
Automating Interactive Protocol Verification

Lassaad Cheikhrouhou, Andreas Nonnengart, Werner Stephan,
Frank Kooba, and Georg Rockb

German Research Center for Artificial Intelligence, DFKI GmbH
aFederal Office for Information Security, BSI bPROSTEP IMP GmbH

Abstract. Showing the absence of security hazards in cryptographic
protocols is of major interest in the area of protocol security analysis.
Standard model checking techniques - despite their advantages of be-
ing both fast and automatic - serve as mere debuggers that allow the
user at best to detect security risks if they exist at all. In general they
are not able to guarantee that all such potential hazards can be found,
though. A full verification usually involves induction and therefore can
hardly be fully automatic. Therefore the definition and application of
suitable heuristics has turned out to become a central necessity. This
paper describes how we attack this problem with the help of the Verifi-
cation Support Environment (VSE) and how we nevertheless arrive at a
high degree of automation.

1 Introduction

Protocols that (try to) provide certain security properties in open network envi-
ronments by using cryptographic primitives like encryption, signing, and hash-
ing, play a crucial role in many emerging application scenarios. Machine readable
travel documents are a typical example of a technology whose common accep-
tance heavily depends on how far security properties like confidentiality and
authenticity can really be guaranteed by their designers [1]. However, if carried
out on an informal basis, the analysis of cryptographic protocols has turned out
to be fairly error prone. Justifiably so, the formal specification and analysis of
cryptographic protocols has become one of the fastest growing research areas,
although with a hardly manageable variety of different approaches.

Formal protocol models usually incorporate the exchanged messages between
protocol participants. These messages are sent via an open network which is
accessible by an attacker who can intercept, and even change or forge (some of)
these messages. The capabilities of the attacker as well as of honest protocol
participants are restricted by the assumption that encryption and decryption is
impossible, unless the correct cryptographic key is at hand. In this setting we
speak of the so-called Dolev-Yao model as introduced (rather implicitly) in [2].

Formal analysis approaches to protocol analysis can roughly be divided into
two main categories: model checking and (interactive) verification. Whereas
model checking has the big advantage that it is both fast and automatic, it
in general relies on fixed scenarios with a given number of protocol participants



and a given number of protocol runs. They thus serve well as a systematic way
of debugging security protocols. The general validity of security properties, how-
ever, can only be guaranteed under certain circumstances.

(Interactive) verification methods, on the other hand, not only try to find
existing security hazards; they are also able to show the non-existence of such
risks. A typical example for such an approach can be found in Paulson’s induc-
tive verification approach [3]. There neither the number of participants nor the
length of protocol traces is restricted in any way. Obviously, reasoning about
such (inductively defined) event traces and the knowledge gained by an attacker
(e. g. while eavesdropping on exchanged messages) heavily relies on induction
proofs. This seriously complicates matters and one can hardly expect to get a
fully automatic verification system to solve such problems.

In this paper we focus on the techniques we developed to adopt Paulson’s
approach for the Verification Support Environment (VSE). VSE is a kind of case
tool for formal software development that closely combines a front end for speci-
fication (including refinement) and the management of structured developments
with an interactive theorem prover [4]. We emphasize on our attempt to lower
the burden of interactive proof generation to an extent that makes the VSE
framework for protocol verification applicable within the limited time frames of
commercial developments. In order to do this, we exploited the specific struture
of the inductive proofs in our domain and implemented several proof heuristics
to carry out most of the proof tasks automatically. This allowed us to reach an
automation degree of about 90%.

2 BAC - A Cryptographic Protocol Example

One of the commercial protocols that were verified in VSE was the Extended
Access Control (EAC) protocol. It includes (in 12 steps) three related phases in
the inspection procedure of an electronic passport (ePass A) by a terminal (B):
Basic Access Control (BAC), Chip Authentication and Terminal Authentication.
In this paper we emphasize on the steps of the first phase to examplify our work.

2.1 The Protocol and its Properties

The inspection procedure starts with the BAC protocol to protect the data on
the ePass chip from unauthorized access and to guarantee (for the terminal)
that this chip corresponds to the machine readable zone (MRZ) of the inspected
ePass. The protocol comprises the following steps:

1. B ←− A : KBAC(A)
2. B −→ A : B, Get Random Number
3. A −→ B : rA

4. B −→ A : {rB , rA, KB}KBAC(A)

5. A −→ B : {rA, rB , KA}KBAC(A)

This protocol realizes a mutual authentication between A and B, if both
participants have access to the basic access key KBAC(A). The key is stored on



the chip of A and can be computed by a terminal B from the MRZ. Such a
BAC run can only be successful if B has physical (optical) access on the ePass
for it has to read the MRZ in order to be able to compute the correct key. This
is represented in the first protocol step by the right-to-left arrow. It indicates
that B is both the active part of the communication and the receiver of the mes-
sage. After the second step which signals that the terminal determined the key
KBAC(A), the participants A and B authenticate each other in two interleaved
challenge-responses using the random numbers (nonces) rA and rB . Here, {M}K

denotes the cipher of a message M by a key K. The ciphers in the fourth and
the fifth message are obtained by symmetric encryption. Encrypting as well as
decrypting these messages obviously requires to possess the key KBAC(A).

In addition to the used nonces, the fresh key materials (session keys) KB and
KA are exchanged. These will be used for the computation of the session keys
that are needed for secure messaging in the subsequent phase of the inspection
procedure.

The main properties of the BAC protocol are:

– BAC1: The ePass A authenticates the terminal B and agrees with B on the
session key KB .1

– BAC2: The terminal B authenticates the ePass A and agrees with A on the
session keys KB and KA.

– BAC3: The session keys KA and KB are confidential.

2.2 Specification of Protocol Runs and Properties

The above properties are defined and verified for all possible traces of the BAC
protocol. The set of these traces is associated with a corresponding predicate
(here BAC) which holds for the empty trace ε and is inductively defined for
every extension of a BAC-trace tr with an admissible event ev:

BAC(ev#tr) ⇔ (BAC(tr) ∧ (Reads1(ev, tr) ∨ Says2(ev, tr) ∨ Says3(ev, tr)
∨Says4(ev, tr) ∨ Says5(ev, tr) ∨Gets event(ev, tr) ∨ Fake event(ev, tr)))

This inductive definition covers all the alternatives to extend an arbitrary BAC-
trace by a new event: five protocol steps (Reads1, Says2, . . . , Says5), message re-
ception (Gets event), and sending a faked message by the attacker (Fake event).
The definitions of these predicates determine the structure of the correspond-
ing events and express the corresponding conditions depending on the extended
trace tr and the event parameters.

The definitions of the gets-case and the fake-case are generic, since they do
not depend on the considered protocol. For instance, a send-event Says(spy, ag,
m) from the attacker (spy) to any agent ag may occur in the fake-case, when

1 Note that these first five steps of the protocol do not allow A to deduce that B
receives the session key KA, since this key is sent to B in the last protocol step. This
is proven in the complete version in subsequent steps where B confirms the reception
of the session key KA.



the message m can be constructed from the attacker’s extended knowledge. This
condition is expressed by isSynth(m, analz(spies(tr))), where spies(tr) contains
the messages that are collected by the attacker and analz extends this set by
message decomposition and decryption.

The definitions of the remaining cases are protocol specific, since they encode
the conditions of the corresponding protocol steps according to the protocol
rules. These conditions express the occurrence of previous events, the existence
of certain (initial) information and the freshness of newly generated information.
For instance, the definition of the second step requires that the extended trace
tr contains an event Reads(B,A,KBAC(A)) which represents the access by B
of the initial information KBAC(A) of A via a secure channel.

The protocol properties are formalized for arbitrary traces tr for which the
predicate BAC holds. For instance, confidentiality properties are expressed with
the help of the attacker’s extended knowledge. Basically, a message m is confi-
dential if it is not contained in and can not be constructed from this knowledge.
Consider for instance the formalization of the confidentiality property BAC3:

(BAC(tr) ∧ {r1, r2, aK}KBAC(A) ∈ parts(spies(tr))∧
¬bad(A) ∧ ∀ag : (Reads(ag,A,KBAC(A)) ∈ tr ⇒ ¬bad(ag)))
⇒ aK /∈ analz(spies(tr))

This secrecy property is defined for every session key aK which occurs in a
message of the form {r1, r2, aK}KBAC(A). It holds for the session key KB of
step 4, as well as for the session key KA of step 5, assuming that A is not
compromised, i.e. bad(A)2 does not hold, and its basic access key is not accessible
to the attacker. In contrast to analz, the function parts includes the encrypted
sub-messages even if the keys needed for decryption can not be obtained from
the given message set. It is used, especially in authenticity properties, to express
the occurrence of sub-messages including the encrypted ones.

2.3 Specification and Verification Support in VSE

The formal specification of cryptographic protocols in VSE is supported by

– a library of VSE theories that define the basic data types for messages, events
etc. and the analysis operators, e.g., analz, which are needed to formalize
protocols (from a given class) in the VSE specification language (VSE-SL),

– and a more user friendly specification language called VSE-CAPSL (as an
extension of CAPSL [5]) with an automatic translation to VSE-SL.

The translation of VSE-CAPSL specifications leads to definitions of the protocol
traces in the above style and formalizes some of the stated protocol properties.
Additionally, certain lemmata like possibility, regularity, forwarding and unicity
lemmata, that give rise to the generic proof structure as discussed in [3] are
generated.

2 The attacker is bad (bad(spy)) and possesses the knowledge of any other bad agent.



The main protocol properties and the lemmata generated by the system serve
as proof obligations for the VSE prover. For each proof obligation a complete
proof has to be constructed in the (VSE) sequent calculus. Besides the (basic
and derived) inference rules, including the application of lemmata and axioms,
powerful simplification routines can be selected by the user for this purpose. The
number of the (protocol specific) proof obligations and the size of their proofs
definitely shows that the inductive approach will only be successful in real world
environments if the burden of user interaction is lowered drastically. Therefore we
have concentrated on a heuristic proof search that applies higher-level knowledge
available from a systematic analysis of the given class of proof obligations. This
approach will be described in a detailed way in the next section.

3 Proof Automation by Heuristics

Heuristics are intended as a means to incrementally provide support for the user
of an interactive system. Our approach is bottom up in the sense that start-
ing with routine tasks whose automatization just saves some clicks we proceed
by building heuristics that cover more complex proof decisions using the lower
level ones as primitives. In particular the heuristics do not constitute a fixed,
closed proof procedure: They can freely be called on certain subtasks to obtain
goals whose further reduction requires a decision from the user before the next
heuristics can continue to generate partial proofs for the new subgoals. Since full
automation can hardly be reached, this kind of mixed initiative is our ultimate
goal, although some of our most recent high-level heuristics were even able to
prove certain lemmata completely on their own.

3.1 Protocol Properties and their Proofs

The main properties of cryptographic protocols that we are interested in are
confidentiality and authenticity. Sensitive data, like session keys or nonces that
are often used for the generation of new data items that were not used in the
current protocol run, like for example new session keys, have to be protected
against a malicious attacker.

Authentication properties are often formulated from the perspective of a par-
ticular participant. In the protocol presented in section 2.1 the authentication
property BAC2 is formulated from the perspective of the terminal. Authentica-
tion proofs as the one for the BAC2 property are often based on authenticity
properties of certain messages. The authenticity of such a message is used to
identify the sender of that message.

In addition to the top-level properties we have to prove so called structuring
lemmata. These are generated automatically by the system and used by the
heuristics. Their proof uses the same basic scheme that is used for confidentiality
and authenticity.

This general scheme for structural induction on the traces of a particular
protocol is more or less straightforward. The heuristics discussed in the following



implement an application specific refinement of this scheme. This refinement
takes into account both the type of the proof goals and the available lemmata
and axioms.

The organization of the independent building blocks in the general scheme
described below was left to the user in the beginning of our work. Meanwhile
more complex tasks can be achieved automatically by high-level heuristics that
implement more global proof plans.

3.2 The Top-Level Proof Scheme

All inductive proofs of protocol properties are structured into the following
(proof-) tasks. For each task there is a collection of heuristics that are potentially
applicable in these situations.

1. Set up a proof by structural induction on traces.
2. Handle the base case.
3. Handle the step cases:

(a) Reduce certain formulas to negative assumptions in the induction hy-
pothesis.

(b) Add information about individual protocol steps.
(c) Reduce the remaining differences and apply the induction hypothesis.

An inductive proof about traces of a given protocol is initialized by a heuristic
(traceInd) which selects the induction variable representing the protocol trace
and reduces the proof goals representing the base case and the step case to a
simplified normal form.

Base Case: The proof goals of the base case will contain assumptions that
contradict properties of the empty trace ε. These assumptions are searched for
by a heuristic that applies appropriately instantiated lemmata (axioms) to close
the proof goals by contradiction. For instance, an assumption of the form ev ∈ ε,
stating that the event ev is part of the empty trace, obviously contradicts an
axiom about traces. This is detected by the corresponding heuristic (nullEvent).
Similar, but more complex heuristics for this task are for example based on the
fact that nonces and session keys do not exist before starting a protocol run.

Step Case: Like in all other mechanized induction systems in the step case(s)
we try to reduce the given goal(s) to a situation where the inductive hypothesis
can be applied.

For this purpose the VSE strategy provides heuristics from three groups.
Negative assumptions are used to impose certain restrictions on the set of

traces under consideration. For example, we might be interested only in traces
without certain events. In the BAC protocol most of the properties do not include
the optical reading of the considered basic access key by a compromised agent.
This is formulated by the negative assumption ∀ag : (Reads(ag,A,KBAC(A)) ∈
tr ⇒ ¬bad(ag)). The difference between this formula and the corresponding as-
sumption in the step case, i.e. in ∀ag : ((Reads(ag,A,KBAC(A)) ∈ (ev#tr)) ⇒



¬bad(ag)), can be eliminated without knowing any details about the event ev
added to the trace (induction variable) tr. This kind of difference reduction is
performed by a heuristic (eventNotInTrace) which treats negative assumptions
about the membership of events in traces.

In the next step(s) we exploit the assumptions under which a certain event ev
can be added to a trace tr. This is achieved by a heuristic called protocolSteps.
First a case split is carried out according to the protocol rules as formalized in
section 2.2. Next the conditions for each particular extension is added to the
goals which are simplified to a normal form.

The remaining differences stem from formulas of the form (i) ev′ ∈ (ev#tr),
(ii) m ∈ analz(spies(ev#tr)), and (iii) m ∈ parts(spies(ev#tr)) in the goals.
For the three cases there are heuristics that start the difference reduction. For
analz and parts they rely on symbolic evaluation.

Sometimes the induction hypothesis can be applied directly in the resulting
goals. In other cases it is necessary to apply appropriate structuring lemmata and
to make use of specific goal assumptions. These goal assumptions can originate
from the definition of the corresponding protocol step (by protocolSteps in
(b)) or during the symbolic evaluation itself.

While the proof tasks (a) and (b) are carried out in a canonical way the last
proof task is much more complex and, for the time being, typically requires user
interaction. The treatment of certain subgoals resulting from symbolic evaluation
of analz or parts often involves proof decisions, like:

– Which goal assumptions should be considered?
– Which structuring lemmata have to be applied?
– Do we need a new structuring lemma?

However, also in those cases where some user interaction is necessary, heuris-
tics are available to continue (and complete) the proof afterwards.

First steps towards an automatization of complex proof decisions in subtasks,
tasks, and even complete proofs were made by designing high-level heuristics that
combine the ones discussed so far.

3.3 Definition of Heuristics

Heuristics achieve their proof tasks by expanding the proof tree starting with a
given goal. The basic steps that are carried out are the same as those the user
might select (see section 2.3). In addition, heuristics might backtrack and choose
to continue with another (open) subgoal.

Heuristics in VSE, like tactics in other systems, determine algorithmically the
execution of the mentioned steps. In addition to the purely logical information,
heuristics in VSE have access to local (goals) and global control information
that is read to decide about the next step to be performed and updated to
influence the further execution. The additional information slots are used to
model the internal control flow of a single heuristic as well as to organize the
composition of heuristics. The existing VSE module for writing and executing



heuristics was extended to meet the requirements of semi-automatic protocol
verification. This concerns in particular those parts of the heuristics that depend
on certain theories.

4 Results and Future Work

We developed about 25 heuristics which we used in the formal verification of sev-
eral real world protocols, e.g., different versions of the EAC protocol (12 protocol
steps, 41 properties) [6] and of a Chip-card-based Biometric Identification (CBI)
protocol (15 protocol steps, 28 properties) [7]. Typical proofs of these properties
consist of 1500 to 2000 proof nodes (steps) represented in a VSE proof tree. A
proof of this magnitude would require at least 400 user interactions if the heuris-
tics were not utilized. The heuristics thus allowed us to save up to 90% of user
interactions in average.

So far the developed higher-level heuristics are especially tailored for the
proof of confidentiality and possibility properties. For this kind of properties
an even better automatization degree (up to full automatic proof generation)
is reached. In order to increase the automation degree in the verification of the
other protocol properties, i.e. of authenticity properties and other structuring
lemmata, we plan to define more heuristics: higher-level heuristics tailored for
these proofs and probably lower level heuristics when needed.

Although several proof structuring lemmata are formulated automatically,
certain proof attempts force the user to define additional lemmata that depend
on the remaining open proof goals. We therefore also plan to develop suitable
lemma speculation heuristics.

References

1. Advanced Security Mechanisms for Machine Readable Travel Documents – Ex-
tended Access Control (EAC) – Version 1.11 Technical Guideline TR-03110, Federal
Office for Information Security (BSI)

2. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, 2(29), 1983

3. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6:85–128, 1998.

4. D. Hutter, G. Rock, J. H. Siekmann, W. Stephan, and R. Vogt. Formal Soft-
ware Development in the Verification Support Environment (VSE). In B. Manaris
J. Etheredge, editor, Proceedings of the FLAIRS-2000. AAAI-Press, 2000.

5. G. Denker and J. Millen and H. Rueß. The CAPSL Integrated Protocol Environ-
ment. SRI Technical Report SRI-CSL-2000-02, October 2000.

6. Formal Verification of the Cryptographic Protocols for Extended Access Control on
Machine Readable Travel Documents. Technical Report, German Research Center
for Artificial Intelligence and Federal Office for Information Security

7. L. Cheikhrouhou, G. Rock, W. Stephan, M. Schwan, and G. Lassmann. Verify-
ing a chip-card-based biometric identification protocol in VSE. In J. Górski (ed.)
SAFECOMP 2006. LNCS, vol. 4166, pp. 42–56. Springer, Heidelberg (2006)


