Storing of behavior performance for a diverse state contexts

- Utilization of experiences for autonomous behavior adaptation

- Performance of autonomous control increases with maturity of
behavior library

<
- Shortcomings of case-based selection ‘S

- No generalization

- No exploration X

+ No forgetting strategy

- Next Steps
+ Improving case-based reasoning approach
» Case adaption, forgetting strategy
» Testing LWPR, GMR, or SOGP

Thank you
for your attention!
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