° Shivesh Kumar, Bertold Bongardt, Marc Simnofske, Frank Kirchner
Task space controller for the novel Active Ankle Kumar, Bertld Bongardt, Mare Simnefee Fronk Kiciner e
The point parametrizations (CPL & EPL) are
| T
— e =

ACTIVE ANKLE is a novel parallel manipulator with three c: = [0, rcos(qy), | + rsin(gy)  =e+d-n Equations (1) - (6) are highly coupled. A novel iterative The three virtual leg equations (7) can be differentiated

degrees of freedom that operates in an almost-spherical c, = [0, rcos(qy), | — rsin(gy)]] e=e—d-n algorithm has been developed which can be explained by the  with respect to time and can be rearranged as a relation
manner [1, 2|]. The almost-spherical parallel manipulator Cy = | + rsin(g,), 0, r cos(q )-' T ei—e+d-s concept of virtual joints. The method TFGM implements a  between twist (t) and actuated joint velocities (q) through
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Fig.8: Cascaded task-space control scheme: a combination of desired orientation

By subtracting (2) from (1), (4) from (3), (6) from (5), During most activities of daily living, only partial ranges of (Re). angular velocity (w) and moments (m) in 50(3) can be the inputs

three virtual leg equations are derived motion required [4], e.g, 10° — 15° plantar flexion and 10° KefeYs el Tl e) 15
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dorsiflexion — plantarflexion motion. dorsiflexion — plantarflexion motion.
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