
Optimization of Retargeting for IEEE 1149.1 TAP
Controllers with Embedded Compression

Sebastian Huhn∗† Stephan Eggersglüß∗† Krishnendu Chakrabarty‡ Rolf Drechsler∗†

∗University of Bremen, Germany
{huhn,segg,drechsle}@informatik.uni-

bremen.de

†Cyber-Physical Systems
DFKI GmbH

28359 Bremen, Germany

‡Duke University
Durham, NC 27708, USA

krish@ee.duke.edu

Abstract—We present a formal optimization technique that
enables retargeting for codeword-based IEEE 1149.1-compliant
TAP controllers. The proposed method addresses the problem
of high test data volume and Test Application Time (TAT) for a
system-on-chip design during board or in-field testing, as well
as during debugging. This procedure determines an optimal
set of codewords with respect to given hardware constraints,
e.g., embedded dictionary size and the interface to the Test
Data Register in the IEEE 1149.1 Std. A complete traversal
of the spanned search space is possible through the use of
formal methods. An optimal set of codewords can be determined,
which is directly utilized for retargeting. The proposed method
is evaluated using test data with high-entropy, which is known to
be the least amenable to compression, as well as input data for
debugging and Functional Verification (FV) test data. Our results
show a compression ratio improvement of more than 30% and a
reduction in TAT up to 20% compared to previous techniques.

I. INTRODUCTION

System-on-Chip (SoC) Integrated Circuits (ICs) are now
widely used in the semiconductor industry. SoC designs
inevitably lead to higher test complexity and the problem of
reduced test access to internal logic blocks. An important aspect
to be considered in the SoC design phase is the accessibility
of nested sub-modules. Hence, test access mechanisms are
embedded into the design. The IEEE 1149.1 Std. specifies such
a Test Access Port (TAP), which is commonly used within
industrial designs. This standardized TAP provides capabilities
to transfer test data to the Circuit-under-Test (CuT). However, a
problem in using the IEEE 1149.1 Std. for testing or debugging
is that it provides only a serial interface for data transfer,
leading to a high data transfer time. In addition, the high Test
Data Volume (TDV) and debug data volume require the use
of a considerable amount of tester memory, which is often
not feasible in a system environment in the field or for rapid
post-silicon debug using IEEE 1149.1.

Test compression techniques have been proposed in the
literature for reducing TDV. These methods embed dedicated
hardware on-chip to enable the transfer of compressed stimuli
from the tester and on-the-fly decompression [1]–[6]. For
example, Embedded Deterministic Test (EDT) [1] achieves
very high compression for test data derived using Automatic
Test Pattern Generation (ATPG) tools. However, either the test
data have to contain a large number of unspecified values for
EDT to be effective, or the generation of test cubes using ATPG
must be integrated in the test compression procedure [7].

Beside this, other hardware modules have been developed with
the aim to compress scan test data by taking advantage of static
compression techniques [2], e.g., Run-Length Encoding (RLE)-
based methodology [4], dictionary-based techniques [3] or even
combined techniques within hybrid compression modules [5],
[6]. The dictionary has a major impact on the achievable
compression ratio, which is defined as the fraction of the
test data after compression compared to the test data before
compression. The work in [8] proposes an approach to generate
a suitable dictionary for test data containing a large proportion

of unspecified values. However, this technique does not work
for fully-specified data. Other techniques from the field of
software-based compression exist, e.g., the Huffman encoding,
which is applied in [9] for test data compression. In general,
these dictionary-based approaches are unable to incorporate
any hardware constraints, e.g., the available dictionary size or
other specific properties of the codewords. Due to this fact, the
work in [10] proposes a domain-specific word-based Huffman
technique which addresses some of these shortcomings. More
complex techniques such as the Lempel-Ziv (LZ) algorithm
[11] has been adapted for implementation in hardware. These
modules are capable of handling a large volume of incoming
data. However, the additional area overhead as well as the
adverse impact on timing behavior have to be considered.

To tackle these limitations and to reduce the overall TDV,
VecTHOR has been proposed in [12] as a compression-based
architecture for standardized IEEE 1149.1-compliant TAP
controllers. In particular, a scheme has been developed to
take advantage of a codeword-based compression technique,
which is dynamically configurable and therefore applicable
even on high-entropy test data. Furthermore, the extension
requires only a slight overhead in hardware and no additional
pins at the chip level. For utilizing this compression technique,
existing test data have to be retargeted off-chip only once.
Typically, this is done by a retargeting framework, which
determines a configuration, processes the test data and generates
a compressed test data stream. This stream is transferred
for each test run to the CuT embedding the compression-
based TAP controller. Subsequently, the compressed stream
is decompressed on-chip such that the original test data
are restored.

The VecTHOR approach achieves a promising TDV reduction
when it is applied to test data as presented in [12]. However, the
approach is not able to tap its full potential. The effectiveness
strongly depends on the selection of the codewords. In [12], a
simple heuristic is used to determine suitable codewords. Due
to the large number of search parameters to consider, a greedy
algorithm is not likely to find optimal codewords. In particular,
this shortcoming can be observed when the approach is applied
on high-entropy test data.

This work proposes a new formal optimization-based tech-
nique to determine a set of optimal codewords. The problem of
finding a set of effective codewords for a given test data stream
is modeled as a Pseudo-Boolean Optimization (PBO) problem
for which solvers exist that are able to compute appropriate
solutions in reasonable time. The generated codewords can
then be used to dynamically configure a compression-based
TAP architecture to increase the compression ratio and even
decrease the number of required test cycles.

Experiments are conducted on random test data, on debug-
ging data of a JPEG encoder, as well as on commercially
representative FV test data for a state-of-the-art softcore
microprocessor. Random test data have characteristically a
high-entropy. Thus, this data typically determine the lower



bound on the compression ratio [13]. Both results show that the
new optimization-based approach improves the compression
results significantly. A TDV reduction by up to 37.1% can
be achieved for high-entropy data. In particular, the Test
Application Time (TAT) overhead of previous techniques is
completely eliminated. In fact, the TAT for real FV test data
can be even reduced by up to 20% compared to the time an
uncompressed data transfer consumes.

The structure of this paper is as follows: Section II briefly
presents the formal methods being applied and the previously
proposed compression technique. Subsequently, Section III
draws the formal model used for the problem instance. Exper-
imental results are shown in Section IV. Finally, Section V
summarizes the paper and discusses possible future work.

II. BACKGROUND

The Boolean Satisfiability (SAT) problem asks the question
whether a satisfying solution for a given Boolean function exists.
These functions can be represented by using a Conjunctive
Normal Form (CNF). A CNF Φ is a conjunction of clauses,
whereby, such a clause ω is a disjunction of literals and a
literal represents a Boolean variable ν in its positive x or
negative form x̄. This Boolean function Φ : {0, 1}n → {0, 1}
is classified as satisfiable (sat) if an assignment of all variables
exists such that Φ = 1 holds. Otherwise, it is classified as
unsatisfiable (unsat) [14]. In fact, such a SAT problem can be
used to model several (research) questions. Generally, solving
these functions is a hard computational task, hence, a lot of
research work has been spent on developing powerful solving
algorithms (SAT solvers) to address this challenging problem.

Example 1. Let Φ = (x1 + x̄2 + x3) · (x̄1 + x2) · (x2 + x̄3).
Consequently, x1 = 1, x2 = 1 and x3 = 0 is a satisfying
variable assignment.

The Pseudo-Boolean (PB) SAT problem allows for an inte-
gration of weights. The PB-SAT instance Φ : {0, 1}n → {0, 1}
consists of conjugated constraints

∑n−1
i=1 ci · x̂i ≥ cn using

c1, . . . , cn ∈ Z as weights and x̂i as positive or negative
literals. Additionally, the PBO problem extends the PB-SAT
problem such that an objective function F can be integrated in
order to assess the quality of the determined solution. By this, it
is possible not only to give an arbitrary solution as regular SAT
solvers do, but to determine the optimal solution with respect to
F . PBO-based or similar optimization-based procedures have
already been successfully applied in the testing domain, e.g., in
[15], [16]. Although dedicated solving algorithms exist for
these kind of problems, many of these algorithms use SAT
solving techniques internally. The PBO problem is one of
these problems. Here, the (PB-)SAT instance, i.e., the Boolean
formula in CNF or the PB constraints, respectively, is extended
with an objective function F .1 Typically, the objective function
F is given as a linear sum:

F(x1, . . . , xk) =

k∑
i=1

mi · x̂i with m1, . . . ,mk ∈ Z

Basically, the result of F is the arithmetic sum of all
constants mi associated to a literal x̂i, which evaluates to
true under a given assignment. Usually, a PBO solver utilizes
the minimization as a solving target, i.e., it returns the solution
which minimizes F .

Example 2. Let Φ = (3x1 + 4x̄2 + x3 ≥ 3) ∧ (3x̄1 + 4x2 ≥
2) ∧ (4x2 + x̄3 ≥ 4) and F = 1x1 + 1x2 + 1x3. In this case,
the solution x1 = 1, x2 = 1 and x3 = 0 satisfies the given
PB-SAT instance and, at the same time, minimizes the outcome

1Since a Boolean formula in CNF can be easily transformed into PB
constraints and modern PBO solvers typically accept CNFs as input, we
use the notion of CNF in this paper if possible.

of the objective function F (F = 2). In contrast, the solution
x1 = 1, x2 = 1 and x3 = 1 also satisfies the instance, but
results in F = 3, which is higher than the previous solution.

Modern PBO solvers also support multiple objective functions
F1, F2, . . . ,Fn. Here, priorities are used. First, F1 is used
as objective function. Afterwards, the solution is improved
concerning F2, . . . ,Fn. However, it is not possible to decrease
the result of the objective function with a higher priority.

Another important aspect to be briefly introduced concerns the
accessibility for test or debug purposes of a SoC. A dedicated
TAM is embedded into the design to ensure accessibility by
providing a suitable communication channel to transfer test
or debug data to nested sub-modules, e.g., by embedding the
standardized and commonly used IEEE 1149.1 (JTAG) [17]
into the SoC.

An extended TAP controller has been developed in [12], which
combines the TAM with a dynamically configurable codeword-
based compression architecture providing RLE capabilities.
Instead of transferring the original test data directly to the SoC
using legacy JTAG, this data are preprocessed by a suitable
retargeting framework off-chip. This framework generates
the compressed test data consisting of a Compressed Data
Word (CDW) sequence to be transferred to the extended TAP
controller. After transmission, the CDW sequence is expanded
by the Dynamic Decompressing Unit (DDU) on-chip, i.e., the
original test data chunks namely the (corresponding) Uncom-
pressed Data Words (UDWs) are restored into a certain Test
Data Register (TDR). This DDU includes a dictionary storing
the codewords, which can be configured before the actual data
transfer starts. The instruction set of the TAP controller is
enhanced by additional instructions compr_preload and compr,
which are used to dynamically configure (load codewords) and
apply the decompression. To perform this, a configuration C
consisting of the instruction code compr_preload as well as a
set of codewords has to be determined.

It is necessary to incorporate certain hardware constraints such
as the number of codewords. The parameter Chunk Size (CS) is
used to control the trade-off between compression capability and
hardware overhead. A good trade-off is achieved by CS = 3
leading to the following

∑3
i=0 2i = 15 binary encodings:

• ∅, ‘0‘, ‘1‘, ‘00‘, ‘01‘, ‘10‘, ‘11‘

• ‘000‘, ‘001‘, ‘010‘, ‘011‘, ‘100‘, ‘101‘, ‘110‘, ‘111‘

These listed CDWs have to be configured in the DDU
realizing a mapping function Ψ(CDWc)→ UDWu such that
0 ≤ c ≤ CS holds for the length c of the CDW. The length
u of the UDW is determined by the synthesis parameter of
the connected TDR, which is fixed to u = {1, 4, 8} in [12].
During configuration of the DDU, the images of Ψ become
overwritten. An exemplary implementation of such a mapping
function Ψ is shown in Table I. In this example, the CDWs
‘∅‘, ‘0‘ and ‘1‘ hold exposed functions: ‘∅‘ encodes the RLE,
i.e., at the current time t, the last successfully transferred CDW
(at time of t−1) is repeated. The remaining two are mapped to
namely Single Bit Injections (SBIs) ensuring that all possible
incoming data can be processed.

Generally, the approach is intended to be used as follows:
1) Preprocess existing test data off-chip by retargeting frame-

work. Generates a) compressed test data D and b) suitable
configuration C for DDU,

2) Load instruction compr_preload & configuration data C,
3) Load instruction compr & compressed data D.
Table I and II show a simplified example to demonstrate

the importance of careful codeword selection. Two different
configurations C1 and C2 are presented in Table I. Here, the
mapping between codewords (column CDW) and uncompressed



TABLE I: Example configurations C1 and C2 for mapping function
Ψ using CS = 3

No. CDW UDW @ C1 UDW @ C2

1 ∅ CDW@t− 1 CDW@t− 1
2 0 0 0
3 1 1 1

4 00 1111 01011010
5 01 0101 0110
6 10 0110 0001
7 11 00000000 10010110
8 000 01010101 1100
9 001 1010 1010
10 010 0000 0000
11 011 10101010 10101010
12 100 1000 1000
13 101 1001 1001
14 110 0001 0001
15 111 11111111 11111111

TABLE II: Application on example data using configuration C1 and C2

Byte index 0 1 2
Bit index 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Config. Incoming data 0 1 0 1︸ ︷︷ ︸ 1 0 1 0︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 0 0 0 1︸ ︷︷ ︸ 1 0 0 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸
C1 Compressed

data D1
01 001 10 110 101 10

Config. Incoming data 0 1 0 1 1 0 1 0︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 0 0 0 1︸ ︷︷ ︸ 1 0 0 1 0 1 1 0︸ ︷︷ ︸
C2 Compressed

data D2
00 01 10 11

data words (column UDW) is given. As shown in Table II, I
contains 24 bits and is compressed to a sequence of 6 CDWs
by using C1 and to a sequence of 4 CDWs by using C2. These
CDW sequences contain 15 bits overall (C1) and 8 bits (C2),
i.e., a TDV reduction about 37.5% (C1) and about 66.7% (C2)
is achieved, respectively. Obviously, the selected C has a strong
impact on the compression ratio. Finding a good configuration
is a challenging task due to mutual dependencies and codeword
overlaps in the test data stream.

III. OPTIMIZATION-BASED RETARGETING

TAP controllers with embedded compression offer a powerful
mechanism for TDV and TAT reduction. However, the problem
of codeword selection for a test data stream, particularly
for high-entropy data, is yet to be solved satisfactorily. This
section describes the new proposed technique that addresses this
shortcoming. A retargeting procedure using formal optimization-
based techniques to determine an optimal configuration as well
as the best sequence of replacements is presented. The proposed
technique is applied on the parameters of the codeword-based
TAP controller, which were used in [12]. However, the approach
is easily adaptable to other parameters.

A. General Idea
The main idea is to formulate the retargeting problem as a

formal optimization problem. The proposed retargeting flow
is shown in Figure 1. The regular uncompressed test data I
are given as input. An optimization problem consisting of SAT
and PB constraints, respectively, and an optimization function
are formulated. Subsequently, a PBO solver is called to solve
the problem instance. The result is a satisfying model, whose
data are extracted and directly used to determine an optimal
configuration C as well as the targeted compressed test data
D. Since the TAP controller is dynamically configurable, the
calculated configuration C can be loaded into the controller to
decompress the compressed test data D on-chip, which restores
the original uncompressed test data I . This technique allows a
TDV reduction of the data, which have to be serially transferred
into the TAP controller. This procedure can also be used for
partitioned data streams due to the dynamic configuration.

Uncompressed Test Data I

Formulating
Optimization Problem

Solving
Problem Instance

R
E

TA
R

G
E

T
IN

G

Configuration C

Extracting
Model Data

Compressed
/ Codewords

Φ

Test Data D

Fig. 1: Proposed Retargeting Flow

The hardware constraints are considered by the following
assumptions:

1) A circuit design that embeds a codeword-based TAP con-
troller, which includes a DDU with a dictionary consisting
of n =

∑CS
i=2 2i dynamically configurable entries.

2) Three dictionary entries are statically included,
i.e., ∅, ‘0‘, ‘1‘. These encode the RLE capability and
both codewords with a length of 1 for SBI modeling.
Therefore, only n− 3 codeword entries are dynamically
configured by the proposed retargeting procedure.

3) Let u = {1, 4, 8} be the UDW length supported by the
TDR interface. Then, 21 + 24 + 28 possible Boolean
permutations exist. Each permutation is a candidate for
being included as a codeword in the DDU.

4) The incoming test data sequence I contains only fully-
specified values, i.e., ‘0‘ and ‘1‘.

Lemma 1. Given the mapping function Ψ and configuration
C that holds two CDWs for the SBIs cdwi and cdwj , such that
Ψ(cdwi) = 0 and Ψ(cdwj) = 1. Then, every possible sequence
of incoming data I can be represented by a sequence of CDWs,
i.e., the compressed test data D. At least, this can be achieved
by simply using the cdwi or cdwj successively.

Lemma 2. A compressed test data D and a configuration C
are given. Then, the original test data I are restored if the
mapping function Ψ (using C) is applied on D.

Based on these basic conditions, a formal PBO model has
to be built, which allows the automatic computation of valid
configurations with optimal codeword selection for effective
TDV and TAT reduction.
B. Generating PBO Instance

The PBO instance to develop consists of two parts: Φ, F .
The formulation of the constraints Φ spans the solution space
such that each solution to the set of constraints is a valid
configuration and vice versa. The optimization function F is
then used to rate each solution in terms of their costs. By this,
the search is guided towards the most beneficial solution.

First, the meaning of the variables of the problem instance
is described. Since each possible segment in the data stream
I has to be covered by a codeword, a variable νuCi is used to
determine the status of each of these segments. The parameter
i denotes the offset of the segment in I. This has to be done
for each considered UDW length u. An example is shown in
Table III. Here, all possible segments of a 8 bit data stream
are listed. For u = 8, only one segment is possible, u = 4
leads to 5 possible segments and for u = 1, 8 segments are
possible. In the following, if a variable νuCi is assigned to 1,
the corresponding segment of length u is meant to be covered
by a codeword, i.e., it is active.

Next, all possible UDW permutations have to be modeled,
which is important for the determination of the codeword images



that are included in the dictionary/configuration. Therefore, two
variables ν2CDW

UDW and ν3CDW
UDW are assigned to each possible

UDW permutation to keep track of the active images to be
configured. One variable is not sufficient, since codewords
of different lengths, i.e., length of 2 and 3 bits, have to
be distinguished for the hardware requirements. Hereby, the
codewords of length 1 are encoded statically since these model
SBIs. A total number of 2 · (24 + 28) variables are needed.
For example, ν2CDW

0001 = 1 means that the UDW ‘0001‘ will be
replaced by a codeword of length 2. The specific codeword is
not relevant for the calculation.

Constraints have to be generated such that the solving
algorithm is able to consistently assign these variables. Overall,
the problem instance including these constraints is defined by:

Φ = ΦME ∧ ΦuC ∧ ΦRET ∧ Φ#CDW

ΦuC realizes that all possible segments are covered to ensure
the completeness, ΦME ensures that all bits of the original test
data I are covered exactly once, Φ#CDW guarantees that the
maximum number of dictionary entries is not surpassed and,
finally, ΦRET implements the retargeting itself.

1) Maximum number of CDWs: Hardware restrictions allow
only a limited number of dictionary entries. This means that all
solutions, which configure more than the allowed number, have
to be excluded from the solution space. In our case, 22 = 4
different entries are allowed for codewords of length 2 and
23 = 8 different entries are allowed for codewords of length 3.
This can be modeled as weighted constraints, i.e.,

Φ#CDW = (

272∑
i=1

c · x2CDW
i ≤ 4 ) ∧ (

272∑
i=1

c · x3CDW
i ≤ 8 )

with an equal weight c = 1 and xi the positive literal
representing the variable ν2CDW

UDW and ν3CDW
UDW , respectively, for

all 24 + 28 = 272 permutations. Each active UDW variable,
i.e., ν2CDW

UDW = 1 or ν3CDW
UDW = 1, increases the sum by 1 and

the current model is only valid, if the overall weight is lower
than the threshold.

Due to the modeling of these capacity limits by the weighted
constraints Φ#CDW, the CDWs themselves have not to be mod-
eled explicitly. This completely avoids further huge overhead
in the number of Boolean variables and clauses.

2) Equivalence: One important property between uncom-
pressed test data I and compressed test data D is the
equivalence, which has to hold after D is decompressed on-
chip (Lemma 2). To achieve this, it is required that all bits
in I are covered by exactly one replacement: Uncovered as
well as multiple covered bits destroy the necessary equivalence.
Consider the small example in Table III. It has to be ensured
that each bit position is covered by a segment (active). This
can be achieved by adding one clause for each bit position as
follows: Given the segment variables νuC1 , . . . , νuCs covering
bit position i, the corresponding clause would be:

(xuC1 ∨ · · · ∨ xuCs )
This clause is unsatisfied (and consequently the complete
problem instance) when none of these segment variables is
activated, i.e., the segment is not covered at all. The conjunction
of these clauses is represented by ΦuC. The corresponding
constraints for the example in Table III are shown in Equation 1.

Furthermore, it has to be guaranteed that from the set of all
segments, which cover the same bit position, only one segment
is considered active. Since the mutual exclusive segments
are known, implications are formulated as follows: Given a
segment variable νuC and the corresponding segment variables
νuC1 , . . . , νuCt of conflicting segments, the following clauses

TABLE III: Exemplary mapping of UDW segments

Byte index 0
Bit index 0 1 2 3 4 5 6 7

8C ν8C
0

4C ν4C
0 ν4C

4

4C ν4C
1

4C ν4C
2

4C ν4C
3

1C ν1C
0 ν1C

1 ν1C
2 ν1C

3 ν1C
4 ν1C

5 ν1C
6 ν1C

7

Equation 1 ΦuC to ensure complete coverage of I

ΦuC = (x1C0 ∨ x4C0 ∨ x8C0 ) ∧ (x1C7 ∨ x4C4 ∨ x8C0 )

∧(x1C1 ∨ x4C0 ∨ x4C1 ∨ x8C0 ) ∧ (x1C2 ∨ x4C0 ∨ x4C1 ∨ x4C2 ∨ x8C0 )

∧(x1C3 ∨ x4C0 ∨ x4C1 ∨ x4C2 ∨ x4C3 ∨ x8C0 )

∧(x1C4 ∨ x4C1 ∨ x4C2 ∨ x4C3 ∨ x4C4 ∨ x8C0 )

∧(x1C5 ∨ x4C2 ∨ x4C3 ∨ x4C4 ∨ x8C0 ) ∧ (x1C6 ∨ x4C3 ∨ x4C4 ∨ x8C0 )

have to be added:
(xuC ∨ xuC1 ) ∧ · · · ∧ (xuC ∨ xuCt )

These clauses are unsatisfied when more than one segment
variables are active from a conflicting segment set. This has
to be formulated for each assigned segment variable. The
conjunction of these clauses are denoted by ΦME.

Table IV shows the set of conflicting segment variables for
the example. Equation 2 shows the corresponding clauses for
the mutual exclusion for the segment variable ν4C0 .

3) Retargeting: Eventually, the constraints ΦRET establish a
link between the incoming test data I and the possible UDW
permutations, i.e., the dictionary entries. Given is a segment of
length u represented by the Boolean variable νuCi , hence, the
segment covers a bitfield between position i and (i− 1) + u.
Since the specific assignment in I in this segment is known,
the specific UDW w is also known, which is able to cover this
segment. Therefore, the segment can only be active, if w is
an entry in the dictionary, i.e., the variable ν2CDW

w or ν3CDW
w

is assigned with 1. Since only a limited number of UDW
variables can be assigned with 1 (due to Φ#CDW), finding the
most beneficial solution is the task of the solving algorithm.

In order to encode these implications, the incoming test data
I have to be analyzed during the problem instance generation.
For each segment variable νuCi , the binary assignment between
position i and (i − 1) + u as well as the the corresponding
specific UDW variables ν2CDW

UDW and ν3CDW
UDW have to be

determined. The clause
(x̄uCi ∨ x2CDW

UDW ∨ x3CDW
UDW )

is added to ΦRET in order to make sure that if the segment
variable is active, either x2CDW

UDW or x3CDW
UDW is assigned with 1,

i.e., a dictionary entry exists for this segment. Since single bit
segments are also encoded for each bit position, it is ensured
that each incoming test data stream can be processed as stated
in Lemma 1.

For instance, consider the segment variable ν4C0 . The binary
assignment in I at position [0 : 3] is assumed to be ‘0011‘. Then,
the corresponding UDW variables are x2CDW

0011 and x3CDW
0011 .

4) Criteria for Quality: The constraints described so far
restrict the solution space of the problem instance in a way that
all valid configurations are part of the solution space and invalid
configurations are no solutions. However, an optimization
function is strictly necessary to ensure the effectiveness of the
approach. If the problem is formulated as a decision problem,
each valid configuration can potentially be chosen. Most likely,



TABLE IV: Mutual exclusions of segments (w/o single bit segments)

No. Segment var. Position [start:end] Conflicting Segment var.

1 ν4C
0 0:3 ν4C

1 , ν4C
2 , ν4C

3 , ν8C
0

2 ν4C
1 1:4 ν4C

1 , ν4C
2 , ν4C

3 , ν8C
0

3 ν4C
2 2:5 ν4C

1 , ν4C
2 , ν4C

3 , ν8C
0

4 ν4C
3 3:6 ν4C

1 , ν4C
2 , ν4C

3 , ν8C
0

5 ν4C
4 4:7 ν4C

1 , ν4C
2 , ν4C

3 , ν8C
0

6 ν8C
0 0:7 all others

Equation 2 ΦME to model mutal exclusion I, ME = ν4C0

ΦME =(x̄4C0 ∨ x̄4C1 ) ∧ (x̄4C0 ∨ x̄4C2 ) ∧ (x̄4C0 ∨ x̄4C3 )

∧(x̄4C0 ∨ x̄8C0 ) ∧ (x̄4C0 ∨ x̄1C0 ) ∧ (x̄4C0 ∨ x̄1C1 )

∧(x̄4C0 ∨ x̄1C2 ) ∧ (x̄4C0 ∨ x̄1C3 )

a solving algorithm would choose a solution, in which each
bit position is covered by a single bit codeword, since this is a
very easy solution to find.

Therefore, the quality of a configuration has to be encoded
to guide the solving algorithm to find a cost-effective solution.
The quality of a solution could be directly associated with
the active segments in the data stream. However, in order to
calculate the length of the compressed data stream accurately,
three so called cost-variables have to be associated with
each segment. Implications on the active segments and used
codewords can be used to determine the specific length of the
compressed stream. However, preliminary experiments have
shown that the reduction of active SBIs is most important
for increasing the compression ratio. For improving the run
time, the optimization function was only used based on the
knowledge of the segment length, i.e., using existing variables.
The difference in compression ratio compared to the very
accurate solution is only marginal.

The optimization function F is formulated over all segment
variables νuC1 , . . . , νuCn . The weight of the variables depends
on the number of bits the segment covers. Obviously, the more
bits a segment covers, the better the solution and, consequently,
the smaller the weight.2 The result of F for each solution is
the sum of all weights, whose segment variables are active.

F(ΦCOST) =

n∑
i=1

mi · xui


mi = 4 if u ≡ 1C

mi = 2 if u ≡ 4C

mi = 1 if u ≡ 8C

Beside this main optimization function F , a secondary optimiza-
tion function F2 is utilized and considered automatically during
the optimization process. This function is used to determine
the length of the CDW to be used for an active UDW, i.e.,
whether a codeword of length 2 or 3 is used. The main idea
is that UDWs which occur more often are encoded by shorter
codewords, i.e., of length 2. During instance generation, a
counter cDw is used for each possible UDW w to keep track of
the number of occurrences in D. F2 is built over all variables
νkCDW
w with k = {2, 3}.

F2(ΦCOST) =

272∑
j=1

2 · cDwj
· x2CDW

wj
+ 3 · cDwj

· x3CDW
wj

Since F2 has a lower priority, the result of F cannot be
decreased, but the length of the CDW used for each active UDW
is determined, i.e., 2 or 3, such that the costs are minimized. The
run time overhead of using F2 is negligible. As an alternative,
this can be also achieved in a post-processing step.

After the solution has been found, a configuration and the
corresponding sequence of CDWs can be directly extracted
from the variable assignment.

2Please note that the solving algorithms typically perform minimization.

IV. EXPERIMENTAL RESULTS

This section describes the experimental evaluation of the
optimization-based retargeting approach. In particular, the
final results of the developed retargeting technique is clearly
distinguished against other existing techniques as well as the
standardized JTAG protocol itself. Different test cases were
considered for the experiments:

1) Random test data with sizes from 2048 (RTDR_2048) to
8192 (RTDR_8192) bytes (generated by a pseudo-random
number generator based on Mersenne Twister).

2) Commercially representative FV test cases of the MiBench
benchmark suite [18], which were cross-compiled for
a state-of-the-art softcore microprocessor by using an
optimized library for embedded systems.

3) Golden signature data for a JPEG encoder circuit given
as input debug data following the technique of [19].

Two testbenches are utilized to simulate the test data transfer
to a Circuit-Under-Test (CuT) for validation of the obtained
results: TBLEG implements a reference TAP controller and
TBCOMPR embeds a TAP controller using a codeword-based
compression technique [12], both fully compliant with IEEE
1149.1 Std. [17]. A TDR models the interface between the
TAP controller and a functional core logic block and, therefore,
operates as the data sink.

The TBLEG is applied for each test case on the incoming
test data I to determine the content of the TDR after the
transmission has been completed, i.e., the golden test results.
Subsequently, the compressed test data Di are generated by
applying the different retargeting techniques on I. Finally, Di
is transferred by TBCOMPR - this TDR and the golden one
determined by TBLEG must be the same to pass the validation.

All retargeting procedures were executed on an Intel Xeon
E3-1270v3 3.5 GHz processor with 32 GB system memory.
The implemented retargeting framework is written in C++ and
clasp 3.1.4 is used as PBO solver [20].

The results concerning the TDV reduction and the influence
on the TAT are shown in Table V and VI. These show the
overall Run time for the test vector retargeting in CPU minutes,
the size of TDI in bit and the achieved TDV reduction in %
compared to legacy TAP. Column #variables gives the total no.
of allocated variables, #data-cycles the number of test cycles
within the data path and, finally, the achieved TAT reduction
in % compared to legacy TAP. All required configuration steps
are considered in the measured data, i.e., they are included
within the numbers of data cycles and data bits.

Several experiments were conducted to show the superiority
of the proposed approach: leg, the IEEE 1149.1 protocol
without any compression at all, the Huffman retargeting
procedure using a domain-specific Huffman algorithm, i.e., the
existing hardware constraints concerning the TDR interface are
considered internally and heur invokes the greedy retargeting
procedure proposed in [12]. Finally, both techniques proposed in
this work: opt, a retargeting procedure using formal techniques
with exhaustive traversal and opt-lim, a modified version of
opt limiting the computational effort to reduce the resulting
run time significantly.

The results show that the proposed opt technique is able to
improve both quality criteria – namely TDV and TAT reduction
– for all test cases compared to the legacy TAP as well as to
previous techniques [10], [12] significantly. Compared to the
legacy TAP, the TDV can be reduced for high-entropy random
data in average by 36.4% and up to 37.1%. Previous approaches
achieved only an average reduction of 21.1% (Huffman) and
of 26.7% [12]. The application on the debugging data or on
FV data confirms these results. Here, the proposed technique
is able to reduce the TDV by 47.6%. It is also shown that a



TABLE V: Benchmarks: Processing random test data & debug data considering TDV

No. test name run time [min] size [bit] data reduction [%]

Huffman heur [12] opt opt-lim leg Huffman heur [12] opt opt-lim Huffman heur [12] opt opt-lim
1 RTDR_2048 0.05 0.19 97.59 0.76 16384 12973 12109 10444 10739 20.8 26.1 36.3 34.5
2 RTDR_4096 0.10 0.63 190.89 14.85 32768 26005 23607 20626 21282 20.6 28.0 37.1 35.1
3 RTDR_8192 0.22 2.16 492.08 29.47 65536 51119 48529 42068 43057 22.0 26.0 35.8 34.3
4 SHA 0.06 0.10 217.10 37.49 46944 34861 28154 23271 23271 25.7 40.1 50.4 50.4
5 MATH 0.09 0.15 314.28 68.42 67616 57470 48217 33876 35220 15.0 28.7 49.9 47.9
6 DIJKSTRA 0.06 0.10 183.78 38.76 49441 34056 29172 24621 25165 31.2 40.1 50.2 49.1
7 FFT 0.08 0.14 356.07 72.11 66880 48856 39743 34034 34310 26.9 40.6 49.1 48.7
8 DEBUG_JPEG < 0.01 0.02 30.86 2.13 5632 4134 4069 3470 3470 26.6 27.8 38.4 38.4

TABLE VI: Benchmarks: Processing random test data & debug data considering TAT

No. test name #Boolean variables #data-cycles TAT reduction [%]

opt/opt-lim leg Huffman heur [12] opt opt-lim Huffman heur [12] opt opt-lim
1 RTDR_2048 58930 16389 20603 18013 16082 16378 -25.7 -9.9 1.9 1.0
2 RTDR_4096 117203 32773 41442 35236 31809 32591 -26.5 -7.5 2.9 0.5
3 RTDR_8192 233997 65568 81951 71847 64420 64494 -25.0 -9.6 1.7 1.5
4 SHA 204388 46949 51921 47090 37561 37561 -10.6 -0.3 20.0 20.0
5 MATH 286954 67621 84851 74253 57152 57264 -25.5 -9.8 15.4 15.3
6 DIJKSTRA 222101 49446 55949 49493 40533 41210 -13.2 -0.1 18.0 16.7
7 FFT 289219 66885 79393 67027 55345 55733 -18.7 -0.2 17.3 16.7
8 DEBUG_JPEG 21449 5637 6871 6125 5412 5412 -27.0 -13.2 4.0 4.0

large run time benefit can be achieved if the resources of the
solving algorithm are limited (opt-lim), which decreases the
compression ratio only slightly.

Additionally, the shortcoming of technique [12] concerning
TAT reduction is successfully eliminated. Approximately 26%
more data cycles are needed using the Huffman-based approach.
The work in [12] needs approximately 9% more data cycles on
high-entropy random data, which was due to the fact that the
dictionary entries were not well chosen by [12]. Consequently,
a large number of SBIs had to be used for the retargeting. This
causes a large overhead in TAT. The proposed approach does not
suffer this circumstance due to the use of formal optimization
techniques. It is able to even reduce the data cycles by 2.2%
on average and up to 2.9% for random high-entropy data and
by 15% on average and up to 20.0% for the debug or FV data.

V. CONCLUSIONS & FUTURE WORK

This paper proposed an optimization-based approach for retar-
geting incoming test data using a codeword-based compression
architecture for IEEE 1149.1-compliant TAP controllers. The
problem of finding optimal codewords is modeled as a Pseudo-
Boolean Optimization problem and formal solving techniques
are leveraged to find beneficial codewords. Experiments have
shown that the TDV as well as TAT reduction is significantly
improved compared to other existing techniques by using the
proposed formal techniques. In fact, this technique reduces the
TDV for FV data by up to 50.4%. The TDV is even reduced for
high-entropy test and debug data by up to 37.1%. Furthermore,
the TAT is also reduced by up to 20.0% compared to the TAT
of a legacy transfer while processing FV data.

Future work will focus on other metrics for the quality criteria,
e.g., a multilevel optimization procedure may improve the
results even more. For instance, the RLE encoding could be such
a second-level optimization target. Furthermore, partitioning
techniques for very large test data will be developed.

VI. ACKNOWLEDGMENT

The authors thank S. Deutsch for providing the debug data
and for the interesting discussions. This work was supported
by the University of Bremen’s graduate school SyDe, funded
by the German Excellence Initiative, by the subproject P01
‘Predictive function’ of the Collaborative Research Center
SFB1232, funded by the German Research Foundation, by the
Institutional Strategy of the University of Bremen, funded by
the German Excellence Initiative and by the German Research
Foundation under contract number EG 290/5-1 as well as by a

Research Award from the Alexander von Humboldt Foundation,
Germany.

REFERENCES
[1] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded

deterministic test,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 23, no. 5, pp. 776–792, 2004.

[2] V. Iyengar, K. Chakrabarty, and B. Murray, “Deterministic built-in pattern
generation for sequential circuits,” Journal of Electronic Testing, vol. 15,
no. 1-2, pp. 97–114, 1999.

[3] L. Li and K. Chakrabarty, “Test data compression using dictionaries
with fixed-length indices - SoC testing,” in VLSI Test Symp., 2003, pp.
219–224.

[4] A. Jas and N. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based designs,” in Int’l Test
Conf., 1998, pp. 458–464.

[5] A. Wurtenberger, C. S. Tautermann, and S. Hellebrand, “A hybrid coding
strategy for optimized test data compression,” in Int’l Test Conf., vol. 1,
2003, pp. 451–459.

[6] T. Kim, S. Chun, Y. Kim, M. H. Yang, and S. Kang, “An effective
hybrid test data compression method using scan chain compaction and
dictionary-based scheme,” in IEEE Asian Test Symp., 2008, pp. 151–156.

[7] S. Mitra and K. S. Kim, “XPAND: an efficient test stimulus compression
technique,” IEEE Trans. on Comp., vol. 55, no. 2, pp. 163–173, 2006.

[8] K. Basu and P. Mishra, “Test data compression using efficient bitmask
and dictionary selection methods,” Int’l Conf. on VLSI Design, vol. 18,
no. 9, pp. 1277–1286, 2010.

[9] A. Jas, J. Ghosh-Dastidar, and N. Touba, “Scan vector compression/de-
compression using statistical coding,” in VLSI Test Symp., 1999, pp.
114–120.

[10] K. Ilambharathi, G. S. N. V. V. Manik, N. Sadagopan, and B. Sivaselvan,
“Domain specific hierarchical Huffman encoding,” Cornell University
Library, vol. abs/1307.0920, 2013.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. on Information Theory, vol. 23, no. 3, pp.
337–343, 1977.

[12] S. Huhn, S. Eggersglüß, and R. Drechsler, “VecTHOR: Low-cost
compression architecture for IEEE 1149-compliant TAP controllers,”
in IEEE European Test Symp., 2016.

[13] K. Balakrishnan and N. Touba, “Relationship between entropy and test
data compression,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 386–395, 2007.

[14] A. Biere, M. Heule, H. Maaren, and T. Walsh, Handbook of Satisfiability,
ser. Frontiers in AI and Applications. IOS Press, 2009, vol. 185.

[15] S. Eggersglüß, R. Wille, and R. Drechsler, “Improved SAT-based ATPG:
More constraints, better compaction,” in Int’l Conf. on CAD, 2013, pp.
85–90.

[16] M. Sauer, B. Becker, and I. Polian, “PHAETON: A SAT-based
framework for timing-aware path sensitization,” IEEE Trans. on Comp.,
vol. PP, no. 99, pp. 1–1, 2015.

[17] “IEEE standard for test access port and boundary-scan architecture -
redline,” IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001) -
Redline, pp. 1–899, 2013.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in IEEE Int. Workshop on Workload Characterization,
2001., Dec 2001, pp. 3–14.

[19] S. Deutsch and K. Chakrabarty, “Massive signal tracing using on-chip
DRAM for in-system silicon debug,” in Int’l Test Conf., 2014, pp. 1–10.

[20] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Int’l Joint Conf. on AI, 2007, pp. 386–392.


