The Federated Ontology of the PAL Project
Interfacing Ontologies and Integrating Time-Dependent Data

Hans-Ulrich Kriegerl, Rifca Petersz, Bernd Kiefer!, Michael A. van Bekkum3, Frank Kapteinz, Mark A. Neerincx?

DFKI, the German Research Center for Al, Campus D3 2, Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germanyl
Interactive Intelligence Group, EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands®

TNO, Kampweg 5, 3769 DE, Soesterberg, The Netherlands®
{krieger; kiefer} @dfki.de", {r.m.peters, f.c.a.kaptein} @udelft.nl?, {michael.vanbekkum, mark.neerincx} @ tno.nl>

Keywords:

knowledge representation & ontologies; Description Logics & OWL; representation of & reasoning with

time-dependent data; transaction time; semantic interoperability; integration of upper & domain ontologies.

Abstract:

This paper describes ongoing work carried out in the European project PAL which will support children

in their diabetes self-management as well as assist health professionals and parents involved in the diabetes
regimen of the child. Here, we will focus on the construction of the PAL ontology which has been assembled
from several independently developed sub-ontologies and which are brought together by a set of hand-written
interface axioms, expressed in OWL. We will describe in detail how the triple model of RDF has been extended
towards transaction time in order to represent time-varying data. Examples of queries and rules involving
temporal information will be presented as well. The approach is currently been in use in diabetes camps.

1 INTRODUCTION

In this paper, we describe ongoing work carried out
in the European project PAL (Personal Assistant for
a healthy Lifestyle) which will improve child’s dia-
betes regimen by assisting the child, health profes-
sional and parent. The PAL system will be composed
of a social robot (NAO), its (mobile) avatar, and an ex-
tendable set of (mobile) health applications ... which
all connect to a common knowledge-base and rea-
soning mechanism (citation taken from the project’s
homepage; see http://www.paldu.eu).

The focus of this paper lies on the construction of
an integrated ontology, PALO, the PAL Ontology,
that has been assembled from several independently-
developed ontologies which are brought together
by an interface specification, expressed in OWL
(McGuinness and van Harmelen, 2004).! Within
PAL, PALO serves as the common language which
helps to interlink data, delivered from both symbolic
and statistical components of the PAL system.

We will also detail how the triple data model of RDF
is extended by two further arguments to incorpo-
rate temporal information in order to represent time-
varying data (transaction time). In order to record the
resulting quintuples, they can either be transformed
into a set of semantic-preserving triples when stored
in a triple repository, such as OWLIM (Kiryakov

IThe ontologies are publicly available for open re-
search and to other institutions upon request; see
http://www.dfki.de/1t/onto/pal/.

et al., 2005), by applying, e.g., W3C’s N-ary relation
encoding scheme (Hayes and Welty, 2006), or can be
utilized immediately, when transferred to an n-tuple
repository, such as HFC (Krieger, 2013). In PAL, we
have opted for the latter case for various reasons. In
this paper, we will also sneak a peek on the temporal
entailment rules (Krieger, 2016) and queries that are
built into the semantic repository hosting the data and
which can be used to derive useful new information.

2 ONTOLOGIES

Overall, PALO consists of eight sub-ontologies,
seven of which are truly independent and do not have
knowledge of one another. One further ontology
brings them together through the use of hand-written
interface axioms, employing axiom constructors such
as rdfs:subClassOf and owl:equivalentProperty, or
by posing domain and range restrictions on certain
underspecified properties. It is worth noting that
across the ontologies, each property has been cross-
classified as being either synchronic, i.e., property in-
stances staying constant over time, or diachronic, i.e.,
changing over time (Krieger, 2010). This property
characteristic can be used, amongst other things, to
check the consistency of a temporal ABox or as a dis-
tinguishing mark in an entailment rule.

When we talk about an ontology here, we have to
make a distinction between information from the
TBox (terminological knowledge), RBox (general in-
formation about properties), and ABox (assertional

knowledge). The TBox and RBox of the PAL do-
main stays constant, i.e., will not change over time.
Only relation instances from the ABox might undergo
a temporal change, e.g., the weight of a child at cer-
tain times, but not the birthdate.

2.1 HFC

HFC is a bottom-up forward chainer and semantic
repository implemented in Java, comparable to popu-
lar systems such as Jena and OWLIM. HFC supports
RDFS and OWL reasoning a la (Hayes, 2004) and (ter
Horst, 2005), but at the same time provides an ex-
pressive language for defining custom rules, involving
functional and relational variables, complex tests and
actions, and the replacement of triples in favour of fu-
ples of arbitrary length. The query language of HFC
implements a subset of SPARQL, but at the same time
provides powerful custom M:N aggregates, not avail-
able elsewhere. In PAL, we are using HFC to store
universal knowledge (TBox, RBox), to query time-
varying data (ABox), and to reason about temporal
change. This is explicated in detail in Section 3.

2.2 Upper

PAL makes use of a minimal and stripped-down up-
per ontology that we have originally developed for
the EU projects MUSING, MONNET, and TREND-
MINER (Krieger and Declerck, 2014), showing a
tri-partite division of the most general class Entity,
viz., upp:Abstract, upp:Happening, and upp:Physical.
Most notable for PAL is the upp:Happening rep-
resentation which distinguishes between atomic
upp:Situations and decomposable upp:Events, using
properties such as upp:startsWith, upp:continuesWith,
and upp:endsWith. This allows us to encode
PDL-like processes and makes it also possible to
define pre- and post-conditions. upp:Happenings
are upp:basedOn upp:Entitys, upp:leadsTo other
upp:Entitys, and upp:involves other upp:Agents.

2.3 DIT++

The DIT++ ontology is based on the taxonomy
of dialogue acts, defined by Harry Bunt and col-
leagues (Bunt et al., 2012). The DIT++ taxon-
omy is translated into a subclass hierarchy, led by
the most general class dial:DialogueAct. We have
taken over the general-purpose communicative func-
tions and parts of the dimension-specific communica-
tive functions. The former dimension involves di-
alogue acts, such as dial:Request, dial:Instruct, or
dial:AcceptSuggestion. The latter contains commu-
nicative acts which help to maintain a dialogue, by
indicating, e.g., dial:AlloFeedback or dial:Pausing.
dial:DialogueActs are equipped with several important

properties, such as dial:sender and dial:addressee. A
dialogue act furthermore incorporates the (shallow)
semantics of a natural language utterance through
property dial:frame. Property dial:follows records
the temporal succession of dialogue acts, whereas
dial:refersTo allows to refer back to previously intro-
duced dialogue acts (e.g., as used in indirect speech).

2.4 Time

The time ontology basically defines the classes
time:DiachronicProperty and time:SynchronicProper-
ty, making it possible to characterize OWL proper-
ties (via rdf:type) as being able to undergo a temporal
change or not (see Section 2), for instance
dom:birthdate rdf:type time:SynchronicProperty
dom:weight rdf:type time:DiachronicProperty
We have furthermore defined the property time:assign
to implement the concept of an imperative, program-
ming language variable that can change over time and
whose time series needs to be recorded. Such func-
tionality is used in PAL in the dialogue processing
module (see Section 4.1).

2.5 Logic

The representation of transaction time in Section 3
needs to talk about the truth (= T) and falsity (1) of
statements. For this, we make use of a logic ontol-
ogy which includes even more general polarity val-
ues, such as don’t know (?) and error (!), arranged in
a class subsumption hierarchy: ' C {T, 1} C 2.

2.6 Domain

The domain ontology defines concepts and rela-
tion which are relevant to the PAL domain, e.g.,
dom:Activity (playing a game, cooking, making a di-
ary entry), dom:Actor (child, family members, health
professionals), emotional dom:Mood, or (learning)
dom:Goals which progress over time (see Section
2.8). As the child (and its diabetes’ history) is at the
heart of the PAL project, dom:Child is consequently
equipped with a large number of properties, deal-
ing with family relationships, serious issues (hypo-
glycemia symptoms), hobbies, activities, or lab val-
ues. dom:LabValue bundles datatype properties rel-
evant for the initial anamnesis and the diabetes use
case, such as dom:bmi (body mass index), dom:height,
or dom:bsl (blood sugar level). It is worth noting that
such datatype properties usually map to custom XSD
datatypes, designed for PAL (see Section 2.10).

2.7 Semantics

The shallow semantic representation in PAL is
loosely build on thematic relations or roles (Fillmore,

1977), leading to general verb frames and includ-
ing named arguments such as sem:agent, sem:patient,
sem:theme, or sem:manner which can be found
in frameworks, such as VerbNet, VerbOcean, or
FrameNet (Ruppenhofer et al., 2006). These proper-
ties are defined on the very general class sem:Frame
and are domain-restricted by very general classes; for
instance, sem:agent and sem:patient map to the un-
derspecified class sem:Actor. These general dock-
ing classes will later be interfaced with more specific
classes from other sub-ontologies by means of inter-
face axioms (Section 2.9). Even though the semantic
representation is almost flat, additional roles such as
sem:purpose (typed to sem:Frame) allow us to build
up nested structures, say for a sentence like OK, you
will be asking (frame: sem:AssigningRole) in a natu-
ral language quiz scenario between robot and child.

2.8 Goal

The goal ontology formalizes diabetes self-
management progression and is based on the Dutch
Diabetes “weet & doe” doelen (know & do goals) as
formulated by the EADV (http://www.eadv.nl/).
These recommendations structure knowledge and
skills supposed to be obtained by the child from
onset to adolescence in order to gradually increase
autonomy. Thus, goals are attuned to age ranges and
are divided into important topics, such as nutrition
and insulin. These goals are translated into sub-
classes of goal:KnowledgeGoal and goal:SkillGoal,
led by the superclass goal:TIDMGoal. One aim
of the PAL system is to support self-management
progression, by offering educational content and
activities. The PAL system objectives that contribute
to diabetes learning goals are defined as subclasses
of goal:SupportingObjectives. Multilingual labels
for Dutch, Italian, and English have been added to
the goal classes as they were used in the dialogue.
Properties, such as goal:hasLevel (the suggested age
range) and goal:hasProgress (capturing percentage
of completion) are defined on the general goal class
goal:Goal. Dependencies between goals are captured
via property goal:requiresAsClass which directly
operates on class objects (see Section 4.2).

2.9 Pal

The PAL ontology first of all imports the previously
introduced sub-ontologies, but also defines interface
axioms in order to properly integrate the distributed
information. This includes, e.g., restricting the do-
main and range of (possibly underspecified) proper-
ties or identifying (subsuming) classes and properties
across ontologies. For example:

dom:Actor = upp:Agent = dial:Agent = sem:Actor

dom:Goal = goal:Goal C upp:Event

goal:contributesTo C upp:leadsTo

Vdial:frame . sem:Frame
The first axiom identifies the important actor/agent
classes that can be found in the various ontolo-
gies. The second statement makes goal:Goal (and
dom:Goal) a subclass of the very general class
upp:Event from the upper ontology (see Section 2.2).
As a consequence, properties, such as upp:startsWith
or upp:continuesWith, defined on upp:Event become
available in instances of goal:Goal (goals behave
like events, occupying time). The third declaration
defines goal:contributesTo as a subproperty of the
general property upp:leadsTo and constraints the re-
lation signature from (upp:Happening, upp:Entity) to
(goal:SupportingObjective, goal:T1DMLearningGoal).
The fourth restriction links the underspecified dia-
logue act property dial:frame to shallow semantic
frames (see Sections 2.7 and 4 for an example).

2.10 XSD Datatypes

Some of the datatype properties from the domain on-
tology utilize custom XSD types. For instance:

e body mass index dom:bmi, measured in xsd:kg-m2

e blood sugar level dom:bsl|, either measured in
xsd:mmol_L or xsd:mg_dL

e diastolic blood pressure dom:dbp, measured in
xsd:mmHg

3 HANDLING TIME

This section shed some light on the representation of
time-varying data in PAL and the underlying model,
viz., transaction time. We will also look into how
temporal information is utilized in queries and rules.

3.1 Metric Linear Time

In the following, we assume that the temporal measur-
ing system is based on a metric linear time, so that we
can compare starting/ending points, using operators,
such as < or <, or pick out input arguments in aggre-
gates, using min or max. We furthermore require that
time is discrete and represented by natural numbers.
The implementation of HFC employs 8-byte long in-
tegers (XSD datatype long) to encode milli or even
nano seconds w.r.t. a fixed starting point (Unix Epoch
time, starting from 1 January 1970, 00:00:00). As a
consequence, given a time point ¢, the next smallest
or successor time point would then be # 4 1.

3.2 Transaction Time

Transaction time (Snodgrass, 2000) makes use of
temporal intervals in order to represent the time dur-
ing which a fact is stored in the database, even though

the ending time must not be known in advance. This
is indicated by the wildcard ? in the database table
below which will later be overwritten by the concrete
ending time.

We deviate here from the interval view by specify-
ing both the starting time when an ABox statement
is entered to the ontology, and, via a separate state-
ment, the ending time when the statement is invali-
dated. For this, we exploit the polarity values T and
1 from the logic ontology that we have already intro-
duced in Section 2.5. This idea is shown below for
a binary relation P. We write P (¢, d, b, e) to denote
row <c, d, b, e> in the database table P for relation P.

TIME DATABASE VIEW ONTOLOGY VIEW
f add: P(c,d,t,?) add: TP(c,d)@1,
th overwrite: P (c,d,t;, 1) _

h+1 add: 1 P(c,d)@1,+1

As we see from this picture, the invalidation in the
ontology happens at t, + 1, whereas [r,#;] specifies
the transaction time in the database. Clearly, the same
transaction time interval for P(c,d) in the ontology can
be derived from the two statements T P(c,d)@¢; and
1 P(c,d)@1,+1, assuming that there does not exist a
1 P(c,d)@t, such that t; <t < t, (we can effectively
query for this by employing the ValidinBetween test;
see Section 3.4 for its use in a rule).
Extending ontologies by transaction time the way we
proceed here gives us a means to easily encode time
series data, i.e., allows us to record the history of data
that changes over time, e.g., the blood sugar level of
a child (see Section 2.4). The formal foundations for
extending the triple model with transaction time can
be found in (Krieger, 2016).
Given polarity value © = {T, L}, the above state-
ments

nP(c, d)@¢
are written in HFC as quintuples, i.e.,

ncPdt
As we opt for a uniform representation, axiomatic
triples from the TBox and RBox of an ontology need
to be extended by two further arguments; for instance,

owl:sameAs rdf:type owl:TransitiveProperty
becomes quintuple?

true sameAs type TransitiveProperty "0”""long
We read the above statement as being true (T =
logic:true) from the beginning of time (long int 0 =
"0"""xsd:long).

AR

ZWe sometimes omit namespaces here in order to make
sure that a quintuple fits into a single paper line.

Information uploaded into HFC is also backed up by
an external file. However, entailed information, ob-
tained through successive rule applications (see Sec-
tion 3.4) is not stored at all, as it can be restored
through the same rules again. As a consequence,
wrongly-entered information at time ¢ can either be
deleted directly in case no rule application has taken
place since, or is deleted together with derived infor-
mation from a later time ¢’ > ¢ (like a DB rollback),
followed by an application of the rules.

3.3 Queries and a Use Case

The query language of HFC can be seen as an ex-
tension of a subset of SPARQL towards general n-
tuples. Consider the following quintuple excerpt from
the ABox for Lisa who has undergone anamnesis at
time 5544 and further lab values taken at 5577:

logic:true lisa rdf:type dom:Child "5544"""xsd:long

true lisa dom:hasLabValue Iv22 "5544"""xsd:long

true Iv22 dom:height "133"""xsd:cm "5544"""xsd:long
true Iv22 dom:weight "28.2"""xsd:kg "5544”"""xsd:long
true Iv22 dom:bsl "9.0"""xsd:mmol_L "5544"""xsd:long
true lisa dom:hasLabValue Iv33 "5577"""xsd:long

true Iv33 dom:weight "28.6"""xsd:kg "5577”""xsd:long
true Iv33 dom:bsl "165.6"""xsd:mg_dL "5577"""xsd:long

What this example shows is that the blood sugar level
dom:bsl for Lisa was measured using different units
at different times (cf. Section 2.10). Given that all
possible lab values will not be taken every time a
medical examination takes place, we would neverthe-
less like to know the latest value for each individual
property; for instance in our case, that Lisa is 133 cm
tall (time: 5544), weights 28.6 kg (time: 5577), and
has been measured with a blood sugar level of 165.6
mg/dL also at 5577. This information can be obtained
through the following quintuple-based query which
utilizes the complex aggregate GetlLatestValues:

SELECT ?prop ?val 7t
WHERE logic:true lisa dom:hasLabValue ?labvalue ?t &
logic:true ?labvalue ?prop ?val ?t
AGGREGATE ?measurement ?result ?time =
GetLatestValues ?prop ?val ?t ?t

The meaning of SELECT and WHERE does not dif-
fer from SPARQL, except that quintuples are involved
instead of triples. AGGREGATE specifies an aggre-
gate with four input and three output arguments which
sorts the result table obtained from SELECT-WHERE
and headed by (?prop,?val,?t) according to the last
fourth element ?t. It then takes the newest values
(?val,?t) (argument 2 and 3) for each property ?prop
(argument 1) and finally returns the following table:

?measurement ?result ?time
dom:height ”133"""xsd:cm "5544"""xsd:long
dom:weight "28.6"""xsd:kg "5577"""xsd:long

dom:bsl "165.6"""xsd:mg_dL | "5577"""xsd:long
3.4 Rules

As we have shown in (Krieger, 2016), the entailment
rules for RDFS (Hayes, 2004) and OWL (ter Horst,
2005) can be extended naturally towards a treatment
of time-varying data which mimics transaction time
(Snodgrass, 2000). Here, we will present two such
entailment rules which will derive new information
for the PAL domain. The first one deal with proper-
ties and subproperties (see Section 2.9 for two such
properties). The original rule rdfs7x from (ter Horst,
2005) is (we separate the if-then parts by writing —>):

?p rdfs:subPropertyOf ?q

v ?7p ?w

->

?w ?q ?w
This is exactly the syntax used in HFC for writing
rules. The transaction time extension using quintuples
is quite natural:

logic:true ?p rdfs:subPropertyOf ?q "0"""xsd:long

logic:true ?v ?p 7w ?t

->

logic:true ?w ?q ?w 7t
As we see, the underlined parts of the three clauses
correspond one-to-one to the original rule and all
statements are valid (first argument: logic:true). In-
stantiations of the first clause will be RBox axioms
which will not change over time, thus we assign
time O here, whereas changing time in the other two
clauses is addressed by a coinciding logic variable ?t.
The next rule does not have a counterpart in neither
(Hayes, 2004) nor (ter Horst, 2005). It addresses a
functional property P defined on x whose value y at
time #; is specified differently at a later time 1, by z,
without invalidating y before:

true ?p rdf:type owl:FunctionalProperty "0"*"long

true ?x ?p ?y ?t1

true ?x ?p 7z ?t2

->

error ?x ?7p ?y 72

error ?x ?p 7z 72

@test

=72

?2t1 < 712

ValidinBetween ?x ?p ?y ?t1 712
This rule derives that P(x,y) @1, as well as P(x,z) @1,
is an inconsistent (but not a false) statement in case

P(x,y) does not get invalidated at t < f,: LP(x,y)@z.
Whether this is the case is checked by ValidInBetween
as explained before in Section 3.2. If the test suc-
ceeds, we mark the inconsistency through the use of
the error modality ! (see Section 2.5) on the RHS.

4 ONTOLOGY IN USE

We have already presented an use case involving the
ontology in Section 3.3, where a health professional is
interested in obtaining the most recent lab values for
a specific child. Here, we will look into two further
examples.

4.1 Use Case 2: Dialogue Processing

The natural language dialogue engine in PAL utilizes
sets of reactive if-then-like rules for the various health
applications (e.g., diabetes diary, educational quizzes,
sorting games). Simplified, the rules match against
general as well as specific dialogue situations (= dia-
logue acts enriched by semantics and other informa-
tion; see Sections 2.3 and 2.7) and generate continu-
ations, describing how the dialogue proceeds. Both
the matching information as well as the derived new
information is grounded in time, represented by the
transaction time model presented above, and stored in
HFC. Even though the transaction time model and the
ontology schema lead to a high abstraction level, HFC
queries (Section 3.3) and rules (Section 3.4) would
still be too talkative to be of easy use. Thus the re-
active dialogue rules abstract away from things that
need to be repeated over and over again (e.g., prop-
erties, such as dial:sender or dial:addressee; property
chains; time). Here is an example of such a rule, a
specialization of a general answer:

if (myLastDA <= @Request(Top)
&& lastDA < @Answer(Top)) {
if (lastDA <= @Confirm(Top))
lastDA.dialogueAct = AcceptRequest;
else
lastDA.dialogueAct = RejectRequest;
}

If the sender’s last dialogue act mylLastDA is at least
as specific as dial:Request (see Section 2.3) and we
are given a confirmation by the addressee (stored
in lastDA), the rule will assign a more specific dia-
logue act, viz., AcceptRequest to the field dialogueAct
of variable lastDA; otherwise, RejectRequest is as-
signed. Even though lastDA and myLastDA look like
imperative variables, they are implemented with the
help of time:assign to record time series data (see Sec-
tion 2.4). Furthermore, complex conditions, such as
the subsumption tests above are compiled into com-
plex SPARQL-like ASK queries.

4.2 Use Case 3: Goal Progression

The goal ontology is used to inform the child, its
parents, and the healthcare professionals on the cur-
rent status of self-management, but also to direct
the PAL system to provide suitable content and ac-
tivities. Imagine a child Henk, recently diagnosed
with diabetes and started treatment, including self-
management educational goals. Henk already learned
that insulin intake is needed, thus goal:Insulinintake is
achieved and is given progress value 1.0. Note how
the domain and goal sub-ontologies interacts (below,
we omit the first argument logic:true and the transac-
tion time argument of the quintuple in lack of space):

henk dom:hasTreatment henks_treatment
henks_treatment dom:hasGoal insulinintake_henk
insulinintake_henk goal:hasProgress ”1.0”""xsd:float

Henk’s first selected objective is to learn to inject in-
sulin. This requires knowledge on the location for in-
jection and skills to prepare the insulin pen. Upon se-
lection of goal:Insulininjection, the progress value of
this goal and its pre-conditions goal:PreparePen and
goal:InsulinLocation is set to 0.0, as for related sub-
classes of goal:SupportingObjectives:

Insulininjection goal:requiresAsClass PreparePen
Insulininjection goal:requiresAsClass InsulinLocation
InsulinLocation goal:requiresAsClass Answerl1
insulinLocation_henk goal:hasProgress "0.0"""xsd:float
answerl1_henk goal:hasProgress ”0.0"""xsd:float
preparePen_henk goal:hasProgress ”0.0"""xsd:float

While playing a quiz, the PAL system keeps track
of the scores and for each correct answer, the corre-
sponding progress value is updated at a later time:

answerl1_henk goal:hasProgress "0.2"""xsd:float

After correctly answering all related quiz question,
the goal is achieved and all connected learning
goals advance progression. Since goal:InsulinLocation
has no other pre-condition, progress is updated
to 1.0. As goal:Insulininjection also specifies
goal:PreparePen as a further pre-condition via prop-
erty goal:requiresAsClass (see above), it is therefore
progressing to 0.5 (both pre-conditions are equally
important):
answerl1_henk goal:hasProgress ”1.0"""xsd:float
insulinLocation_henk hasProgress "1.0"""xsd:float
preparePen_henk goal:hasProgress "0.0"""xsd:float
insulininjection_henk goal:hasProgress "0.5"""xsd:float

ACKNOWLEDGEMENTS

The research described in this paper has been partially
financed by the European project PAL (Personal As-
sistant for healthy Lifestyle) under Grant agreement
no. 643783-RIA Horizon 2020.

Thanks to Antoine Cully and Maxime Petit (Imperial
College London) for the preparation of the PAL Data
Definition. We would like to thank the reviewers for
their suggestions.

REFERENCES

Bunt, H., Alexandersson, J., Choe, J.-W., Fang, A. C,
Hasida, K., Petukhova, V., Popescu-Belis, A., and
Traum, D. (2012). Iso 24617-2: A semantically-based
standard for dialogue annotation. In Proceedings of
the Eight International Conference on Language Re-
sources and Evaluation (LREC’12), pages 430—437.

Fillmore, C. J. (1977). The case for case reopened. In Cole,
P. and Saddock, J. M., editors, Grammatical Rela-
tions. Syntax & Semantics 8, pages 59-81. Academic
Press.

Hayes, P. (2004). RDF semantics. Technical report, W3C.

Hayes, P. and Welty, C. (2006). Defining N-ary relations on
the Semantic Web. Technical report, W3C.

Kiryakov, A., Ognyanov, D., and Manov, D. (2005).
OWLIM - a pragmatic semantic repository for OWL.
In Proceedings of the International Workshop on Scal-
able Semantic Web Knowledge Base Systems, pages
182-192.

Krieger, H.-U. (2010). A general methodology for equip-
ping ontologies with time. In Proceedings LREC
2010.

Krieger, H.-U. (2013). An efficient implementation of
equivalence relations in OWL via rule and query
rewriting. In Proceedings of the 7th IEEE Interna-
tional Conference on Semantic Computing (ICSC),
pages 260-263.

Krieger, H.-U. (2016). Integrating graded knowledge and
temporal change in a modal fragment of OWL. In van
den Herik, J. and Filipe, J., editors, Agents and Artifi-
cial Intelligence, Lecture Notes in Computer Science.
Springer, Berlin. Revised selected papers from the 8th
International Conference, ICAART 2016.

Krieger, H.-U. and Declerck, T. (2014). TMO—the feder-
ated ontology of the TrendMiner project. In Proceed-
ings of the 9th edition of the Language Resources and
Evaluation Conference (LREC).

McGuinness, D. L. and van Harmelen, F. (2004). OWL
Web Ontology Language Overview. Technical report,
W3C.

Ruppenhofer, J., Ellsworth, M., Petruck, M. R., Johnson,
C. R., and Scheffczyk, J. (2006). FrameNet II: Ex-
tended theory and practice. Technical report, Interna-
tional Computer Science Institute (ICSI), University
of California, Berkley.

Snodgrass, R. T. (2000). Developing Time-Oriented
Database Applications in SQL. Morgan Kaufmann,
San Francisco, CA.

ter Horst, H. J. (2005). Combining RDF and part of OWL
with rules: Semantics, decidability, complexity. In
Proceedings of the International Semantic Web Con-
ference, pages 668—684.

