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Abstract. Relevance matrices are a way to formalize the contribution
of each attribute in a classification task. Within the CBR paradigm these
matrices can be used to improve the global similarity function that out-
puts the similarity degree of two cases, which helps facilitate retrieval.
In this work a sensitivity analysis method was developed to optimize the
relevance values of each attribute of a case in a CBR environment, thus
allowing an improved comparison of cases. The process begins with a
statistical analysis of the values in a given dataset, and continues with
an incremental update of the relevance of each attribute.
The method was tested on two datasets and it was shown that the statis-
tical analysis performs better than evenly distributed relevance values,
making it a suitable initial setting for the incremental update, and that
updating the values over time gives better results than the statistical
analysis.

Keywords: Relevance Matrix, Sensitivity Analysis, Case-Based Rea-
soning, Classification, Retrieval, Similarity

1 Introduction

Relevance matrices are an important tool to represent the contribution of each
attribute in a classification task. In this paper we will explore their use in the
retrieval task of a case-based reasoning (CBR) system, which is closely related
to classification. This work is a contribution to the OMAHA project, with the
goal of creating a CBR system for aircraft fault diagnosis for Airbus [14].

The idea behind CBR is that similar problems have similar solutions. The
process is made of four steps: retrieve, reuse, revise, and retain [1], and lies
heavily on methods humans use to solve problems. When a person is faced with
a problem she first compares the current situation to past experience. This action
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is parallel to the retrieval phase of CBR. Next, she adapts her previous experience
to the current task, much like the reuse stage of CBR, and applies it. Her actions
are either successful, or unsuccessful (revise step). If her actions are successful,
she will remember this solution for future reference (retain step).

A dataset of past experiences, called cases, each comprising of a problem
description and a solution, is the foundation of every CBR system. In our scenario
of fault diagnosis each case is built out of a fault description comprising of a set of
attributes and their values, a diagnosis, and the actions taken to fix the problem,
namely the solution. The main focus of this work is the retrieval phase, where
a list of cases from the dataset, which are similar to a new fault description
entered by the user, are retrieved.

At the base of the case retrieval is the similarity measure, which comes in
two forms: local and global. Local similarity measures how similar two attribute
values are to each other, while global similarity measures the similarity between
two cases (more specifically, two problem descriptions) and is calculated by amal-
gamating the local similarities. When calculating the global similarity, weights
can be assigned to each attribute in the amalgamation function, and here lies
the crux of our task.

Our goal is to find the relevance matrix for the attributes used by the cases
in our case base. Each case has a diagnosis, and each attribute in the fault
description should have a different weight for different diagnoses. We want to set
the weights so that for a retrieval task only cases with a relevant diagnosis will
be deemed similar enough to be retrieved. Precision is therefore more important
in our case than recall.

Similar work has been done in the past by Wess and Richter [7, 8], [10], un-
der the PATDEX/2 system. In this work, three phases were defined to assign
values to the relevance matrix: Initial Phase, where starting values are set ac-
cording to statistical analysis of the attribute values, Training Phase, where the
weight values are optimized for classification, and the Application Phase, where
weights are constantly updated according to the changing case base. Since both
Wess and Richter only used binary attributes, their work is inapplicable to our
system in its current form, but instead is used as the basis of this paper, and fur-
ther developments, mainly in the second phase, will be discussed in the coming
sections.

The remainder of this paper is organized as follows. In the next section an
overview of the related work, namely finding and assigning weights to features in
the CBR environment, is described. In section 3 we define the keywords and ba-
sic formulas, which are important for this work. Section 4 describes the method
that was developed and used. Then, section 5 provides information on the exper-
iments that were run and their results. Finally, a short discussion of this work is
provided, along with ideas of how it can be further developed and used withing
the OMAHA project.

2 Related Work

There were several researches done about adjustment of feature weights in the
past years, and it is still an important topic. Wettschereck and Aha compared
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different feature weighting methods and developed five dimensions to describe
these methods: Model, weight space, representation, generality and knowledge
[11]. According to their work, our approach uses a wrapper model to optimize
the feature weights iteratively during the training phases. The weight space is
continuous, because the features of our problem vary in their relevance for dif-
ferent diagnoses. Our knowledge representation is a structural case structure
with attribute-value pairs and this given structure is used for feature weighting.
We are using case specific weights to set the weights for each diagnosis individ-
ually. This way we are able to gain more precise results during the retrieval.
Our approach for feature weighting is knowledge intensive, because we are us-
ing domain-specific knowledge to differ between individual diagnoses and setting
case specific weights.

The approach from Richter and Wess introduces a so-called relevance matrix
to deal with irrelevant symptoms in the PATDEX/2 diagnosis system. These
relevances are determined in context of special situations. This means that for
every diagnosis individual symptom relevances are set. These initial relevances
are computed from a given set of cases and improved during training phases [7].
It is important to note that Richter and Wess used only the binary attribute
type, and that our work generalizes the analysis to any attribute type.

Another approach for learning feature weights is from Armin Stahl. He
presents a framework for learning of similarity measures, which is able to learn
local and global similarity measures as well as feature weights. A so-called sim-
ilarity teacher rates the utility of case pairs with respect to a given query to
define the correct order of retrieved cases to the query based on the utility of
a case. Based on this correct case order, a so-called similarity learner is able to
adjust the similarity measures or feature weights to minimize the error during
the retrieval [9].

Zhang and Quang describe an approach for a maintenance system with
weight adjustments. They propose a three-layered architecture for a case struc-
ture: attribute-value pair layer, problem layer and solution layer. Between the
attribute-value pairs and the problem and between the problem and the solution
a set of weights can be defined. The feature weights are adjusted based on the
feedback of a user, who selects an appropriate solution for a given problem. For
each selected solution and the corresponding problem the weights are adjusted
[12, 13].

David Aha developed the Case-based Learning Algorithm 4 (CBL 4) as an
approach to learn the importance of features. The algorithm sets initial feature
weights and then learns the new feature weights during a training phase. A
shortcoming of the CBL 4 algorithm is the missing of context consideration. CBL
4 can learn feature weights only for all cases and not case or context specific [2].

3 Definitions

The retrieval task of CBR is based on comparing a new problem description with
descriptions stored in the case base, and retrieving only those cases that are suf-
ficiently similar, meaning their similarity score is above a predefined threshold.
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We define a case base CB as CB = {c1, c2, ..., cn} a set of cases ci, n number
of cases. A case is a tuple ci = (desc, sol, diag), where: ci.desc a problem de-
scription, ci.sol the description of how the problem was solved, and ci.diag the
diagnosis of the case, i.e. the problem type, which also functions as its class.
The difference between the solution and the diagnosis is that the diagnosis is a
cluster or set of very similar problems, which may have been solved in differ-
ent ways. The problem description is a function that maps a set of attributes
A = a1, a2, ..., am, m number of attributes, to their values, so that ci.desc(aj)
is the value of attribute aj under the case ci. The solution ci.sol is a string
attribute, while ci.diag takes symbolic values.

A local similarity is defined as the similarity function of two attribute values

simlocal(ci.desc(aj), ck.desc(aj)) = simlocal(aij , akj) (1)

The global similarity function simglobal(ci, ck) compares two cases, and is
defined as the amalgamation of the local similarities:

simglobal(ci, ck) =

amal(simlocal(ai1, ak1), simlocal(ai2, ak2),

..., simlocal(aim, akm)) (2)

Since some attributes are more important than others to determine the sim-
ilarity of two cases, a weight for each local similarity can be assigned:

simglobal(ci, ck) =

amal(w1 · simlocal(ai1, ak1), w2 · simlocal(ai2, ak2),

..., wm · simlocal(aim, akm)) (3)

Here wj is the weight of attribute aj . Another improvement on the similarity
function is to give the same attributes different weights under different diagnoses,
so that if ck.diag = d, d ∈ D we have:

simglobal(ci, ck) =

amal(wd1 · simlocal(ai1, ak1), wd2 · simlocal(ai2, ak2),

..., wdm · simlocal(aim, akm)) (4)

Where wdj is the weight of attribute aj under diagnosis d. This means that
different weights are used for the amalgamation when comparing against cases
from different diagnoses. The reasoning behind this is that the same attributes
may be differently important to determine membership of different diagnosis
sets. From here we come to the relevance matrix (Table 1), which is nothing
more than the weights assigned to each attribute under the different diagnoses.
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Table 1: The relevance matrix

XXXXXXXXXDiagnosis
Attribute

a1 . . . am

d1 w11 . . . w1m

...
...

. . .
...

ds ws1 . . . wsm

Our goal is to find the optimal relevance matrix, so that for each new retrieval
task only the relevant cases will be retrieved. In our case, relevant cases are those
who share the same diagnosis.

4 Method

Following Wess’ three phases as first defined for the PATDEX/2 system and
discussed in the introduction, we will focus on the first two: the initial phase
and the training phase. His methods were updated to accommodate different
types of attributes, and the similarity functions in use.

4.1 The Initial Phase

The purpose of the initial phase is to determine the starting weight values for
the optimization that is taking place in the training phase. The initial weights
are calculated using a statistical analysis of the attribute values.

Symbolic Attributes We begin by looking at symbolic attributes, where there
is a finite set of possible values. We define a diagnosis set Cj ⊆ CB as the set of
all cases ci with ci.diag = j. Let |D| = s be the number of possible diagnoses,
a ∈ A an attribute, and B = {b1, b2, ..., bt} the set of possible values for attribute
a. We also set bji to be the number of appearances of value bi in Cj under the
attribute a.

The relative weight of value bi in the diagnosis set Cj is calculated as:

wji =
bji∑s

x=1 bxi
(5)

The impact of the value on the diagnosis set is then Vji =
bji
|Cj | . To calculate

the weight of attribute a under the diagnosis set Cj , the following formula is
used:

Wja =

|B|∑
x=1

Vjx · wjx (6)
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General Attributes Since possible attribute values in general is not limited to
a finite set, the formula to calculate the attributes’ weights needs to be adjusted.
Let a ∈ A be defined as before, B = {b1, b2, ..., bt} the set of used values under
a in all diagnosis sets, Bj ⊆ B is the set of values that appear in Cj , bji ∈ Bj ,
r ∈ IR a similarity threshold. The relative weight of bji is then

wji =
|{bjx|bjx ∈ Bj ∧ simlocal(bji, bjx) ≥ r}|
|{bx|bx ∈ B ∧ simlocal(bji, bx) ≥ r}|

(7)

Since we regard each value as unique, the impact of each value on Cj is
Vji = 1

|Bj | . The total weight of attribute a under Cj is

Wja =
1

|Bj |
·
|Bj |∑
i=1

wji (8)

4.2 The Training Phase

After determining the initial weights our job is not done. In order to optimize
the relevance matrix we need to train the system. For a given query a list
of cases is retrieved, and sorted according to their similarity to the query, as
given by the similarity function simglobal. We choose a threshold ξ, such that
if simglobal(query, case) ≥ ξ the diagnosis of both query and case should be
the same. In case query.diag 6= case.diag and simglobal(query, case) = ξ + ∆,
we have a false positive results, which can be attributed to one of the following
reasons [10]:

1. Both query and case contain the same problem description, such that
query.desc = case.desc

2. The threshold ξ is too low
3. The weight of the similar attributes of query and case is too high
4. The weight of the dissimilar attributes of query and case is too low

If reason 1 is the source of the false positive result and the problem descrip-
tions are identical then we either have an inconsistency problem and case should
be removed from the case base, or case is incomplete and should be updated.
Neither of these scenarios are within the scope of this work. We will ignore rea-
son 2 since we want to keep a fixed threshold, and will so focus on reasons 3 and
4. Our goal is then to strengthen the differences between query and case, and
weaken their similarities.

Consider the following scenario: We have a query case q and a retrieved case
c with c.diag = d, q.desc 6= c.desc and

simglobal(q, c) = ξ +∆ =

wd1 · simlocal(aq1, ac1) + wd2 · simlocal(aq2, ac2)+

...+ wdm · simlocal(aqm, acm) (9)
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We define a local similarity threshold ξ′ for the local similarity measure, and the
following sets: S = {i|simlocal(aqi, aci) ≥ ξ′} and NS = {j|simlocal(aqj , acj) <
ξ′} the sets of those attributes which are similar and those that are not similar,
respectively. We want to update the similarity measure so that simglobal(q, c) ≤
ξ. In order to do so, the similarity formula is updated in the following way:

simglobal(q, c) =∑
i∈S

(wdi − zi) · simlocal(aqi, aci) +
∑

j∈NS

(wdj + yj) · simlocal(aqj , acj) = ξ (10)

This way the weight of similar attributes is reduced, while the weight of
dissimilar attributes is increased for the diagnosis set of the retrieved case, thus
increasing the dissimilarity between the two cases. In order to update the weights
we need to find the values of zi and yi. For simplicity reasons we set ∀zi,zjzi =
zj ,∀yi,yjyi = yj and

∑
i∈S zi =

∑
j∈NS yj = Z. This means that we need to find

a value Z, such that

zi =
Z

|S|
, yi =

Z

|NS|
(11)

This value is calculated with the help of the following formula:

Z =
∆ · |S| · |NS|

|NS| ·
∑

i∈S simlocal(aqi, aci)− |S| ·
∑

j∈NS simlocal(aqj , acj)
(12)

The derivation of formula 12 is: let t = simglobal(q, c)−∆, xi = simlocal(aqi, aci),
then:

∑
i∈S

xi · wdi +
∑

j∈NS

xj · wdj = t+∆ =⇒

∑
i∈S

xi · (wdi − zi) +
∑

j∈NS

xj · (wdj + yj) = t =⇒

∑
i∈S

xi · (wdi −
Z

|S|
) +

∑
j∈NS

xj · (wdj +
Z

|NS|
) = t =⇒

∑
i∈S

(xi · wdi −
xi · Z
|S|

) +
∑

j∈NS

(xj · wdj +
xj · Z
|NS|

) = t =⇒

∑
i∈S

xi · wdi +
∑

j∈NS

xj · wdj −
Z

|S|
·
∑
i∈S

xi +
Z

|NS|
·
∑

j∈NS

xj = t =⇒

t+∆− Z · (
∑

i∈S xi

|S|
−

∑
j∈NS xj

|NS|
) = t =⇒

∆ = Z ·
|NS| ·

∑
i∈S xi − |S| ·

∑
j∈NS xj

|S| · |NS|
=⇒

Z =
∆ · |S| · |NS|

|NS| ·
∑

i∈S xi − |S| ·
∑

j∈NS xj
Q.E.D
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For a falsely retrieved case, the diagnosis set’s weights are updated as follows:

1. Find the sets S and NS
2. Calculate Z according to formula (12)
3. Calculate zi, yj according to formula (11)
4. ∀i∈Sw

′
i = wi − zi, ∀j∈NSw

′
j = wj + yj

5. Set all w′
i, w

′
j as the new weights of the respective attributes for the diagnosis

set of the retrieved case

One epoch of the training procedure would then go as follows:

• For each case c in the case base

• Build a query q from the problem description of c
• Use q to retrieve similar cases
• For each retrieved case ci, simglobal(q, ci) > ξ, ci.desc 6= c.desc

• Update the weights of the diagnosis set of ci.desc

There are two main problems with this procedure; First, the weight update
sequence depends both on the order of the queries and on the order of retrieved
cases as the weights are updated. Another problem is that after the first weight
update for a query q, the second update for a second falsely retrieved case may
not be relevant any longer, as the weights of that diagnosis set may have already
changed. A renewed retrieval for the same query after each weight change is
computationally too expensive and might even produce an endless loop. In order
to overcome these problems the training phase is changed so that weights are
updated only once per query.

In the new version, an average Z value, aveZ, is calculated for each diagnosis
set as the mean Z from all falsely retrieved items of this set within an entire
epoch. The local update values are then: zi = aveZ

|S| , yj = aveZ
|NS| , where |S| and

|NS| are the number of attributes that appeared more times in S or in NS
respectively.

The attribute weights for each set are then updated only once per epoch:
For each attribute ai, let |Si|, |NSi| be the number of retrieved cases of the
diagnosis set where ai appeared under S or NS respectively. The weight of ai
in the diagnosis set is then updated as follows:

w′
i =


wi − zi if |NSi| = 0

wi + yi if |Si| = 0

wi − (1− |Si|
|NSi| ) · zi if |Si| < |NSi|

wi − (1− |NSi|
|Si| ) · yi if |NSi| < |Si|

(13)

This phase is closely related to the back-propagation training of an artificial
neural network (ANN). In each retrieval or classification task the contribution
of each attribute, much like each neuron, to the error is assessed, and its weight,
similarly to activation weights, is updated accordingly.
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5 Evaluation and Results

To test the newly developed method we used two datasets from the literature,
since an aircraft-related one is not yet readily available. Both datasets were taken
from the classification discipline, as each item is assigned to a class, something
that is lacking in available CBR data.

The method was implemented in the Java programming language and relied
heavily on the myCBR tool [3] both in the creation of the case bases, and for
retrieval. The datasets which were used are the Car Evaluation Data Set [4] and
the Yeast Data Set [5], both obtained from the UC Irvine Machine Learning
Repository1, and from here on referred to as Cars and Yeast respectively. These
datasets were chosen thanks to the ease of converting them into a case base, and
their size, which allowed testing in a timely manner.

The method’s thresholds were set to the following values: ξ = ξ′ = 0.75. The
settings for the local similarities were set with the distance function “DIFFER-
ENCE” and type “POLYNOMIAL WITH”.

Since both datasets have a relatively low number of data points, it was nec-
essary to perform cross validation for the training phase. Each dataset was ran-
domly divided into four subsets, and the initialization and training phases were
performed four times on the training set, each time using a different subset as
the test set.

Before the training phase two tests were performed: first, with a static and
uniform weight for all attributes, and second using the weights from the initial
phase. Following this, the weights were trained for 15 epochs on the training
set. The recall and precision results of each epoch was documented, and the
F-measure was calculated with β = 0.3, giving a heavier weight to the precision.
The results can be seen in figure 1, and show the F-measure values as calculated
from the test set.

As can be seen, the F-measure value of the Cars dataset was higher for the
initial weights than the static ones. When the training phases begins the retrieval
performance decreases drastically, and then slowly picks up and reaches values
higher than those of the initial phase. The situation of the Yeast dataset is
different, as the peak of the F-measure is reached after the first training epoch,
and values then slowly decrease and approaches what seams to be a saturation
point that is above both the static and the initial phase. What can be learned
from these results is that the statistical analysis improves performance over
the evenly distributed weights, while training improves performance over the
statistical analysis.

6 Discussion and Future Work

Sensitivity analysis was used in this work to optimize the relevance matrix,
which represents the importance of each attribute in a global similarity. The
optimization method was developed as part of an aircraft fault diagnosis CBR

1 http://archive.ics.uci.edu/ml
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(a) Cars

(b) Yeast

Fig. 1: F-measure as a function of each setting and epoch. Each graph shows
results of one cycle of cross-validation
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tool, with the goal of improving the retrieval of past cases similar to a query
case.

With the help of two datasets from the literature, the method was tested
on three different settings: static and evenly distributed relevance values, initial
statistically analyzed values, and 15 epochs of optimization. Performance of the
different settings was measured with the help of the F-Measure, giving higher
importance to precision than to recall .

It was shown that the initial values, obtained by statistical analysis, allowed
the retrieval to perform better than the evenly distributed values. However, when
the relevance matrix was updated with the help of the sensitivity analysis, the
performance was improved even more for both datasets.

In the future, we intend to test the optimization method on a real-world
aircraft fault dataset. This was not done yet since no such dataset is readily
available, but this will change in the near future, as one is currently in the
making. Once the test is performed we will better know how the system behaves,
and will be able to adjust the termination criteria of the optimization cycles.
The sensitivity analysis will be instated as part of the toolchain of the OMAHA
project, which is a framework to transform a semi-structured dataset into cases,
and to retrieve cases relevant to a query [6].
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