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Abstract—Due to shrinking feature sizes, integrated circuits
are getting more vulnerable against transient faults. Methods
increasing the robustness of circuits against these faults already
exist for a long period of time but either introduce huge additional
logic, increase the latency of the circuit, or are applicable for ded-
icated circuits such as microprocessors only. This work proposes
an alternative hardening method which requires only a slight
increase in additional hardware, does not influence the timing
behavior, and is automatically applicable to arbitrary circuits. To
this end, application-specific knowledge of the considered circuit
is exploited, analyzed by a dedicated orchestration of formal
techniques, and, eventually, used to synthesize a fault detection
mechanism enhancing the robustness of the circuit. Experimental
evaluations show that the proposed solution leads to a significant
increase in the robustness, while the hardware overhead is kept
moderate.

I. INTRODUCTION

The complexity of Integrated Circuits (ICs) is steadily
increasing. In particular, the number of sequential elements,
i.e., Flip Flops (FFs), raises. These FFs are characteristically
vulnerable to transient faults. Such a fault appears in form of
a toggled bit for a short period of time and is not logically,
electrically, or temporarily masked. Transient faults may occur
at any FF which is not explicitly protected. This potentially
affects the functional behavior of the circuit and, therefore,
may result in invalid output values. Especially in case of
safety critical systems, these violations can lead to disastrous
consequences. Furthermore, other specific application fields,
e.g., aeronautic systems, have environmental influences like
high-energetic radiation, which facilitate transient faults even
more [1], [2]. Thus, the development of mechanisms, which are
capable to detect and react on such faults, is a highly relevant,
but also challenging task.

In this context, the robustness of a given circuit is an
important metric, which can be derived from the number of
non-robust FFs that are vulnerable to transient faults. In order
to increase the robustness of a sequential circuit, the number
of vulnerable (non-robust) FFs needs to be decreased. To this
end, the corresponding FFs are hardened by extending the
Circuit-under-Hardening (CuH) so that the respective values
are recomputed and, in case of faults, faulty signals can be
replaced. These recomputations are usually conducted either by
additionally employing redundant hardware or redundant time.
More precisely, existing methods which are currently applied in
order to increase the robustness of a given sequential circuit can
roughly be categorized into the following three schemes [3]:

• Space-based approaches, which embed additional logic
blocks to generate certain redundancy in order to enhance
their robustness. Approaches such as Triple Modular
Redundancy (TMR) [4] or Error-Correction Code [5]–[7]
constitute representatives of this scheme.
• Timing-based approaches, which influence the timing

behavior of the considered circuit in order to guarantee

correct output values at the FFs. Representative candidates
of this scheme have been are proposed in [8], [9].

• Application-specific approaches, which only consider
dedicated parts of a circuit for which a robust solution
is explicitly derived. Examples of this scheme include,
e.g., dedicated fault-tolerance control flows for micro-
processors [10]. Other application-specific approaches
exploits invariants automatically to ensure correctness,
e.g., hardware assertions [11]. Those assertions are used
to uncover violations of the specific functional behavior
during verification. However, those assertions do not focus
on any dedicated fault model considering transient faults
and, hence, no compact realization is given a priori.

However, all these schemes come with significant shortcom-
ings: Space-based approaches introduce huge additional logic
into the circuit – often caused by naive multiplication of
sequential elements and, hence, a redundancy which is not
necessarily needed for the functional behavior. Timing-based
approaches suffer from the fact that they potentially increase
the latency and, hence, cause restrictions to the actual design
of the circuit. Application-specific approaches are limited to
dedicated parts of a circuit (e.g., the considered microprocessor)
and, hence, are not applicable for sequential circuits in general.

In this work, we are aiming to address these shortcomings by
proposing a solution, which does not simply recomputes FFs
values of the original design, but instead collects application-
specific knowledge of their behavior. More precisely, the
proposed methodology learns the relations of FFs and stores the
conditions under which FFs assume the same logic value. This
knowledge allows to employ a dedicated logic block which
compares all corresponding FF values and, hence, can detect
if one of them inherits a fault.

Following the methodology in this work, only a moderate
hardware overhead in terms of gate count compared to the
space-based approaches is required while, at the same time,
the timing behavior is not affected at all. The resulting flow is
automatically applicable to any sequential circuit and, hence,
not limited to dedicated circuits as the existing applications-
specific solutions. Since the computation and compaction of
the FF relations are computationally hard tasks, a dedicated
orchestration of formal methods such as Bounded Model
Checking (BMC, [12]), powerful solvers for the Boolean
Satisfiability Problem (SAT problem, [13]), and compact data
structures for circuit representation involving Binary Decision
Diagrams (BDDs, [14]) is proposed which are capable of
coping with this complexity. Finally, this approach is flexible
in the sense that the designer can easily configure the trade-off
between the hardware overhead and the desired enhancement
in robustness.

Experimental results confirm the benefits of the proposed
methodology. In fact, robustness of a circuit can be increased to
approx. 90% in most of the cases, while the circuit size increases
only by a factor of approx. 1.13 on average. Compared to



established methods (e.g., TMR, where indeed 100% robustness
is achieved, but at the expense of more than tripling the circuit
size), this provides a suitable alternative and a trade-off between
robustness and hardware overhead.

The proposed methodology is described in the remainder of
this paper as follows: Section II provides the background on
sequential circuits, transient faults, and robustness. Afterwards,
the general idea and the overall flow are described in Section III.
A detailed description of the implementation is presented in
Section IV and the obtained results are summarized in Section V.
Finally, conclusions are drawn in Section VI.

II. BACKGROUND

This section briefly introduces the relevant terminologies used
in the remainder of this paper.

A. Sequential Circuits
A sequential circuit Φ is given as a commonly known

gate level representation that consists of Primary Inputs (PIs),
Primary Outputs (POs), combinational gates G, and sequential
elements (SE) such as FFs, i.e., Φ = (IN,OUT,G,SE). The
sequential elements are assumed to be synchronous to (at least)
one clock domain.1 The FFs of a given sequential circuit can
be grouped by a hierarchical levelizing procedure. Two FFs
FFi and FFj are contained in the same group, if the number
of FFs in both fan-in cones are the same on the shortest path
towards the PIs.

Alternatively, a sequential circuit can also be represented
by a Finite State Machine (FSM). An FSM is defined by a
tuple M = (I, S, T ), where I describes the set of initial states,
S represents the state space of the circuit, and T defines the
transition relation. A transition relation T (s, s′) evaluates to
true, if there is at least one transition from state s to state s′.
The set of reachable states S∗ ⊆ S contains those states that are
reachable from an initial state in an arbitrary number of steps.

B. Transient Faults
The shrinking feature size leads to an increased vulnerability

of circuits against Single Transient Faults (STFs), which are
typically caused by Single Event Upsets (SEUs), e.g., electrical
noise, particle strikes, or other environmental effects [1], [2].
Typically, the influence of a transient fault occurring at a FF is
modeled as an unintended toggled output value. This influence
can possibly cause an invalid and unintended behavior of the
circuit Φ for a short period of time. Based on this vulnerability,
a circuit Φ is called robust if no fault exists such that the
input/output behavior is affected. In order to increase the
robustness of a circuit Φ, a Fault Detection Mechanism (FDM)
can be applied that handles cases in which a single transient
fault occurs at a FF, e.g., to realize precautions.

C. Assessing Robustness
To consider the vulnerability of sequential circuits against

transient faults, a metric for robustness has been introduced,
which measures the fault tolerance (i.e., the robustness) with
respect to a fault model [15], [16]. More precisely:

Definition 1. Let Φ = (IN,OUT,G,SE) be a sequential circuit.
A FF is considered to be non-robust, if there is at least one
reachable state and one transient fault such that the output
behavior of Φ is tampered. Let N be the set of non-robust FFs
with N ⊆ SE. Then, the robustness of Φ can be determined by
R = 1− |N ||SE| [17].

In order to determine the robustness of a given sequential
circuit the non-robust FFs N can be computed by either formal

1In order to ease the following descriptions, we will assume a single clock
domain. However, the proposed methodology can be extended to further clocks
domains as well.

methods [18] or simulation-based techniques [19]–[22]. In
general, the robustness can be determined using a simulation-
based approach as follows:

1) Define a number l of simulation cycles to be considered
while adjusting the state of the circuit which is finally
used for fault injection. Beside this, define a number k of
cycles to be simulated for fault propagation.

2) The PIs of a given sequential circuit Φ are stimulated up
to l − 1 cycles using random values.

3) In cycle l, the state sl is extracted from the simulation
environment. A copy ŝl of sl is modified so that an STF
is injected at a randomly chosen FF f ∈ SE and, hence,
the output value of f is toggled.

4) The circuit Φ is simulated twice for up to k cycles: One
simulation starts from the healthy state sl and one from
faulty state ŝl containing the injected STF. During both
simulation runs and for every clock cycle, the same PIs
values are driven.

5) In cycle l+k, all POs of both simulation runs are compared.
If at least one of the POs values differs, the f is non-robust
unless the circuit contains an FDM reporting a fault.

6) This procedure is repeated from Step 3 until all FFs are
covered by fault injection.

Due to the nature of random simulation, the number of covered
states depends on the chosen parameters for l and k.

III. GENERAL IDEA

The general idea of the proposed methodology rests on the
following observations:
• Today’s circuits usually contain a huge number of FFs,

which can store at least a single bit, i.e., ‘0’ or ‘1’. If
a single FF is affected by a transient fault, this bit is
toggled. Existing approaches insert redundant logic into
the design, e.g., to recompute the correct value, which
causes a significant hardware overhead.

• At the same time, the value of an observed single FF is
often equal to the value of many other FFs. Moreover,
since the behavior of the circuit is known, it is possible
to determine the relation between them, i.e., the states in
which certain FFs assume the same value.
• Hence, instead of introducing redundancy for recomputa-

tions, we propose to simply compare the value of a FF
to the values of other FFs from which it is known that,
for the respectively considered state, they are supposed to
generate the same value.

In order to realize this idea, we need a formalism that states
whether a partition of non-robust FFs assumes the same value
for given reachable states. In the following, this is formally
described in terms of an equivalence property.

Definition 2. Let Pj ⊆ Ni be a partition of at least two non-
robust FFs and Ŝ ⊆ S∗ be a set of reachable states. Then, an
Equivalence Property (EP) is defined by

EP(Ŝ, Pj) := ∀fn, fm ∈ Pj : fn(s) = fm(s) ∀ s ∈ Ŝ

and evaluates to true if all combinations of FFs fn, fm ∈ Pj

assume the same output value in all of these states Ŝ ⊂ S∗.

Example 1. Consider the circuit shown in Fig. 1 which is
composed of five FFs distributed in two hierarchical circuit
levels 1 and 2. If both FF1 and FF2 (level 1) are set to ‘0’,
then FF3, FF4, and FF5 (level 2) are assumed to have
the same output value ‘0’ after a single clock cycle. This
scenario is represented by an EP(Ŝ, Pj) with the partition
Pj = {FF3, FF4, FF5} and the state sj ∈ Ŝ being defined
by FF1 = 0 and FF2 = 0, i.e., EP(Ŝ, Pj) = 1 holds.



Fig. 1: A non-robust sequential circuit

Using the Equivalence Property and the general idea sketched
above, robustness of sequential circuits is enhanced as follows:

1) Determine the set N of non-robust FFs of the given se-
quential circuit. The assessment of robustness as reviewed
in Section II-C can be utilized.

2) Consider all non-robust FFs N and determine subsets
N1 ∪N2 ∪ · · · ∪NL = N according to their hierarchical
circuit levels (L being the total number of hierarchical
levels in the circuit). This clustering is required to avoid
masking effects of FFs that are located in different
hierarchical circuit levels affecting each other.

3) For each level 1 ≤ l ≤ L and all subsets of non-robust FFs
Ni ⊆ N , determine suitable partitions Pj ∈ P(Ni) and a
set of reachable states Ŝ ⊆ S∗ such that all FFs in Pj are
supposed to generate the same value, i.e., determine Pjs
and corresponding Ŝs for which EP(Ŝ, Pj) = 1 holds.

4) Using the knowledge from the obtained EPs, synthesize a
Fault Detection Mechanism (FDM). To this end, realize
the following logic blocks:

• Activator A: Generates a signal A (supposed to trigger
the FDM) stating whether (A = 1) or not (A = 0) the
FFs in Pj are supposed to generate the same value under
the current state s ∈ Ŝ.
• Comparator C: Generates a signal C stating whether

(C = 1) or not (C = 0) all FFs in a partition Pj to be
hardened actually assume the same output value.
• Detector: Generates a fault signal F reporting the detection

of a fault. A fault is detected, if not all FFs in a partition Pj
assume the same output value (i.e., C = 0), although they
are supposed to do that for the current state (i.e., A = 1),
i.e., F = ¬C ∧ A.

This proposed FDM detects transient faults occurring in FFs
of the considered circuit. If a fault is detected, an introduced
fault signal F is driven. This enables the realization of
precautions against faulty behavior at the POs, e.g., by resetting
the circuit or masking the affected POs. Overall, this leads
to an enhanced robustness. The ratio of the enhancement can
thereby be controlled, e.g., by adjusting the number knowledge
collected through the EPs.

IV. IMPLEMENTATION

This section provides details on how the general ideas
discussed above have been implemented. The bottleneck of
the proposed methodology obviously is the determination of
as much as possible of the application-specific knowledge in
terms of EPs. Doing this in a complete fashion would require
the consideration of all possible partitions Pj ∈ P(Ni) of all
non-robust FFs located in the same hierarchical circuit level
– leading to an exponential complexity, which is not feasible
for practical applications. Moreover, most of the partitions Pj
are likely to be not suitable for an EP anyway, since no state
sj may exists for them so that all assume the same value. In
order to address these issues, we propose a scheme which does
not consider all possible partitions, but aims for efficiently
determining good partitions.

Algorithm 1: Partition Enumeration procedure
Data: set of non-robust FFs: Ni, upper-bound partition size: ps
Ensure: 0 < ps ≤ |Ni|

1 Container E = ∅ /* Data container for EPs */
2 while ps > 1 do
3 Let Pj ∈ P(NL) such that |Pj | = ps
4 if Pj = ∅ then
5 ps = ps − 1
6 continue

7 Ŝ = StateCollector(Pj)

8 if Ŝ 6= ∅ then
9 E = E ∪ EP(Ŝ, Pj)

10 Ni = Ni \ Pj

11 else Ni = Ni \ {f} with f ∈ Ni (chosen after analysis)

In addition to that, we heavily exploit formal methods such
as Bounded Model Checking (BMC, [12]), powerful solvers
for the Boolean Satisfiability Problem (SAT problem, [13]),
and compact data structures for circuit representation involving
Binary Decision Diagrams (BDDs, [14]).

Eventually, this leads to a methodology composing:
1) A Partition Enumerator selects suitable partitions

Pj ∈ P(Ni) which have not been considered before.
2) A State Collector determines the states Ŝ under which all

FFs in the selected partition Pj assume the same value
and, hence, determines all EP(Ŝ, Pj) evaluating to true.

3) An FDM Synthesizer takes the obtained knowledge,
realizes the FDM, and, eventually, embeds the resulting
logic into the original circuit.

In the following, each step is described in more detail and
illustrated by means of the circuit considered in Fig. 1.

A. Partition Enumerator
In order to determine suitable partitions, first all non-

robust FFs (given in N ) are distinguished according to their
hierarchical circuit level. Then, for each subset Ni ⊂ N , good
partitions Pj ∈ P(Ni) are enumerated as shown in Algorithm 1.

Algorithm 1 receives a set of non-robust FFs Ni and an upper-
bound for the maximum partition size ps to be considered
(provided by the designer). First, a possible partition Pj is
chosen as shown in Line 3. If no partition of size ps is left to
be considered anymore, ps is decreased, and the loop continues
with the new partition size (Lines 4 to 4) until the partition
size deceeds the lower bound. Afterwards, the partition Pj is
passed to the State Collector (Line 7) that computes states Ŝ
in which all FFs in Pj assume the same value (described in
detail in Section IV-B).

If at least one state s ∈ Ŝ exists (Lines 8 to 8), an EP is
created using the states Ŝ determined by the State Collector as
well as the currently considered partition Pj . Then, the resulting
EP is stored within a global data container E (used later by
the FDM Synthesizer) and the partition Pj is excluded from
any further consideration since at least one state is covered.
In contrast, if no state exists, i.e., Ŝ = ∅ (Lines 8 to 11), one
of the non-robust FFs f ∈ Ni is removed from the further
consideration in order to increase the chance to determine a
suitable partition in the next iterations. The FF f to be removed
is determined by an analysis based on a greedy algorithm.

Example 2. Consider again the circuit shown in Fig. 1 and
all non-robust FFs in the hierarchical circuit level L = 2, i.e.,
N2 = {FF3, FF4, FF5}. The Partition Enumerator starts with
a maximum partition size set to ps = 3 and, hence, first
considers Pj = {FF3, FF4, FF5}. This partition is validated
by the State Collector as described in the next subsection.



Algorithm 2: State Collecting procedure
Data: enumerated partition: Pj ,max. number of states: u
Data: unrolling depth: l

1 Ŝ = ∅ /* stored as BDD */
2 for k = 1 to l do
3 F = SFind(Pj , k)
4 repeat
5 if |Ŝ| > u then return Ŝ

6 Ŝ = Ŝ ∪ si+1 /* collects state */
7 F = F ∧ ¬si+1 /* blocks solution */
8 until SAT(F )

9 return Ŝ

B. State Collector
The main task of the State Collector is to determine reachable

states Ŝ such that the EP holds for a partition Pj obtained by
the Partition Enumerator. To this end, solutions for the BMC
problem [12] are used to determine these states. In general,
BMC is about determining a path of states s0 . . . sl from the
initial state s0 so that, eventually, the terminal state sl violates or
satisfies a certain property. For a sequential circuit represented
by the FSM M = (I, S, T ), this can be formulated as

BMC(l) = I(s0) ∧
∧

0≤i<l

T (si, si+1) ∧ P (sl)

whereas P is a logical formula for the considered property to
be verified.

For our purposes, we revise this BMC formulation in order
to determine a path of states so that, eventually, the EP holds
for the currently considered partition Pj . More precisely,

SFind(Pj , l) = I(s0) ∧
∧

0≤i<l

T (si, si+1) ∧ EP(sl, Pj)

is employed. The formula SFind is satisfiable, if there is at least
one path s0 . . . sl such that all FFs in the currently considered
partition Pj assume the same output value at state sl. The
number l of transitions to be considered, i.e., the unrolling depth
of the circuit, can be iteratively increased until either a state sl
has been determined or the maximal unrolling depth (defined
by the designer) is reached. If no path can be determined, the
partition Pj has been found unsuitable as no state could have
been determined in which all FFs in Pj assume the same output
value. In addition to that, another parameter u > 0 is added
which prevents the State Collector from determining too many
states (significantly increasing the complexity of the FDM,
while hardly improving the achieved robustness anymore).

Overall, this leads to the State Collecting method as summa-
rized in Algorithm 2. The algorithms receives the partition Pj
from the Partition Enumerator, the maximum number u of
states to be generated, as well as the unrolling depth l for the
underlying BMC problem. The collected states Ŝ are compactly
represented by means of BDDs [14] and initialized by the empty
set in Line 1.

As long as the maximum number u of states to be determined
is not reached (Line 5), further states are computed. This is done
by formulating the BMC problem (Line 3) for the currently
considered unrolling depth k (0 < k < l). Afterwards, the
resulting formulation (denoted by F ) is solved by a SAT solver
(Line 8). As long as a satisfying solution is determined, the
corresponding states are added to Ŝ (Line 6) and, afterwards,
blocked in the BMC formulation F so that new states can be
determined (Line 7).

Example 3. Given the partition Pj = {FF3, FF4, FF5} as
provided by the Partition Enumerator (see Example 2), states
shall be determined so that all FFs in Pj assume the same
output value. Assuming that the both cones f1 and f2 in the
circuit from Fig. 1 do not contain any FFs, a State Collector

instance according to SFind is formulated. Solving this instance
yields a satisfying solution where all FFs {FF3, FF4, FF5}
have the same output value ‘0’. From that, it is shown
that EP(Ŝ, Pj) holds under the state s ∈ Ŝ defined by FF1 = 0
and FF2 = 0. Consequently, the partition Pj is valid. In the
Partition Enumerator (Algorithm 1), this EP is later stored in
the container E .

C. FDM Synthesizer
The methods from above yield a data container E including

all application-specific knowledge which has been obtained in
terms of EPs, i.e., all valid partitions Pj and corresponding
states Ŝ which satisfy the equivalence property. This knowledge
is now utilized in order to synthesize an FDM. More precisely,
for each determined EP(Ŝ, Pj) ∈ E , a fault signal F is to
be generated which is set to ‘1’ whenever the circuit is in a
state s ∈ Ŝ (checked by the activator) and, at the same time, the
FFs in the partition Pj do not assume the same value (checked
by the comparator). In the following, details on the realization
of this FDM are provided.

1) Activator A: For a given EP(Ŝ, Pj), a signal A has to be
created which is set to ‘1’ iff the circuit is in a state s ∈ Ŝ.
As mentioned before in Section IV-B, all currently relevant
states Ŝ are stored in terms of a BDD. Hence, corresponding
logic triggering the signal A can easily be derived from the
BDD, by replacing all BDD nodes with a corresponding MUX
gate (as, e.g., shown in [23]).

Besides that, the timing of A has to be properly adjusted.
Transient faults are assumed to occur in the transition between
two consecutive states. This is why the states s ∈ Ŝ are
collected for state sl−1 (assuming their effects manifest in
state sl). Consequently, the check for states has to be conducted
one state before the values of all FFs in Pj are to be compared,
i.e., the activator signal A has to be generated one state before
the comparison is conducted. This requires signal A to be
buffered for one cycle, which is accomplished by introducing
an additional FF L-Act1.

However, since L-Act1 is vulnerable against transient faults,
robustness is not guaranteed anymore. Hence, a second FF
L-Act2 which also receives the value of signal A is introduced.
After one cycle, the output values of both FFs L-Act1 and
L-Act2 are checked for equivalence. If the two value are not
equal, a fault is reported (by setting the fault signal F to ‘1’).

Example 4. Consider again the running example with the
circuit from Fig. 1 and the determined EP(Ŝ, Pj). Fig. 2 shows
the resulting circuit created by the FDM scheme proposed
in this work. The bottom left corner of Fig. 2 sketches the
resulting Activator logic. More precisely, using Ŝ represented
as BDD, a MUX circuit is created which generates the signal A
(sketched by the block State Collector). Then, the resulting
signal is passed to the two FFs L-Act1 and L-Act2. Finally, the
equivalence check in order to make these newly inserted FFs
robust is conducted using an XOR gate which triggers the fault
signal F .

2) Comparator C: For a given EP(Ŝ, Pj), a signal C has to
be created which is set to ‘1’ iff the FFs in a partition Pj
assume same values. This can easily be realized by connecting
the corresponding FF outputs by XNOR gates and comparing
their result. The example illustrates the resulting logic.

Example 5. Consider again the running example with the
circuit from Fig. 1 and the determined EP(Ŝ, Pj). The bottom
middle part of Fig. 2 sketches the resulting Comparator logic.
Here, the outputs of all FFs {FF3, FF4, FF5} ∈ Pj are
compared by XNOR gates. Afterwards, the outputs of these



Fig. 2: Applying the proposed methodology to the circuit from Fig. 1

XNOR gates are passed to an AND gate. If all FFs assume the
same value, this AND gate evaluates to ‘1’.

3) Generating the Fault Signal F: Finally, the signals A
and C are assembled into a single FDM that generates the
fault signal F . Recall, that F is set to ‘1’ iff a fault has been
detected. For a given EP(Ŝ, Pj), this is the case, if the circuit
just left a state Ŝ (buffered in A) and all FFs in P| are not
equal, i.e., F = ¬C ∧ A, which can be realized easily.

Example 6. Consider again the running example and the
resulting circuit shown in Fig. 2. As can be seen in the bottom
right corner, the signal C is first inverted and, afterwards,
ANDed with the A signal. The resulting value is additionally
ORed with the fault value from the robustness check of
the Activator – eventually resulting in the desired signal F .
Consider now the entire circuit and, e.g., a transient fault
in FF3 (denoted by the red strike symbol). This causes the
FFs {FF3, FF4, FF5} ∈ Pj to not assume the same value
anymore in states Ŝ where this is supposed to happen, i.e., the
EP(Ŝ, Pj) fails. This case is propagated through the FDM (see
annotations in Fig. 2) which, eventually, sets the fault signal F
to ‘1’, and, by this, detects the fault.

Logic as described above is, of course, added for all EP ∈ E .
Overall, this leads to a circuit which has a slightly increased
number of gates, but substantially improved robustness. This
has been confirmed by experimental evaluations whose results
are summarized next.

V. EXPERIMENTAL RESULTS

The proposed methodology has been implemented in C++. To
determine the non-robust FFs of the circuit, a simulation-based
robustness checker has been implemented which transforms the
given circuits (provided in Verilog and parsed by Verific) into a
compiled simulation model (to this end, LLVM [24] IR code is
generated by the simulation environment). In order to conduct
the respective BMC task (cf. Section IV), MiniSAT [13] on
top of metaSMT [25], together with the X-value abstraction as
described in [26] has been utilized. The BDD package CUDD
has been used to generate the MUX circuits.

Afterwards, the resulting flow has been evaluated using
ITC’99 benchmark circuits. In order to determine the set of
all non-robust FFs (cf. Section II-C), the parameters l = 500
and k = 5 have been found suitable for these circuits. The
Partition Enumerator (cf. Section IV-A) considered different

TABLE I: Run time for different ps ∈ {4, 8, 16}

circ. #gates #FFs run time [s]

ps = 4 ps = 8 ps = 16

b05 608 66 7.71 1.42 1.42
b06 66 9 0.11 < 0.10 < 0.10
b07 382 51 34.83 10.78 10.77
b08 168 21 0.23 0.23 0.23
b09 131 28 1.61 0.66 0.66
b10 172 17 3.95 1.05 1.50
b11 366 30 60.80 1.02 0.46
b12 1000 121 238.62 75.35 69.06
b13 309 53 16.29 5.40 6.65
b14 3461 247 1287.13 341.21 105.38
b15 6931 447 28787.10 5115.23 917.77

partition sizes, i.e., ps ∈ {4, 8, 16}. Finally, the State Collector
(cf. Section IV-B) always assumed an unrolling depth of l = 10
and a bounded number u = 1024 of states to be collected per
partition Pj .2 All evaluations have been conducted on an Intel
Xeon E3-1230v2 3.3 GHz processor with 32GB system memory.
The obtained results are summarized as follows:
• Table I provides details on the considered benchmark

circuits, i.e., its respective name, number of gates, and
number of FFs, as well as the run time (in CPU seconds)
required by the proposed methodology when partition
sizes of ps ∈ {4, 8, 16} are applied.

• Fig. 3 shows the hardware overhead (in terms of a gate
count factor) caused by applying the proposed methodol-
ogy for the considered partition sizes ps ∈ {4, 8, 16}.3

• Fig. 4 shows the robustness of the original circuit as well
as the robustness after applying the proposed methodology
(again for different partition sizes ps ∈ {4, 8, 16}).

First, the results nicely show the effect of different partition
sizes ps. In almost all cases a larger ps leads to a smaller
hardware overhead. This is because larger partitions cover
more FFs and, hence, require the consideration of a smaller
total number of partitions leading to less FDM logic. At the
same time, this reduces the required run time since less BMC
checks have to be conducted.

However, more important is the overall performance. In
this regard, the proposed methodology provides a suitable
alternative to previously proposed solutions such as discussed in
Section I. Although space-based approaches such as TMR [4]
can guarantee 100% robustness, they usually require more

2Note that, in most cases, this bound was not exceeded.
3If no bar is shown, a hardware overhead of 1 or close to 1 is measured.
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Fig. 3: Hardware overhead for ps ∈ {4, 8, 16}
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Fig. 4: Robustness for original/improved circuits
than thrice the amount of hardware (i.e., yielding a scaling
factor of > 3.0). In contrast, the solution proposed in this
work is capable of always improving the robustness to more
than 90% (in some cases even close to 100%), while only a
factor of approx. 1.13 more hardware is required for this on
average. As already discussed before, the proposed solution also
outperforms timing-based and application-specific approaches,
since timing is hardly affected at all in the proposed solution
and the methodology can be applied to arbitrary sequential
circuits. By this, a suitable trade-off between enhancing the
robustness and keeping the hardware overhead small is achieved.

VI. CONCLUSIONS & FUTURE WORK

In this work, we proposed an approach for improving
the robustness in sequential circuits. The main idea is to
avoid the addition of huge additional hardware, e.g., caused
by recomputing possibly faulty signals, and instead exploit
application-specific knowledge about the FFs in each state.
To this end, a methodology is introduced which gains the
corresponding knowledge and, afterwards, utilizes them for
a fault detection mechanism. To cope with the underlying
complexity, a dedicated orchestration of formal techniques is
employed. This results in a hardening method which requires
only a slight increase in additional hardware, does not influence
the timing behavior, and is automatically applicable to arbitrary
circuits. Experimental evaluations confirmed these benefits:
Robustness can be increased to approx. 90%, while the circuit
size increases only by a factor of approx. 1.13 on average.
Future work will focus on developing a technique for not only
detecting the respective faults but also correcting them with
the proposed methodology. Besides this, a fast preprocessing
step will be developed which allows to determine the most
promising partition size for arbitrary circuits.
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