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Abstract
In this paper, the development of an algorithm for movement identification based on exoskeleton sensor data is described.
The exoskeleton is part of a project on post stroke rehabilitation. The algorithm shall be used to mark movement events
in a simultaneously recorded electroencephalography stream as a replacement for external motion tracking. The angular
values for each joint of the exoskeleton are utilized by the algorithm to calculate a threshold and decide, if a movement
was done or not. The quality of the algorithm is evaluated with an experiment, where the subject has to do specific move-
ments while wearing the exoskeleton. During the experiment, data from exoskeleton sensors, electroencephalography
and motion tracking is recorded. The provisional results show, that the algorithm is able to detect the movements, but the
threshold needs to be adapted to the status of the bearer. Subsequently, the algorithm gets embedded in a signal processing
framework.

1 Introduction

Worldwide stroke is the most frequent cause for middle
and heavy acquired impediments [1]. In 30% to 66% of
the cases, the paretic limb of the stroke patient, who suf-
fers from paralysis, remains hindered 6 months after stroke,
whereas only 5% to 20% of the patients recover to full func-
tionality [2]. One concept for stroke rehabilitation is motor
learning, which is based on repetitive, task-specific train-
ing. This makes it convenient for robotic systems to as-
sist. The functionality and strength of the patient’s impaired
limb may improve through robot assisted therapy and train-
ing [3], so this approach has become an important technol-
ogy applied in rehabilitation engineering [4]. The aim of
the Recupera-Reha project at the German Research Cen-
ter for Artificial Intelligence (Deutsche Forschungszentrum
für Künstliche Intelligenz, DFKI) is the development of a
mobile whole body exoskeleton, for robot-supported reha-
bilitation of neurological illnesses like stroke. By the devel-
opment of the robot system most different aspects must be
considered, as for example suitable kinematics, the choice
of fitting joints and a correct actuator strength. In addition,
especially for the use case of rehabilitation, appropriate,
assistive control methods must be developed. The mecha-
tronic attempts for actuation and control of the system get
combined with methods of online evaluation of electroen-
cephalogram (EEG) as well as electromyogram (EMG)[5].
The purpose of the algorithm proposed in this paper is to
identify the movements of the bearer just by using internal
data of exoskeleton.This offers the advantage to no longer

be dependent on external systems and devices, like motion
tracking systems or push buttons, which have to be build up
before use. This limits the mobility and flexibility of exper-
iments and application scenarios, which have to be adapt-
able, especially in the context of rehabilitation. A similar
comparison with the same intention of more freedom and
independency between a motion sensing suit and a motion
tracking system was done in [6]. The information about the
movements is on the one hand used to get a feedback, if
the intended movement was absolved right or not and on
the other hand it is needed for marking the EEG data of
the bearer, to evaluate intention recognition methods and to
adapt learning algorithms for context recognition. As a ba-
sis for the development of the exoskeleton in the Recupera-
Reha project and as a base and test system of the algorithm
described in this paper, the active exoskeleton of the project
CAPIO is used, which was also developed at the DFKI be-
fore. This two-armed upper body exoskeleton is connected
with the human body by eight contact points and the kine-
matic structure covers eight active degrees of freedom at the
arms and four active degrees of freedom in the back [7].

2 Material and Methods

The algorithm and all additional scripts, which are related
to the algorithm were developed in the language Python 2.7.
For later use, the algorithm will be embedded in the open-
source software pySPACE (Signal Processing And Classifi-
cation Environment in Python) [8].



2.1 The algorithm

Before the grading of movements begins, the joint values
are separated into two groups (left and right arm) by their
designations. While identifying movements it became ap-
parent that voluntary movements needs to be distinguish
from involuntary, as for example short twitching or smaller,
passive co-movements of an arm while moving other body
parts. At the same time, it is important to detect the correct
movements precisely in time. To recognize whether a joint
moves at the time point i, you can compare the current po-
sition x of the joint with the one t samples before, which
represents a determined time span related to the sampling
frequency. The difference of both values represent the av-
erage speed of change of the joint angle in the period of
time. If this speed exceeds a certain threshold θ, a volun-
tary movement of the joint is assumed (the output of the
algorithm ft,θ(xi) will be the value 1), otherwise, it is not
counted as a movement (marked by the value -1):

ft,θ(xi) =

{
1, if xi − xi−t ≥ θ

−1, otherwise
(1)

As a initial value for the threshold the standard deviation of
the activity in rest for each joint was chosen. In contrast to
the difference of minimum and maximum value during rest,
which could also be a possible threshold, the standard devi-
ation was more robust against peaks caused by artifacts, but
was to small, which made an additional multiplying factor
for the threshold necessary. In this context it can be seen
as a kind of noise, which is not assignable to any voluntary
movement and can result from different causes. Now, us-
ing the outcome of the single joints, it had to be decided,
whether the motions of the single joints were enough to be
counted as a voluntary movement of the whole arm itself.
The first attempt was to examine, which joint of each arm
moved currently the most and then just focus on and com-
pare the two for both arms. By this, the decision whether
the respective arm moved was reduced to the value of this
joint. Indeed, this version was able to lead to precise de-
tection in time, with a delay minimum between the starting
of the motion of one joint and movement detection of 0,1
seconds, but on the other hand produced a delay maximum
at other movements of 0,7 seconds. Especially in case more
complex movements this delay fluctuated and it was diffi-
cult to find a threshold, which delivered good results for
the whole sequence. The next idea was to take the sum of
the differences of each joint j out of n joints for each arm
and according to this choose the sum of thresholds as the
threshold for each arm to compare it with:

Ft,θ(xi) =

1, if
n∑
j=1

(xj,i − xj,i−t) ≥
n∑
j=1

θn

−1, otherwise
(2)

This resulted in a more robust detection of the decision
function Ft,θ(xi), which also seemed to be easier to adjust,
so preferably only relevant movements were detected.

2.2 Data
As a basis for the development of the algorithm data from
the exoskeleton were recorded, where the bearer lifted and
lowered the left and right arm alternately. The record con-
tained values of all joints of the exoskeleton with regard to
the deflection of the respective joint to its ground position,
the strength currently working on the joint and values of the
inverse dynamics. At the same time the movements of the
bearer were recorded by a motion tracking system (Oqus,
Qualisys AB, Gothenburg, Sweden) using six infrared cam-
eras and two infrared markers affixed to the wrists of the
bearer. However, the data of both records had not been
captured synchronously so a synchronization had to be car-
ried out afterwards manually by using events, which could
be identified in both records. This was further complicated
by the unregulated and undocumented movement sequence,
which later made it more difficult to assign the data and
to synchronize it with the motion tracking record. For the
preparation of the data of the exoskeleton it was checked,
which joints did not moved during the recording or were
switched off respectively. These joints (the four in the back
of the exoskeleton) were sorted out, because they were not
relevant for the recognition and differentiation of the arm
movements. In addition, among all available parameters
only the current joint angulars were used for the classifi-
cation of the movements. To avoid the disadvantages of
the test data set, the movement sequence for the evaluation
data sets was planned concretely and was controlled dur-
ing recording. In addition, the different data streams of the
exoskeleton, the motion tracking system (with six markers
affixed to the exoskeleton and three markers on each ob-
ject) and, for further evaluation and testing for the actual
use case of event marking, EEG were recorded with syn-
chronized timestamps. The EEG was captured with a 32
electrodes system (actiCap, Brain Products GmbH, Munich,
Germany).

2.3 Comparison
To examine if the movement detection performed by the
algorithm is able to replace the identifying of movements
by using the motion tracking data, both methods should be
compared. In addition, by observing the motion tracking
record will help to check, how the movements were ac-
tually carried out or if there are any unexpected motions,
which will may be detected by the algorithm. Further, it was
checked, how the algorithm is reacting to smaller move-
ments, which are not counted as a real movement of one
arm. The comparison allowed to adapt the parameters of the
algorithm (time window t, factor for threshold adjustment)
to an optimum (500 ms, 15 times the standard deviation of
the activity in rest) for the present data by increasing the val-
ues from 50 ms in 50 ms steps in the first case and from 1 in
0.5 steps in the case of the threshold factor. In both cases,
a further raise would lead to a increased detection delay or
even to more missed movements. Then again, to small pa-
rameter values would lead to more detection, then expected,
caused by wrong detection when no movement is actually



Figure 1: Illustration of the movement marking on the test
data by the algorithm with adjusted threshold after compar-
ison with the motion tracking data. The vertical, dashed
lines mark the beginning of the detected movements, the
solid lines the values of the current deflection of the first
shoulder joint of the left (top) and right (bottom) arm over
time. These joints were chosen as a optical reference be-
cause of their wide and clear shift during movements. A
missed movement can be seen in top graph at around 12000
ms, a split at around 110000 ms and an unexpected detec-
tion in the bottom graph at around 50000 ms.

done or by splitting up one actually correct movement into
two or more smaller ones. The results of the adapted algo-
rithm and a differentiation of the different errors is given in
Table 1. A visualization of the data with marks at the start
of the movements is shown in Fig. 1 with the deflection
values of one joint for each arm as a comparison.

Table 1: Differentiations of movement marking on the test
data set

movement left arm right arm
expected 27 28
detected correctly 25 28
missed 2 0
splits 4 3
unexpected 2 2

2.4 Experiment
To evaluate the algorithm, adapted to the test data set, an
experiment was set up, to obtain further data under con-
trolled conditions. Four subjects participated, the only re-
striction was a suitable body shape and strength to wear the
exoskeleton. After the motion tracking system was cali-
brated and the subject was prepared for EEG recording, he
or she puts on the exoskeleton, which is additionally con-
nected to a counterweight, which reduces the load for the
subject by twenty kilogram. In front of the subject, a ta-
ble was located, on which three objects lie: a cup, a bottle

and a box. These objects were used for some of the follow-
ing movement tasks. The tasks can be separated into easy
movements, like moving an arm forth or back and more
complex, more realistic movements like grabbing a cup or
lift a box with both arms, like it probably will be done in the
rehabilition secenario. Behind the table, a screen was built
up. On the screen, the subject received commands, one by
one and in an appropriate speed (5 seconds for easy move-
ments, 8 for the more complex ones, with a 2 seconds break
between each command). The commands tell the subject,
which movement he or she has to do, by showing stylized
pictures, as shown in Fig. 2 exemplarily. In addition, the re-
spective meaning of the picture is written below the picture.
Before the experiment starts, the subject gets an instruction
on how to move with the exoskeleton and what movements
are meant with the commands. The command sequence it-
self lasts ten minutes. To support later analysis, it is tried
to document during the sequence, how the movements are
performed by the subject, to know, if the they were done as
expected.

Figure 2: 4 examples out of 15 command pictures the sub-
ject get to see during the experiment: Top left: relax, top
right: left arm forth, bottom left: grab bottle and cup, bot-
tom right: pick box. These descriptions are depicted on the
screen, too. The remaining command pictures are variations
(reversion, change of sides, etc.) of the pictures shown here.

3 Results and Discussion
First results seem promissing that the algorithm is capable
of detecting movements. As a first test, the algorithm is
applied to the new data sets with the parameters adapted
on the test set. The results of these runs are shown in Ta-
ble 2. It can be recognized, that most of the missed move-
ments were complex movements. On the other hand, most
of the unexpected detection happened during the task times
of easy movements. Both can partially be explained by



the performance of the subjects. For example, subject 1
had connected the commands put box down with both arms
back to one, which led to an additional movement during
the first task time and a missing one during the following.
Another example is given by subject 4, who one time had
got the command left arm back, but additionally had moved
his right arm back in three small steps. The algorithm de-
tected one movement on the left and three on the right, so
an actual correct detection. To figure out, if more errors can
be explained this way, for example if some of the splits are
actual separable movements during a complex task, a closer
examination of the motion tracking recording is necessary.
In addition, the movement marks should be applied to the
EEG data to examine their accuracy. This and a more de-
tailed analysis of the results and further steps to a more au-
tomatic threshold adjustment and embedding are currently
in preparation.

Table 2: Differentiations of movement marking on the four
obtained data sets

movement left arm right arm
type easy / complex easy / complex
expected 26 / 27 28 / 25
subject 1
detected correctly 25 / 26 26 / 25
missed 1 / 1 2 / 0
splits 12 / 42 19 / 22
unexpected 9 / 1 9 / 8
subject 2
detected correctly 26 / 19 28 / 25
missed 0 / 8 0 / 0
splits 15 / 9 13 / 28
unexpected 0 / 0 0 / 2
subject 3
detected correctly 25 / 23 26 / 20
missed 0 / 4 2 / 5
splits 8 / 20 6 / 14
unexpected 3 / 1 0 / 1
subject 4
detected correctly 26 / 20 28 / 19
missed 0 / 7 0 / 6
splits 10 / 13 4 / 7
unexpected 2 / 2 5 / 0

4 Conclusion
In this article, the development and evaluation of an algo-
rithm for movement detection of an exoskeleton was pre-
sented. The algorithm, which was developed based on a
test data set, was evaluated on four data sets recorded in a
extra designed movement sequence experiment. The first
results showed, that the parameters of the algorithm, which
were optimized on the test data, are a good starting point,
but have to be adjusted for every individual subject, to get
the optimal outcome. Apart from a more thorough analysis
and the embedding into the signal processing framework,

there a few possible enhancements, which could be added
to the algorithm. The use of kinematic information about
the exoskeleton may allow to separate the detection to more
differentiated categories, like which part of the arm is mov-
ing in which direction, which kind of movement is done etc.
In addition, changes in the torque values of the joints could
tell the algorithm, if the bearer is carrying something or in
general, if something changed about the status of the bearer.
Furthermore, a closer look to the detections during the more
realistic, complex movements could be a basis to draw up
characteristic sequences for these kinds of movements.
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