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Abstract

This paper describes the SENSE machine translation system participation in the Third Workshop
for Asian Translation (WAT2016). We share our best practices to build a fast and light phrase-
based machine translation (PBMT) models that have comparable results to the baseline systems
provided by the organizers. As Neural Machine Translation (NMT) overtakes PBMT as the
state-of-the-art, deep learning and new MT practitioners might not be familiar with the PBMT
paradigm and we hope that this paper will help them build a PBMT baseline system quickly and
easily.

1 Introduction

With the advent of Neural Machine Translation (NMT), the Phrased-Based Machine Translation (PBMT)
paradigm casts towards the sunset (Neubig et al., 2015; Sennrich et al., 2016; Bentivogli et al., 2016;
Wu et al., 2016; Crego et al., 2016). As the NMT era dawns, we hope to document the best practices in
building a fast and light phrase-based machine translation baseline. In this paper, we briefly describe the
PBMT components, list the tools available for PBMT systems prior to the neural tsunami, and present our
procedures to build fast and light PBMT models with our system’s results in the WAT2016 (Nakazawa
et al., 2016).

1.1 Phrase-Based Machine Translation

The objective of the machine translation system is to find the best translation t̂ that maximizes the trans-
lation probability p(t|s) given a source sentence s; mathematically:

t̂ = argmax
t

p(t|s) (1)

Applying the Bayes’ rule, we can factorized the p(t|s) into three parts:

p(t|s) =
p(t)
p(s)

p(s|t) (2)

Substituting our p(t|s) back into our search for the best translation t̂ using argmax:

t̂ = argmax
t

p(t|s)

= argmax
t

p(t)
p(s)

p(s|t)

= argmax
t

p(t)p(s|t)

(3)

We note that the denominator p(s) can be dropped because for all translations the probability of the
source sentence remains the same and the argmax objective optimizes the probability relative to the set
of possible translations given a single source sentence. The p(t|s) variable can be viewed as the bilingual
dictionary with probabilities attached to each entry to the dictionary (aka phrase table). The p(t) variable
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governs the grammaticality of the translation and we model it using an n-gram language model under
the PBMT paradigm.

Machine Translation developed rapidly with the introduction of IBM word alignment models (Brown
et al., 1990; Brown et al., 1993) and word-based MT systems performed word-for-word decoding word
alignments and n-gram language model.

The word-based systems eventually developed into the phrase-based systems (Och and Ney, 2002;
Marcu and Wong, 2002; Zens et al., 2002; Koehn et al., 2003) which relies on the word alignment
to generate phrases. The phrase-based models translate contiguous sequences of words from the source
sentence to contiguous words in the target language. In this case, the term phrase does not refer to the lin-
guistic notion of syntactic constituent but the notion of n-grams. Knight (1999) defined the word/phrase-
based model as a search problem that grows exponentially to the sentence length. The phrase-based
models significantly improve on the word-based models, especially for closely-related languages. This
mainly due to the modeling of local reordering and the assumption that most orderings of contiguous n-
grams are monotonic. However, that is not the case of translation between language pairs with different
syntactic constructions; e.g. when translating between SVO-SOV languages.

Tillmann (2004) and Al-Onaizan and Papineni (2006) proposed several lexicalized reordering and
distortion models to surmount most long-distance reordering issues. Alternatively, to overcome reorder-
ing issues with simple distortion penalty, Zollmann et al. (2008) memorized a larger phrase n-grams
sequence from a huge training data and allow larger distortion limits; it achieves similar results to more
sophisticated reordering techniques with lesser training data. In practice, reordering is set to a small
window and Birch et al. (2010) has shown that phrase-based models perform poorly even with short and
medium range reordering.

Och and Ney (2002) simplified the integration of additional model components using the log-linear
model. The model defines feature functions h(x) with weights λ in the following form:

P (x) =
exp(

∑n
i=1 λihi(x))
Z

(4)

where the normalization constant Z turns the numerator into a probability distribution.
In the case of a simple model in Equation (3), it contains the two primary features, we define the

components as such:

h1(x) = logp(t)
h2(x) = logp(s|t) (5)

where the h(x1) and h(x2) are associated with the λ1 and λ2 respectively.
The flexibility of the log-linear model allows for additional translation feature components to be added

to the model easily, e.g. the lexicalized reordering is modeled as additional feature(s) h(xi) in PBMT.
Additionally, the weights λ associated with the n components can be tuned to optimize the translation
quality over the parallel sentences, D (often known as the development set):

λn1 = argmax
λn
1

D∑
d=1

logPλn
1
(td|sd) (6)

Minimum Error Rate Training (MERT), a co-ordinate descent learning algorithm, is one of the
commonly used algorithms used for tuning the the λ weights.

The resulting PBMT system is generally made up of the following (i) n-gram language model(s), (ii)
probabilistic phrase table (optionally with additional feature(s)), (iii) probabilistic lexicalized reordering
table and (iv) a set of λ weights for their respective h(x).

The hierarchical phrase-based machine translation (aka hiero) extends the phrase-based models notion
of phrase from naive contiguous words to a sequence of words and sub-phrases (Chiang, 2005). Within
the hiero model, translation rules make use of the standard phrases and the reordering of the subphrases.
Such reordering can be expressed as a lexicalized gappy hierarchical rule using X1 and X2 as placeholders
for the subphrases.
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At the onset of SMT, the importance of linguistic information to translation was recognized by Brown
et al. (1993):

But it is not our intention to ignore linguistics, neither to replace it. Rather, we hope to enfold it
in the embrace of a secure probabilistic framework so that the two together may draw strength
from one another and guide us to better natural language processing systems in general and
to better machine translation systems in particular.

Factored SMT embarked on the task of effectively incorporating linguistics information from taggers,
parses and morphological analyzers into the machine translation pipeline. It is motivated by fact that
(i) linguistics information provides a layer of disambiguation to the ambiguity of natural language, (ii)
generalized translation of out-of-vocabulary (OOV) words to overcome sparsity of training data and (iii)
replace arbitrary limits with linguistics constraints put in place in the decoding process too keep the
search space tractable (Hoang and Lopez, 2009; Koehn et al., 2010; Hoang, 2011).

Among the numerous Machine Translation tools, the Moses Statistical Machine Translation system
is the de facto tool for building various machine translation models (vanilla, hierarchical or factored
PBMT). The Pharaoh system is its predecessor (Koehn, 2004). Other than the Moses system, the Joshua1

(Weese et al., 2011), Jane2 (Vilar et al., 2010), Phrasal3 (Cer et al., 2010) and cdec4 (Dyer et al., 2010)
systems are viable alternatives to build statistical MT models.

2 Fast and Light PBMT Setup

We used the phrase-based SMT implemented in the Moses toolkit (Koehn et al., 2003; Koehn et al.,
2007) with the following vanilla Moses experimental settings:

i. Language modeling is trained using KenLM using 5-grams, with modified Kneser-Ney smooth-
ing (Heafield, 2011; Kneser and Ney, 1995; Chen and Goodman, 1998). The language model is
quantized to reduce filesize and improve querying speed (Whittaker and Raj, 2001; Heafield et al.,
2013)

ii. Clustercat word clusters (Dehdari et al., 2016b) with MGIZA++ implementation of IBM word align-
ment model 4 with grow-diagonal-final-and heuristics for word alignment and phrase-extraction
(Koehn et al., 2003; Och and Ney, 2003; Gao and Vogel, 2008)

iii. Bi-directional lexicalized reordering model that considers monotone, swap and discontinuous ori-
entations (Koehn, 2005; Galley and Manning, 2008)

iv. To minimize the computing load on the translation model, we compressed the phrase-table and
lexical reordering model using Phrase Rank Encoding (Junczys-Dowmunt, 2012)

v. Minimum Error Rate Training (MERT) (Och, 2003) to tune the decoding parameters

Differing from the baseline systems proposed by the WAT2016 organizers, we have used (a) trie lan-
guage model with quantization in Step i (b) Clustercat with multi-threaded word aligments (MGIZA++)
instead of mkcls (Och, 1995) with GIZA++ in Step ii and (c) phrase table compression in Step iv.

Although MT practitioners can use Moses’ Experiment Management System (Koehn, 2010) to build
a PBMT baseline, the models might not be easily modifiable due to the pre-coded configurations. The
configuration constraints could become particularly frustrating when the model becomes prohibitively
huge with limited read-only and random access memory.

1joshua.incubator.apache.org
2http://www-i6.informatik.rwth-aachen.de/jane/
3http://nlp.stanford.edu/phrasal/
4https://github.com/redpony/cdec
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2.1 Quantization and Binarization of Language Models

Heafield et al. (2013) compared KenLM’s trie data structure against other n-gram language model toolkit.
He empirically showed that it uses less memory than the smallest model produced by other tools that
creates lossless models and it was faster than SRILM (Stolcke, 2002) that also uses a trie data structure.

The floating point non-positive log probabilities of the n-gram and its backoff penalty can be stored in
the trie exactly using 31 and 32 bits5 respectively. These floating point values can be quantized using q
bits per probability and r bit per backoff to save memory at the expense of decreased accuracy. KenLM
uses the binning method to sort floats, divides them into equal size bins and averages the value within
each bin. As such floats under the same bin shares the same value.

While quantization is lossy, we can use point compression (Whittaker and Raj, 2001) to remove the
leading bits of the pointers and implicitly store the table of offsets into the array. Although point com-
pression reduces the memory size of the language model, retrieving the offsets takes additional time.

The trie is produced by using the KenLM’s build binary tool. The quantization and trie binariza-
tion is performed using the last command below:

LM_ARPA=‘pwd‘/${TRAINING_DIR}/lm/lm.${LANG_E}.arpa.gz
LM_FILE=‘pwd‘/${TRAINING_DIR}/lm/lm.${LANG_E}.kenlm

${MOSES_BIN_DIR}/lmplz --order ${LM_ORDER} -S 80% -T /tmp \
< ${CORPUS_LM}.${LANG_E} | gzip > ${LM_ARPA}

${MOSES_BIN_DIR}/build_binary trie -a 22 -b 8 -q 8 ${LM_ARPA} ${LM_FILE}

The -a option sets the maximum number of leading bits that the point compression removes. The -q
and -b options sets the number of bits to store the n-gram log probability and backoff respectively6. We
can stack the point compression with quantization as shown above, the -a 22 -b 8 -q 8 will set
the maximum leading bits removal to 22 and stores the floating points for log probabilities and backoff
penalties using 8 bits.

2.2 MGIZA++ and Clustercat

Gao and Vogel (2008) implemented two parallelized versions of the original GIZA++ tool, PGIZA++
that uses multiple aligning processes where when the processes are finished, the master process collects
the normalized counts and updates the model and child processes are restarted in the next iteration and
MGIZA++ that uses multi-threading on shared memory with locking mechanism to synchronize memory
access.

Given a computing cluster (i.e. multiple machines), using PGIZA++ would be appropriate whereas
MGIZA++ is suited for a single machine with multiple cores. An up-to-date fork of MGIZA++ is main-
tained by the Moses community at https://github.com/moses-smt/mgiza.

While one might face issues with creating the MGIZA++ binaries from
source compilation7, the Moses community provides pre-built binaries8 on
http://www.statmt.org/moses/?n=moses.releases. These can be easily down-
loaded and saved to a directory (e.g. /path/to/moses-training-tools) on the terminal as
such:

wget -r -nH -nd -np -R index.html* \
http://www.statmt.org/moses/RELEASE-3.0/binaries/linux-64bit/training-tools/ \
-P /path/to/moses-training-tools

And the EXT BIN DIR variable in the training script can be set and be used in the translation model
training process as such:

5Backoff penalty may sometimes be positive
6Note that unigram probabilities are never quantized
7Following the instructions on http://www.statmt.org/moses/?n=Moses.ExternalTools#ntoc3
8E.g. the direct link for the Linux OS can be found on http://www.statmt.org/moses/RELEASE-3.0/binaries/linux-

64bit/training-tools/
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EXT_BIN_DIR=/path/to/moses-training-tools/

${MOSES_SCRIPT}/training/train-model-10c.perl \
--root-dir ‘pwd‘/${TRAINING_DIR} \
--model-dir ‘pwd‘/${MODEL_DIR} \
--corpus ${CORPUS} \
--external-bin-dir ${EXT_BIN_DIR} \
--mgiza -mgiza-cpus 10 \
--f ${LANG_F} \
--e ${LANG_E} \
--parallel \
--alignment grow-diag-final-and \
--reordering msd-bidirectional-fe \
--score-options "--GoodTuring" \
--lm 0:${LM_ORDER}:${LM_FILE}:8 \
--cores ${JOBS} \
--sort-buffer-size 10G \
--parallel \
>& ${TRAINING_DIR}/training_TM.log

The --mgiza option activates the MGIZA++ binary and -mgiza-cpus 10 specifies the training
to be done with 10 CPU threads. The default option is to use IBM model 4 where the probability for each
word is conditioned on both the previously aligned word and on the word classes of its context words9.

To generate the word classes, MGIZA++ uses a single-threaded version of an old exchange clustering
algorithm implementation, mkcls, which can be rather slow when the training corpus is sufficiently
huge. Instead, we suggest the use of Clustercat10, another exchange clustering algorithm that has a
wrapper to emulate mkcls command-line interface and outputs. Clustercat is an implementation of
the Bidirectional, Interpolated, Refining, and Alternating (BIRA) predictive exchange algorithm; notably,
ClusterCat clusters a 1 billion token English News Crawl corpus in 1.5 hours while mkcls might
take 3 days on the same machine (Dehdari et al., 2016a). To use Clustercat with MGIZA++, simply
create a symbolic link the mkcls wrapper from Clustercat to the moses-training-tools
directory, e.g.:

EXT_BIN_DIR=/path/to/moses-training-tools/
mv ${EXT_BIN_DIR}/mkcls mkcls-original
ln -s /path/to/clustercat/bin/mkcls ${EXT_BIN_DIR}/mkcls

2.3 Phrase Table and Lexicalized Reordering Table Compression

Extending the classic dictionary-based compression methods, Junczys-Dowmunt (2012) proposed the
phrasal rank encoding compression algorithm where repeated sub-phrases are replaced by pointers in the
phrase dictionary which results in a reduction in phrase table size. At decompression, the sub-phrases
are looked up and re-inserted based on the pointers.

Strangely, Moses implementation of MERT releases the phrase table and lexicalized reordering tables
after every cycle and reload it when attempting to decode the development data with the updated feature
parameters. A reduced phrase table size would not only speed up the table loading in decoding time but
more importantly, it speeds up the table loading at every MERT epoch.

The table compression tools are found in the Moses binary directory and can be activated while filter-
ing the phrase table and lexicalized reordering table using -Binarizer option as shown below:

${MOSES_SCRIPT}/training/filter-model-given-input.pl \
${MODEL_DIR}.filtered/dev \
${MODEL_DIR}/moses.ini \
${DEV_F} \
-Binarizer ${MOSES_BIN_DIR}/processPhraseTableMin ${MOSES_BIN_DIR}/processLexicalTableMin \
-threads ${JOBS}

9--giza-option allows users to use train with other word alignment models
10https://github.com/jonsafari/clustercat
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3 Results

Team Other Resources System BLEU HUMAN
JAPIO JAPIO corpus PBMT with pre-ordering 58.66 46.25
NTT - NMT with bidi-LSTM 44.99 46.50
NTT - PBMT with pre-ordering 40.75 39.25
SENSE - Vanilla PBMT (clustercat) 38.90 -
SENSE - Vanilla PBMT (mkcls) 38.75 -
ORGANIZER - Baseline PBMT 38.34 0

Table 1: Top Systems and Our Submissions to WAT2016 Patent Task (Chinese-Japanese)

Team Other Resources System BLEU HUMAN
NICT-2 ASPEC PBMT with Preordering 34.64 14.00

+ Domain Adaptation
NICT-2 - PBMT with Preordering 34.64 -11.00

+ Domain Adaptation
BJTU NLP - NMT using RNN Encoder- 32.79 -1.00

Decoder with attention
SENSE - Vanilla PBMT (clustercat) 32.11 -
ORGANIZER - Baseline PBMT 32.03 0
SENSE - Vanilla PBMT (mkcls) 31.84 -

Table 2: Top Systems and Our Submissions to WAT2016 Patent Task (Japanese-Chinese)

Using the fast and light PBMT system described in the previous section, we submitted the system outputs
to the WAT 2016 shared task (Nakazawa et al., 2016) for Japanese to Chinese patent translation task and
the Indonesian to English news domain task11.

The Japan Patent Office (JPO) Patent corpus is the official resource provided for the Japanese-Chinese-
Korean-English shared task. The training dataset is made up of 1 million sentences (250k each from
the chemistry, electricity, mechanical engineering and physics domains). The Badan Pengkajian dan
Penerapan Teknologi (BPPT) corpus is the official resource provided for the English-Indonesian shared
task. The training dataset is made up of 1 million 50,000 training sentences from the general news
domain.

Table 1 and 2 present our submission to the Japanese-Chinese Patent Task in WAT2016. Due to time
constraint, we were not able to make the submission in time for the manual evaluation. Looking at the
BLEU scores, we achieved relatively close BLEU scores for both translation directions as compared to
the organizers’ PBMT baseline.

From Table 1, we see that the NMT system achieved the best HUMAN score given a lower BLEU12,
this reinforced the rise of NMT era. More importantly, we see a huge difference in JAPIO’s PBMT
BLEU score (58.66) and NTT’s NMT BLEU score (58.66) but both system achieved similar HUMAN
scores. The same disparity in BLEU and HUMAN scores is evident from Table 2 where both NICT-2
PBMT systems (one trained with additional ASPEC corpus and the other without) scored 34.64 BLEU
but the HUMAN score disparity ranges from -11.00 to +14.00. Such disparity reiterated the disparity
between n-gram based metric and human evaluation in Tan et al. (2015a).

11In previous editions of WAT (Nakazawa et al., 2014; Nakazawa et al., 2015), we had participated using similar PBMT
system in the English-Japanese-Chinese scientific text translation task using the ASPEC corpus, our results had been presented
in Tan and Bond (2014) and Tan et al. (2015b) and in the Korean-English patent translation task using the JPO corpus (Tan et
al., 2015a)

12Reported BLEU scores on JUMAN tokenizer

189



Team System BLEU HUMAN
SENSE Vanilla PBMT (clustercat) 25.31 1.250
SENSE Vanilla PBMT (mkcls) 25.16 -2.750
ORGRANIZER Online A 24.20 35.75
ORGRANIZER Baseline PBMT 23.95 0
IITB Bilingual Neural LM 22.35 -9.250
ORGRANIZER Online B 18.09 10.50

Table 3: Results of WAT2016 English-Indonesian News Domain Task

Team System BLEU HUMAN
ORGANIZER Online A 28.11 49.25
SENSE Vanilla PBMT (clustercat) 25.97 -8.25
SENSE Vanilla PBMT (mkcls) 25.62 -5.00
ORGANIZER Baseline PBMT 24.57 0
IITB Bilingual Neural LM 22.58 -
ORGANIZER Online B 19.69 34.50

Table 4: Results of WAT2016 Indonesian-English News Domain Task

Table 3 and 4 presents the results for the Indonesian-English News Domain Task. From Table 3, we
achieve the highest BLEU scores in the English-Indonesia direction with a difference of >1.0+ BLEU
score with respect to the baseline PBMT provided by the organizers. However, our HUMAN scores
show that the quality of our system output is only marginally better than the baseline. Comparatively,
the online system A has similar BLEU scores to the organizer’s baseline but achieved stellar HUMAN
scores of +35.75. Table 4 shows the results for the English-Indonesian task, the online system A and B
achieved the best HUMAN scores. In both directions, we see the same automatic vs manual evaluation
disparity from System B’s low BLEU and high HUMAN scores and from our system’s high BLEU and
low/marginal HUMAN scores.

4 Conclusion

We motivate and describe the steps to build a fast and light phrase-based machine translation model
that achieved comparable results to the WAT2016 baseline. We hope that our baseline system helps
new MT practitioners that are not familiar with the Moses ecology13 to build PBMT models. The full
training script is available on https://github.com/alvations/vanilla-moses/blob/
master/train-vanilla-model.sh.
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