
SWAN: an easy-to-use web-based annotation system

Timo Gühring1,2 Nicklas Linz2,3 Rafael Theis2 Annemarie Friedrich1

1Department of Computational Linguistics, Saarland University
2Department of Computer Science, Saarland University

3German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
timo.guehring@googlemail.com nicklas.linz@dfki.de

s9rathei@stud.uni-saarland.de afried@coli.uni-saarland.de

Abstract

We present the Saar Web ANnotation sys-
tem (SWAN), a lean web-based annota-
tion system, which is optimized for anno-
tator and project management usability.1

SWAN is well-suited for various discourse
annotation tasks, as arbitrarily large docu-
ments can be annotated seamlessly due to
dynamic loading and rendering. A graph-
based visualization box supports the user
by providing both an overview of the ex-
isting annotations and a navigation option
through the text. The admin view includes
the web-based configuration of projects,
annotation schemes and users. SWAN is
based on JEE technology and compatible
with several web browsers.

1 Overview

Manual annotation of text documents is the back-
bone of natural language processing (NLP) re-
search. Among others, the annotation of linguistic
phenomena is necessary for training and evaluat-
ing NLP systems. In recent years, NLP research
increasingly addresses linguistic phenomena be-
yond the sentence level, i.e., discourse informa-
tion (Webber et al., 2012). Text corpora have been
annotated with discourse relations (Prasad et al.,
2008; Carlson et al., 2002), temporal relations (Day
et al., 2003) and coreference (Hovy et al., 2006).
Discourse annotation tasks are characteristically
different from sentence-level tasks in three major
ways: (1) The annotator needs to have an overview
of the entire document and potentially create links
between spans that are far apart from each other.
(2) Spans for annotation can be large, i.e., they may
consist of clauses, sentences or even paragraphs.

1Web demo and code available at
https://swan.coli.uni-saarland.de and
https://github.com/annefried/swan.

(3) The location of paragraph breaks may be rele-
vant. Hence, unlike other existing web-based anno-
tation systems, SWAN displays the text documents
in their original formatting by default.

As the annotators are the main users of the sys-
tem, we focus on optimizing usability of the anno-
tators’ view of the system. One key factor driving
the development of our system was the need for
an intuitive and usable interface for discourse an-
notation tasks such as labeling texts with event
structures and temporal information, or marking
paragraphs with their discourse mode. The latter
comprise distinctions like narrative, information,
report, description or argumentative (Smith, 2003).
For these tasks, we have developed an editor that
is responsive even for large documents, allows for
easy and quick selection of arbitrary spans, as well
as creating links between annotations. For exam-
ple, in annotation tasks with a relatively small set
of types and labels, SWAN can be configured to
display all selectable labels once a span annotation
or a link annotation has been created. This is espe-
cially useful for annotators who are getting familiar
with a task, and allows for fast selection especially
in cases where the tag set is limited.

In some of our use cases, large spans correspond-
ing to paragraphs need to be selected. If the annota-
tor decides that the span selection should be slightly
different, deleting the annotation and renewing is
time-consuming, especially if the annotation is al-
ready linked to others. Easily changing the extent
of a span annotation is a novel feature developed
specifically for these types of discourse annotation.

In addition, SWAN comes with a powerful ad-
min and project management view, which provides
for defining annotation schemes, managing users
and tracking the progress of annotation projects.

SWAN has the following novel features:

• Dynamic loading and rendering of the doc-
ument. This allows for arbitrarily large doc-
uments without having to split the document

Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016)

108

into multiple pages, which is essential for our
discourse-level annotation tasks.

• Graph visualization. The graph structure
of the annotations is shown next to the text.
When selecting an annotation either in the
text or in the graph, annotations are high-
lighted correspondingly; the graph provides
an overview as well as an option for easy nav-
igation through the document.

• Usability optimized for discourse annota-
tion. Various new features target the user ex-
perience for making changes that arise in dis-
course annotation tasks, such as easily chang-
ing the extent of a span for an annotation. In
addition, we aim for simplicity and intuitive-
ness, keeping the interface and the concepts
underlying the annotation scheme as simple
as possible for annotators.

SWAN is a web application based on JEE tech-
nology, runs on the GlassFish server and uses a
PostgreSQL database. The front-end is realized us-
ing HTML and JavaScript and is compatible with
major recent web browsers. The source code, a
pre-packaged WAR ready for deployment, as well
as installation and set-up instructions are publicly
available via GitHub. SWAN v2.0 is a stable re-
lease and the system is already in use in various
projects at our department. Issue tracking and sup-
port is provided via GitHub.

2 Related work

The most similar system to ours is WebAnno (Yi-
mam et al., 2013), a web-based and configurable
annotation tool. It is the state-of-the-art annotation
system for many natural language annotation tasks
such as part-of-speech tagging, syntactic depen-
dency trees or coreference. WebAnno splits longer
documents into multiple pages (configurable by the
annotator) and loads the next part of the document
if explicitly requested or if the end of a page has
been reached. In SWAN, we overcome the effi-
ciency problem underlying this design decision by
dynamically reloading content and only rendering
the visible parts of the document. WebAnno uses
the front-end of BRAT (Stenetorp et al., 2012),
the first web-based open source annotation tool,
extending its functionality mainly regarding con-
figuration options and supported file formats. In
BRAT, links are always displayed on top of the

text line, which makes sense for within-sentence
annotation tasks. However, if links cross sentence
boundaries, as is frequently the case in our dis-
course annotation tasks, BRAT displays the links as
ending at the right side of a line and starting again
at the left side of a new line, which is somewhat
counter-intuitive. In SWAN, we solve this prob-
lem by directly connecting nodes in the text, but
graying out non-selected links to improve readabil-
ity. Related to our work are also GrapAT (Sonntag
and Stede, 2014) and rstWeb (Zeldes, 2016), which
are both web-based systems focusing on annotat-
ing and displaying graph structures on top of text.
Some larger-scale discourse annotation projects
(Prasad et al., 2008; Carlson et al., 2002; Cassidy
et al., 2014) have developed their own annotation-
scheme specific tools, which are implemented as
locally-running applications.2,3,4

3 Annotation schemes

Annotation schemes in SWAN follow a simple con-
cept, in accordance with our intuition that the full
complexity of type systems should be represented
in the logic of software processing the data, but not
necessarily during annotation. Annotators, who
often do not have a formal background, thus can
focus on a particular task without having to worry
about the big picture. Annotation schemes can be
configured and modified by project managers using
the scheme builder. A full example of an annotation
scheme is given in Figure 1.

Span annotations in SWAN consist of spans
(any number of contiguous tokens) and are assigned
a span type, e.g., NounPhrase, Clause, or Passage.
The first step after creating an annotation by se-
lecting a span in the text is to choose its span type.
Label sets are defined as sets of labels, and ap-
ply to particular span types. They are displayed
as soon as a span annotation has been created and
its type has been selected. A possible label set for
the span type Passage would be DiscourseMode
with labels including narrative, report, informa-
tion or description (Smith, 2003). Another label
set applying to the type Clause could be EventType
including the labels state, achievement, activity and
accomplishment (Vendler, 1957). Label sets can be
configured with regard to whether they are exclu-
sive, i.e., whether annotators can select only one

2www.seas.upenn.edu/˜pdtb/tools.shtml
3www.isi.edu/licensed-sw/RSTTool
4www.usna.edu/Users/cs/nchamber/caevo

Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016)

109

label out of a set or assign multiple labels from one
set to one span annotation.

Link annotations are edges from one span an-
notation to another. Link types define the type of a
link annotation. For each link type, the span types
of the start and end annotations need to be defined.
For TemporalRelation, the type of both the start
and end annotations could be Event, but the types
of the start and end annotations can in general be
defined separately and may differ. A link type is
also associated with a set of labels that can be as-
signed to a link of this type. Link labels for our
TemporalRelation link type would be the senses of
temporal relations such as before, overlap, includes
or simultaneous (Day et al., 2003).

<?xml version="1.0"?>
<root>

<name>ExampleScheme</name>
<spanTypes>
<spanType>Event</spanType>

</spanTypes>
<labelSets>
<labelSet>

<name>EventType</name>
<exclusive>false</exclusive>
<appliesToSpanTypes>

<spanType>Event</spanType>
</appliesToSpanTypes>
<labels>

<label>State</label>
<label>Event</label>
<label>Generic Sentence</label>

</labels>
</labelSet>
<labelSet> ... </labelSet>

</labelSets>
<linkTypes>
<linkType>

<name>Temporal relation</name>
<startSpanType>Event</startSpanType>

<endSpanType>Event</endSpanType>
<linkLabels>

<label>before</label>
<label>after</label>
<label>overlap</label>

</linkLabels>
</linkType>
<linkType> ... </linkType>

</linkTypes>
</root>

Figure 1: Example SWAN annotation scheme.
Please check documentation for details / updates.

4 Functionality

4.1 Roles and projects
SWAN defines two primary roles: annotator and
project manager. A project consists of an annota-
tion scheme, a set of text documents and a set of an-

notators assigned to it. Project managers can create
user accounts for annotators, annotation schemes
and projects, while annotators can add annotations
to the text documents of projects that they were
assigned to. Project managers can see, edit, delete
or export only the projects that they have created or
that they have been assigned to, but all annotation
schemes existing in the database are available to all
project managers. Consistency of the underlying
database is ensured as the scheme used in a particu-
lar project is immutable in the current release. For
convenience, however, schemes can be copied and
then modified when creating new projects. In addi-
tion, the system allows for admin users, typically
the persons who administrate the installation. Ad-
mins have access to all projects, and only they can
create or delete project manager accounts, while
project managers can manage annotator accounts.
In addition, project managers can view the anno-
tations of their annotators using a “non-editable”
version of the annotator’s view.

4.2 File formats
In order to be able to display documents in their
original formatting, SWAN provides for the upload
of plain text files, and bases internal representa-
tions of annotations on character offsets pointing
to spans in the original plain text document. If
project managers want to pre-define annotations
along with their types as the targets for an anno-
tation task, they can upload this information in a
separate file along with the plain text documents.
Input and export formats for annotations use JSON
or XML (for an example annotation scheme, see
Figure 1). In addition, annotated documents can be
downloaded directly in the UIMA XMI format (Fer-
rucci and Lally, 2004). Export is tied to projects,
i.e., one zip file can be downloaded per project
containing all annotations of all annotators.

4.3 Web interface components
The project explorer allows project managers to
edit projects, i.e., assign annotators to a project or
upload text documents optionally along with some
pre-defined span annotations. Annotators see the
projects that they have been assigned to and which
documents they have or have not yet completed.
The scheme builder allows project managers to
create annotation schemes. Once saved and entered
in the database, schemes can be modified by creat-
ing a copy and editing this copy. Projects need to
be assigned an existing scheme at the time of their

Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016)

110

Figure 2: SWAN editor showing type / labels for highlighted annotation (“S a” = “State, actual”).

Figure 3: SWAN editor, no annotation selected, graph visualization.

creation. These restrictions ensure that the underly-
ing database is always in a consistent state. In the
near future, we will also explore options to add sup-
port for modification of schemes that are already
in use. The editor displays the text document, the
labels available for selection and the graph visual-
ization box. Spurious spaces are removed in the
editor in order to save space, but they are kept in
the background, i.e., the annotation offsets relate to
the original uploaded plain text file. Annotations
are created by selecting tokens in the text using the
mouse or a range of predefined keyboard shortcuts.
This includes the quick shortcut-based selection
of large spans based on selecting or de-selecting
entire lines.

Links are created by selecting the start annota-
tion and dragging the mouse to the end annotation.
When removing a span annotation, all links start-

ing or ending at this node are also automatically
removed, as links cannot exist without a start and
end annotation. In addition, existing annotations
can be extended or made smaller token-wise to the
left or right using simple keyboard shortcuts. Once
an annotation has been created, the available types
and respective labels are displayed.

Graph visualization. Links between annota-
tions are visualized only selectively on top of the
text by displaying links starting or ending at the
selected annotation, and graying out the remain-
ing links (see Figure 2). An optional visualization
box (see Figure 3) shows the graph structure of
the document. When clicking on a node, the docu-
ment text view scrolls to the position of the anno-
tation, the corresponding annotation is highlighted
in the document, and the local graph structure is
also highlighted on top of the text. Thus, in ad-

Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016)

111

dition to allowing an overview of the document’s
discourse structure in terms of the respective an-
notation scheme, the graph visualization box pro-
vides an additional possibility for users to navigate
through the annotations they have created for a doc-
ument. Showing this graph structure directly on
top of the text is often not possible as a sensible
arrangement of nodes in the graph does not always
follow textual order, e.g, for annotating temporal
structure. We are also currently working on ad-
ditional layout options for the graph visualization
box such as tree structures and a layout option that
is appropriate for temporal relation annotation, i.e.,
where the selected link labels decide on the node’s
arrangement in the graph.

5 Software architecture

SWAN is a Java Enterprise Edition (JEE) web-
based application (see Figure 4). Being distributed
as a Web application ARchive (WAR), it is eas-
ily deployable. Back-end and front-end both use
lightweight RESTful web services for communica-
tion, sending data in a compact JSON format.

Figure 4: The system architecture of SWAN.

Back-end. The back-end of SWAN runs on
GlassFish,5 which is an open-source application
server that supports JEE, and ships with a minimum
of configuration effort. All user, text and annota-
tion data is stored in the open-source PostgreSQL
database,6 enabling simple back-up solutions by
regularly creating backups of the database. Texts
are tokenized using the Stanford PTB Tokenizer
(Manning et al., 2014). We currently support En-
glish, German, Spanish and French as well as cus-
tom white-space-based tokenization. Tokenization
options for more languages will follow in future
releases.

5https://glassfish.java.net/
6http://www.postgresql.org/

Front-end. SWAN’s front-end, running in a web
browser,7 is based on the AngularJS JavaScript
framework8 and standard HTML. For data visu-
alization, the D3 framework,9 an industry stan-
dard for the visualization of large amounts of data,
is used. It is applied to render the text, annota-
tion boxes, graph and timeline as Scalable Vector
Graphics (SVG). Using this framework, approx-
imating which parts of the document are visible
and rendering only those enables SWAN to display
long texts while offering reasonable performance.

6 Discussion and outlook

SWAN is a web-based annotation system focus-
ing on usability for annotation tasks that require
the annotator to freely navigate through the en-
tire text document. While being optimized for our
annotation projects related to discourse and event
structure, SWAN is generally a good option for
annotation projects requiring an easy-to-use inter-
face. SWAN does not (yet) provide an adjudication
view, as in our own research projects, in order to
ensure replicability, we create gold standard data
from voting between many annotators rather than
simply modeling an adjudicator’s view of the data.
The near-future development efforts in SWAN will
concentrate on implementing additional options for
visualizing the document’s structure in the graph vi-
sualization box, including tree structures and other
arrangements useful for quick navigation through
the document. Future releases will also include
options for monitoring inter-annotator agreement
and possibly additional input formats.

Acknowledgments

We thank the anonymous reviewers, Andrea Hor-
bach and Manfred Pinkal for their helpful com-
ments related to this work, and Stefan Grünewald,
Julia Dembowski and Janna Herrmann for con-
tributing to SWAN’s implementation. We also
thank our annotators and project managers Si-
mon Ostermann, Hannah Seitz, Damyana Gateva,
Melissa Peate Sørensen, Christine Bocionek and
Fernando Ardente for their for their support and
useful ideas. This research was supported in part
by the Cluster of Excellence “Multimodal Com-
puting and Interaction” of the German Excellence
Initiative (DFG).

7We support Mozilla Firefox, Google Chrome and Safari.
8https://angularjs.org
9https://d3js.org

Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016)

112

References
Lynn Carlson, Daniel Marcu, and Mary Ellen

Okurowski. 2002. RST Discourse Treebank
LDC2002T07. Web Download. Philadelphia: Lin-
guistic Data Consortium.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
501–506, Baltimore, MD, USA.

David Day, Lisa Ferro, Robert Gaizauskas, Patrick
Hanks, Marcia Lazo, James Pustejovsky, Roser
Saurı, Andrew See, Andrea Setzer, and Beth Sund-
heim. 2003. The TimeBank corpus. In Corpus Lin-
guistics.

David Ferrucci and Adam Lally. 2004. UIMA: an
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10(3-4):327–348.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, New York City,
NY, USA.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, MD, USA.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank
2.0. In In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC), Marrakech, Morocco.

Carlota S Smith. 2003. Modes of discourse: The local
structure of texts, volume 103. Cambridge Univer-
sity Press.

Jonathan Sonntag and Manfred Stede. 2014. Grapat:
a tool for graph annotations. In In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC), pages 4147–4151,
Reykjavik, Iceland.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France.

Zeno Vendler. 1957. Verbs and times. The philosophi-
cal review, 66(2):143–160.

Bonnie Webber, Markus Egg, and Valia Kordoni. 2012.
Discourse structure and language technology. Natu-
ral Language Engineering, 18(04):437–490.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A Flexible, Web-based and Visually
Supported System for Distributed Annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 1–6, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Amir Zeldes. 2016. rstWeb - A Browser-based Anno-
tation Interface for Rhetorical Structure Theory and
Discourse Relations. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 1–5, San Diego, CA, USA.

Proceedings of the 13th Conference on Natural Language Processing (KONVENS 2016)

113

	SWAN: an easy-to-use web-based annotation system Timo Gühring, Nicklas Linz, Rafael Theis and Annemarie Friedrich

