
The MaryTTS entry for the Blizzard Challenge 2016

Sébastien Le Maguer1, Ingmar Steiner1,2

1Saarland University, 2DFKI GmbH
Saarbrücken, Germany

{slemaguer|steiner}@coli.uni-saarland.de

Abstract
The MaryTTS system is a modular architecture text-to-speech
(TTS) system whose development started around 15 years ago.
This paper presents the MaryTTS entry for the Blizzard Chal-
lenge 2016. For this entry, we used the default configuration of
MaryTTS based on the unit selection paradigm.

However, the architecture is currently undergoing a mas-
sive refactoring process in order to provide a more fully modu-
lar system. This will allow researchers to focus only on some
part of the synthesis process. The current participation objec-
tive includes assessing the current baseline quality in order to
evaluate any future improvements. These can be achieved more
easily thanks to a more flexible and robust architecture. The
results obtained in this challenge prove that our system is not
obsolete, but improvements need to be made to maintain it in
the state of the art in the future.
Index Terms: MaryTTS, unit selection, Blizzard Challenge,
modularity

1. Introduction
MaryTTS is a text-to-speech (TTS) system whose development
began at DFKI and Saarland University more than 15 years ago
[1]. A prominent design feature of MaryTTS is that it is based
on a modular architecture to achieve the synthesis process. Such
an architecture allows the user to modify or extend specific parts
of the process. This is particularly useful for researchers as,
generally, people who are focusing on one part of the process.
Considering a baseline process, changing only one module will
allow researchers to evaluate their work more accurately.

However, since the beginning of its development, the com-
plexity of the MaryTTS system has grown significantly. Many
developers have contributed to the project at different times, and
under different circumstances. This has led the system to be
more monolithic even if the base part relies on a modular archi-
tecture. This monolithic property of the system has made it in-
creasingly difficult to maintain or extend. Also, and more prob-
lematically, for evaluation and analysis purposes several parts
of the code have become more or less opaque.

Furthermore, due to technical limitations at the time the
project was conceived, the modular paradigm was initially con-
strained to the runtime class architecture, while the build system
(Ant) and source code management (SCM) – first CVS, then
Subversion – were used in a monolithic way. Migrating from
Ant to Maven allowed modular concepts to reach the build sys-
tem level, but the full flexibility of modular software compo-
nents was not unlocked until they could be individually pub-
lished to central repositories such as Bintray [2]. And since
migrating to Git, we can even modularize at the SCM level.

Consequently, a massive refactoring effort is currently un-
derway on the MaryTTS code, in order to fully take advantage

of the architecture’s modularity. The objective is to offer a plug
and play system with default configurations for unit selection,
hidden Markov model (HMM) based, and, in the future, deep
neural network (DNN) based synthesis. However, for now, we
are focusing more on the software architecture than the evolu-
tion of the synthesis processes themselves.

The MaryTTS development team has, over the years, and
with fluctuating composition, participated in several iterations
of the Blizzard Challenge, including 2006 to 2009 and 2012 to
2013, and the corresponding papers document the implementa-
tion and evolution of the unit selection [3, 4], multilingual [5, 6],
and HMM based synthesis [7, 8] capabilities.

This paper presents the MaryTTS unit selection system en-
tered into the Blizzard Challenge 2016. This entry is based on
the conventional unit selection synthesis process, first described
in [4, 9], but with a significantly updated voice building work-
flow. Part of our motivation is to establish an evaluation baseline
for the significant changes and improvements expected over the
next two years.

The paper is organized as follows. Section 2 briefly presents
a global description of the architecture of MaryTTS. Section 3
then focuses on the voice building process. Section 4 describes
the configuration of our system for the 2016 Blizzard Challenge,
and finally, Section 5 discusses the results.

2. Description of MaryTTS
MaryTTS is a pure Java system based on a modular architecture.
We can currently distinguish the following main parts: the core,
the runtime interface, the natural language processing (NLP)
components for each language, the acoustic part (such as the
unit selection implementation) and finally the specific voice
components.

The core is the structuring part of the system and is com-
posed mainly of the module concept. Classically, a module is a
software component dedicated to one specific operation in the
TTS process. Therefore, the goal of the module is only to enrich
the data description. Finally, a module can just be a wrapper
around an external dependency (such as hts engine [10]) or be
fully implemented in the system. This allows the user to pre-
cisely define the synthesis process. In order to communicate
between modules, MaryTTS has been designed to use an XML
representation (“MaryXML”) throughout the TTS pipeline, in-
cluding within each module’s processing logic. However, this
internal representation is currently scheduled to be replaced by
a lightweight ROOTS [11] implementation. This will allow an
easier and more explicit process implementation in the module.

The NLP and the acoustic parts implement, classically, the
modules needed to achieve the descriptive feature extraction
and the waveform synthesis. However, their specificity consists
of proposing a set of modules. Therefore, these parts cannot



Input data

*.wav

*.lab

pitchmarks

MFCCs Voice

*.txt MaryXML

features

MaryTTS

CARTs

PraatEST

Figure 1: Overview of MaryTTS voice building process. See Section 3 for details.

be considered as autonomous as they do not architecture the se-
quence of modules.

The last part is the voice component, which not only con-
tains the data needed for the synthesis itself, but it also describes
the process to achieve it. For now, each voice is associated with
a specific language and synthesis engine.

Finally, based on the available modules, the data and the
process described in the selected voice, the runtime interface
triggers the synthesis process. This is done by passing through
the processing chain of modules defined in the voice configura-
tion, in the proper sequence.

3. Voice building process
For this entry, we have completely redesigned the voice building
process compared to the toolkit presented in [12]. The current
toolchain is managed by a continuous delivery approach built
on Gradle [13]. The general workflow is visualized in Figure 1.

The voice building process needs three matching sets of in-
put files for the voice corpus: text, audio, and phonetic segmen-
tation. The first stage is to extract linguistic/prosodic descrip-
tive features from the text. This is done by using the MaryTTS
runtime library and appropriate language components. The lan-
guage of the voice is therefore available to the system in order
to select the proper sequence of modules to run to get the fea-
tures. Of course, as during the synthesis stage, it is possible to
provide custom modules which are more accurate for the voice.

The second stage is to align the phonetic segmentation and
the generated descriptive feature sequence. This is done by us-
ing a Levenshtein distance at the phone level. In order to be
more robust, pauses are stripped out. It is of course possible to
manually adapt the generated features to match the segmenta-
tion, or vice versa.

The third stage consists of extracting acoustic coefficients
from the signal. This is done by calling Praat [14] for the
F0, and the Edinburgh Speech Tools (EST) [15] for the mel-
frequency cepstral coefficient (MFCC) extraction.

Finally, for a unit selection voice, the data and models are
packaged as the runtime voice data, ready for distribution. If we
want to build an HMM based voice, we only have to adapt this
stage to use the HMM based speech synthesis system (HTS)
[16] or an equivalent system.

3.1. Unit selection voice building

In MaryTTS, the unit selection voice database (i.e., the units
and their feature vectors) is created during the voice building
process. This information is provided at runtime to the unit se-
lection algorithm. Likewise, the actual voice data is stored in
“timelines”, i.e., indexed sequences of pitch-synchronous data
packets, which are then accessed by the synthesis engine to con-
catenate selected units.

The default feature weights applied to the computation of
target and join cost coefficients (the latter consisting of 12
MFCCs, as well as log F0 and delta log F0) can be tuned, but
this has to be done by hand.

Moreover, several classification and regression trees
(CARTs) are trained from the units during the voice building
process. One of these enables the unit selection algorithm
to preselect candidate units. The others are used to predict
prosodic parameters (viz., unit duration, F0) from the input text;
these CARTs are trained with EST.

All of the publicly available unit selection voices for
MaryTTS – such as dfki-spike1 [12] – are built in this way, using
open-source data and voice building projects wherever possible.

4. System configuration
The process of building the MaryTTS unit selection voice for
the 2016 Blizzard Challenge was exactly the same as that of
building all other unit selection voices, with the following spe-
cial considerations. For future reference, we used MaryTTS
version 5.2-beta3 with revision eae3bcd of our Gradle voice
building plugin.

4.1. Data preparation

The provided data was unpacked, and all audio files were con-
verted to 16 kHz, PCM WAV files, using FFmpeg [17]. The
chapter-wise audio files, along with the corresponding ortho-
graphic text, were furthermore split into sentence-level utter-
ances, using custom scripts.

1https://github.com/marytts/voice-dfki-spike

https://github.com/marytts/voice-dfki-spike


4.2. Phonetic segmentation

Phone-level segmentation was obtained in a forced alignment
paradigm by processing the audio and orthographic text utter-
ances with the online service WebMAUS [18]. After observing
alignment imprecision and interoperability issues with the En-
glish language components in MaryTTS, we found that setting
the language to “American English” in WebMAUS produced
more reliable results than the “British English” setting.

4.3. Data processing and cleaning

After visually inspecting the phonetic forced alignment results,
we decided to invest several hours into manual boundary and
label corrections to alleviate the most egregious segmentation
errors.

A small number of utterances and tokens in the voice data
necessitated further attention. We manually prepared a small,
auxiliary lexicon to handle three dozen proper names that were
otherwise mispronounced by MaryTTS. Moreover, the align-
ment of eight utterances was manually adapted to avoid mis-
matches with the recorded audio.

4.4. Descriptive features

The descriptive features are used in two parts of the unit selec-
tion system: the preselection of the units and the prosody pre-
diction. We distinguish 5 context horizon: previous-previous
(PP), previous (P), current (C), next (N), and next-next (NN).
Based on this context, the descriptive features used are the fol-
lowing:

• Halfphone:

– is it left or right half?

• Segment

– phoneme identity (PP, P, C, N, NN)
– is it a pause? (P, N)
– no. segments from/to start/end of syllable
– no. segments from/to start/end of word

• Syllables

– is it accented? (P, C, N)
– is it stressed? (P, C, N)
– position of segment in syllable (B/F)
– syllable break (P, C)
– no. syllables from/to prev/next stressed syllable
– no. syllables from/to prev/next accented syllable
– no. syllables from/to start/end of phrase
– no. stressed syllables from/to start/end of phrase
– no. accented syllables from/to start/end of phrase
– no. syllables from/to start/end of word
– no. segments in syllable
– ToBI end tone (C, N, NN)
– ToBI accent (C, N, NN)

• Words

– no. syllables in word
– no. segments in word
– is it a punctuation word? (P, N)
– no. words from/to prev/next punctuation
– no. words from/to start/end of phrase
– no. words from/to start/end of sentence

• Phrase

– no. words in phrase

– no. syllables in phrase
– no. phrases from/to start/end of sentence
– ToBI end tone of phrase (P, C)

• Sentence

– no. phrases in sentence
– no. words in sentence

These are the default descriptive features used for both the
unit selection and the HMM synthesis in MaryTTS. Therefore,
no custom descriptive features were introduced to be more spe-
cific to the task to achieve in the current challenge. The goal is
to define a baseline of descriptive features that we will improve
for the next challenges.

Finally, the number of features is particularly high consid-
ering a unit selection system. However, this can be justified by
the use of decision trees for the prosody prediction.

4.5. Unit selection tuning

In the voice configuration’s unit selection cost function, the
weights for several prosodic and phonological target features
were boosted slightly, while join cost feature weights were
somewhat increased for delta log F0 and the first six MFCCs.
However, the impact of this manual weight tuning was not sys-
tematically evaluated.

It should be noted that the experimental “sCost” coeffi-
cient [19] applied to the unit selection voice in the most recent
MaryTTS Blizzard Challenge entry [8] was not used here.

4.6. Decision tree analysis

As indicated previously, to model the prosody, MaryTTS uses
CARTs for F0 and duration. The previous descriptive features
are used to construct the trees.

Considering the F0 decision trees, accent information is at
the top. This is a positive finding as it indicates that the prosodic
features are going to guide the F0 and therefore complete the
unit selection process.

Considering the duration, we have found that pause/break
information is also at the top of the decision tree. Once again,
this is a positive finding as it allows the duration of the current
segment to be controlled by the break context information.

5. Challenge results
During the Blizzard Challenge, 17 systems were evaluated.
Among these systems, the following are particularly interesting
in our case:

A natural speech;
B Festival benchmark system used for the CSTR entry in the

Blizzard Challenge 2007 [20];
C HTS benchmark system;
D DNN benchmark system using the WORLD vocoder;
P our MaryTTS entry.

The 2016 Blizzard Challenge included three kinds of
subjective evaluation: global mean opinion score (MOS),
semantically unpredictable sentence (SUS) word error rate
(WER) analysis, and MOS in a more focused analysis (like in-
tonation, stress, . . . ) at the paragraph level. In this section, we
discuss some of these results.

5.1. Global results

First of all, Figure 2 and Figure 3 show the MOS for similarity
and naturalness, respectively.



189 189 190 191 189 189 189 189 191 190 189 189 190 189 189 189 189n

A L M Q B F H O E D G J K P I C N

1
2

3
4

5

System

Sc
or

e

Figure 2: Similarity MOS results: Festival is shown in green,
HTS in yellow, the DNN baseline in blue, and MaryTTS in red.

381 381 381 380 381 380 381 380 380 380 381 380 381 381 380 380 380n

A L M Q B F H O E D G J K P I C N

1
2

3
4

5

System

Sc
or

e

Figure 3: Naturalness MOS results: Festival is shown in green,
HTS in yellow, the DNN baseline in blue, and MaryTTS in red.

These results show that our system is in the lowest range
of the average-quality systems. If we also compare the qual-
ity of our system to the baseline unit selection system, Festival
(system B), our system performs worse. However, we are at the
same level as the parametric baseline, and slightly worse than
the DNN systems.

For a unit selection methodology, our similarity score is
low. This is due to several artifacts at the concatenation points
and also some inconsistency in the F0 achieved by the system.
Moreover, the phonetic segmentation was not thoroughly vali-
dated, and is far from perfect. The second part is confirmed by
the low score achieved for the naturalness. The algorithm used

is standard, and the weights applied to the descriptive features
are not optimized. This statement is emphasized by the fact that
the Festival system achieved a better score.

Considering also the fact that we did not include custom
descriptive features appropriate for audiobooks (such as distinc-
tion between direct and narrative speech), the positive conclu-
sion is that there is significant room for improvement.

5.2. SUS results

The second kind of analysis provided is the SUS WER results.

L M Q B F H O E D G J K P I C N

0
5

10
15

20
25

30
35

40
45

50
55

60

342 340 341 342 347 329 334 335 344 336 334 328 326 337 339 312n

System

W
ER

 (%
)

Figure 4: SUS WER results: Festival is shown in green, HTS in
yellow, the DNN baseline in blue, and MaryTTS in red.

The results show that our system performance is among the
worst. Based on the conclusion we drew before, we assume that
the artifacts produced at the concatenation points are the main
reason. We should therefore investigate more precisely which
concatenated units produce these artifacts.

5.3. Focused analysis results

Specifically for this year’s challenge, the organizers proposed a
more focused analysis at the paragraph level. The following pa-
rameters were evaluated: emotion, intonation, listening effort,
pleasantness, speech pauses, and stress.

First of all, Figure 5 presents the overall MOS for the syn-
thesized paragraphs.

We achieved a synthesis quality around the HTS baseline,
which is worse than the Festival and DNN baselines. However,
we are at the same level as the majority of the other systems.
This conclusion is the same for the majority of the parameters
evaluated. Therefore, we are going to focus only on the part
where the MaryTTS results differ from this trend. This concerns
mainly two parameters where we achieve worse results than the
majority of participants: speech pauses (Figure 6) and stress
(Figure 7).

Considering the results, our system is predicting worse
pauses than the majority. This is actually not surprising, as ev-
ery pause duration is set to 400 ms. However, more surprisingly,
using this default value we are not far away from the majority



441 437 438 439 442 442 441 441 442 443 441 440 441 441 441 442 437n

A L M Q B F H O E D G J K P I C N

0
10

20
30

40
50

60

System

Sc
or

e

Figure 5: Overall paragraph MOS results: Festival is shown in
green, HTS in yellow, the DNN baseline in blue, and MaryTTS
in red.

441 437 438 439 442 442 441 441 442 443 441 440 441 441 441 442 437n

A L M Q B F H O E D G J K P I C N

0
10

20
30

40
50

60

System

Sc
or

e

Figure 6: Speech pause MOS results: Festival is shown in
green, HTS in yellow, the DNN baseline in blue, and MaryTTS
in red.

of the other systems. In conclusion, by focusing a little bit on
the pause modeling, we may improve the performance of our
system.

Secondly, the stress modeling also performed slightly
worse than the other systems. Therefore using descriptive fea-
tures associated with stress is not enough. We may use other de-
scriptive features, such as predictability, which worked for sta-
tistical speech synthesis [21]; we may also define other acoustic
parameters to control the selection and the concatenation to im-
prove the stress modeling.

441 437 438 439 442 442 441 441 442 443 441 440 441 441 441 442 437n

A L M Q B F H O E D G J K P I C N

0
10

20
30

40
50

60

System

Sc
or

e
Figure 7: Stress MOS results: Festival is shown in green, HTS
in yellow, the DNN baseline in blue, and MaryTTS in red.

6. Conclusion
In conclusion, we have presented the MaryTTS entry to the
Blizzard Challenge 2016. This system can be considered a base-
line in our case as it is currently in a massive refactoring pro-
cess. This year’s results achieved by the system indicate a big
margin for improvement, especially if we compare our results
to the Festival baseline.

In the next challenges, we plan to improve the descriptive
feature generation and add more specific features adapted to the
tasks. We also plan to update the unit selection module to close
the gap to the state of the art in TTS synthesis.

7. Acknowledgements
This research was funded by the German Research Foundation
(DFG) as part of SFB 1102 “Information Density and Linguistic
Encoding” at Saarland University.

8. References
[1] M. Schröder and J. Trouvain, “The German text-to-speech syn-

thesis system MARY: A tool for research, development and
teaching,” in Speech Synthesis Workshop, Perthshire, Scot-
land, 2001. URL: http://www.isca-speech.org/archive open/ssw4/
ssw4 112.html

[2] JFrog, “Bintray: Download center automation & distribution.”
URL: https://bintray.com/

[3] M. Schröder, A. Hunecke, and S. Krstulović, “OpenMary – open
source unit selection as the basis for research on expressive syn-
thesis,” in Blizzard Challenge Workshop, Pittsburgh, PA, 2006.
URL: http://festvox.org/blizzard/bc2006/dfki blizzard2006.pdf

[4] M. Schröder and A. Hunecke, “MARY TTS participation in
the Blizzard Challenge 2007,” in Blizzard Challenge Workshop,
Bonn, Germany, 2007. URL: http://festvox.org/blizzard/bc2007/
blizzard 2007/blz3 007.html

[5] M. Schröder, M. Charfuelan, S. Pammi, and O. Türk, “The MARY
TTS entry in the Blizzard Challenge 2008,” in Blizzard Chal-
lenge Workshop, Brisbane, Australia, 2008. URL: http://festvox.
org/blizzard/bc2008/dfki Blizzard2008.pdf

http://www.isca-speech.org/archive_open/ssw4/ssw4_112.html
http://www.isca-speech.org/archive_open/ssw4/ssw4_112.html
https://bintray.com/
http://festvox.org/blizzard/bc2006/dfki_blizzard2006.pdf
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_007.html
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_007.html
http://festvox.org/blizzard/bc2008/dfki_Blizzard2008.pdf
http://festvox.org/blizzard/bc2008/dfki_Blizzard2008.pdf


[6] M. Schröder, S. Pammi, and O. Türk, “Multilingual MARY TTS
participation in the Blizzard Challenge 2009,” in Blizzard Chal-
lenge Workshop, Edinburgh, Scotland, 2009. URL: http://festvox.
org/blizzard/bc2009/dfki Blizzard2009.pdf

[7] M. Charfuelan, “MARY TTS HMM-based voices for the Bliz-
zard Challenge 2012,” in Blizzard Challenge Workshop, Port-
land, OR, 2012. URL: http://festvox.org/blizzard/bc2012/DFKI
Blizzard2012.pdf

[8] M. Charfuelan, S. Pammi, and I. Steiner, “MARY TTS unit se-
lection and HMM-based voices for the Blizzard Challenge 2013,”
in Blizzard Challenge Workshop, Barcelona, Spain, 2013. URL:
http://festvox.org/blizzard/bc2013/DFKI Blizzard2013.pdf

[9] M. Schröder and A. Hunecke, “Creating German unit selection
voices for the MARY TTS platform from the BITS corpora,”
in Speech Synthesis Workshop, Bonn, Germany, 2007, pp. 95–
100. URL: http://www.isca-speech.org/archive open/ssw6/ssw6
095.html

[10] “hts engine API.” URL: http://hts-engine.sourceforge.net/

[11] J. Chevelu, G. Lecorvé, and D. Lolive, “ROOTS: a toolkit for easy,
fast and consistent processing of large sequential annotated data
collections,” in International Conference on Language Resources
and Evaluation (LREC), Reykjavik, Iceland, 2014. URL: http://
lrec-conf.org/proceedings/lrec2014/summaries/338.html

[12] M. Schröder, M. Charfuelan, S. Pammi, and I. Steiner, “Open
source voice creation toolkit for the MARY TTS platform,” in
Interspeech, Florence, Italy, 2011, pp. 3253–3256. URL: http:
//www.isca-speech.org/archive/interspeech 2011/i11 3253.html

[13] “Gradle build tool: Modern open source build automation.” URL:
https://gradle.org/

[14] P. Boersma and D. Weenink, “Praat: doing phonetics by com-
puter.” URL: http://praat.org/

[15] S. King, A. W. Black, P. Taylor, R. Caley, and R. Clark, “Edin-
burgh Speech Tools library,” 1994–2004. URL: http://www.cstr.
ed.ac.uk/projects/speech tools/

[16] H. Zen and T. Toda, “An overview of Nitech HMM-based
speech synthesis system for Blizzard Challenge 2005,” in
Interspeech, 2005. URL: http://www.isca-speech.org/archive/
interspeech 2005/i05 0093.html

[17] “FFmpeg.” URL: http://ffmpeg.org/

[18] T. Kisler, U. Reichel, F. Schiel, C. Draxler, B. Jackl, and
N. Pörner, “BAS speech science web services – an update of
current developments,” in International Conference on Language
Resources and Evaluation (LREC), Portorož, Slovenia, 2016,
pp. 3880–3885. URL: http://lrec-conf.org/proceedings/lrec2016/
summaries/668.html

[19] S. Pammi and M. Charfuelan, “HMM-based sCost quality control
for unit selection speech synthesis,” in Speech Synthesis Work-
shop, Barcelona, Spain, 2013, pp. 53–57. URL: http://www.isca-
speech.org/archive/ssw8/ssw8 053.html

[20] K. Richmond, V. Strom, R. A. Clark, J. Yamagishi, and S. Fitt,
“Festival Multisyn voices for the 2007 Blizzard Challenge,” in
Blizzard Challenge Workshop, Bonn, Germany, 2007. URL: http:
//festvox.org/blizzard/bc2007/blizzard 2007/blz3 006.html

[21] S. L. Maguer, B. Möbius, and I. Steiner, “Toward the use
of information density based descriptive features in HMM
based speech synthesis,” in Speech Prosody, Boston, MA,
2016, pp. 1029–1033. URL: http://www.isca-speech.org/archive/
sp2016/abstracts.html#abs190

http://festvox.org/blizzard/bc2009/dfki_Blizzard2009.pdf
http://festvox.org/blizzard/bc2009/dfki_Blizzard2009.pdf
http://festvox.org/blizzard/bc2012/DFKI_Blizzard2012.pdf
http://festvox.org/blizzard/bc2012/DFKI_Blizzard2012.pdf
http://festvox.org/blizzard/bc2013/DFKI_Blizzard2013.pdf
http://www.isca-speech.org/archive_open/ssw6/ssw6_095.html
http://www.isca-speech.org/archive_open/ssw6/ssw6_095.html
http://hts-engine.sourceforge.net/
http://lrec-conf.org/proceedings/lrec2014/summaries/338.html
http://lrec-conf.org/proceedings/lrec2014/summaries/338.html
http://www.isca-speech.org/archive/interspeech_2011/i11_3253.html
http://www.isca-speech.org/archive/interspeech_2011/i11_3253.html
https://gradle.org/
http://praat.org/
http://www.cstr.ed.ac.uk/projects/speech_tools/
http://www.cstr.ed.ac.uk/projects/speech_tools/
http://www.isca-speech.org/archive/interspeech_2005/i05_0093.html
http://www.isca-speech.org/archive/interspeech_2005/i05_0093.html
http://ffmpeg.org/
http://lrec-conf.org/proceedings/lrec2016/summaries/668.html
http://lrec-conf.org/proceedings/lrec2016/summaries/668.html
http://www.isca-speech.org/archive/ssw8/ssw8_053.html
http://www.isca-speech.org/archive/ssw8/ssw8_053.html
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_006.html
http://festvox.org/blizzard/bc2007/blizzard_2007/blz3_006.html
http://www.isca-speech.org/archive/sp2016/abstracts.html#abs190
http://www.isca-speech.org/archive/sp2016/abstracts.html#abs190

	 Introduction
	 Description of MaryTTS
	 Voice building process
	 Unit selection voice building

	 System configuration
	 Data preparation
	 Phonetic segmentation
	 Data processing and cleaning
	 Descriptive features
	 Unit selection tuning
	 Decision tree analysis

	 Challenge results
	 Global results
	 SUS results
	 Focused analysis results

	 Conclusion
	 Acknowledgements
	 References

