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Abstract

Recent advances in eye tracking technologies opened the
way to design novel attention-based user interfaces. This is
promising for pro-active and assistive technologies for
cyber-physical systems in the domains of, e.g., healthcare
and industry 4.0. Prior approaches to recognize a user’s
attention are usually limited to the raw gaze signal or
sensors in instrumented environments. We propose a
system that (1) incorporates the gaze signal and the
egocentric camera of the eye tracker to identify the objects
the user focuses at; (2) employs object classification based
on deep learning which we recompiled for our purposes on
a GPU-based image classification server; (3) detects
whether the user actually draws attention to that object; and
(4) combines these modules for constructing episodic
memories of egocentric events in real-time.
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World Camera View Timeline

Figure 1: Illustration of the sample application comprising a part of the world camera view (left) and the timeline application (right). The world
view shows the current gaze estimate (red dot), the image patch used for classification (red rectangle) and the actual top-5 results. The sample
application shows visual attention events augmented with the corresponding label.

Introduction

Human gaze naturally indicates visual attention and thus
the interest of a user [10]. Further, recent advances in
head-worn eye tracking equipment renewed interest in
pervasive eye tracking and mobile measurement of
attention [2]. To this end, eye tracking shows great promise
for improving or creating models of the user’s context for
situation-aware interaction. However, existing methods are
often limited; for example, they only use high level
contextual cues [3] or a sensor-equipped environment [10].
More advanced approaches to determine a user’s visual
attention include gaze-guided object recognition on video
images of egocentric cameras [8]. Most recently,
gaze-guided object recognition has been used to create
digital episodic memories to support people that suffer from
mental disorders, for example dementia patients [9, 6].

Limitations of those state-of-the-art systems concern
scalability issues; they allow only for moderate class sizes
and little discriminative power (i.e., 10-20 object classes)
and must be run on a single computer.

We propose a method that enables gaze-guided object
classification by a scalable and powerful decentralized
object recognizer based on a state-of-the-art deep learning
framework and a light-weight head-mounted eye tracker.
We analyse image patches around the user’s gaze position
from an egocentric camera to determine the object of
interest. Finally, we create sequences of attention events
that provide information about the user’s intentions. The
history of such events, which is built up continuously, is
suitable for assistive technologies, e.g., in the context of
activity recognition or everyday memory support [7].
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Figure 2: Hardware overview: the system includes an eye tracking
component, an image classification server, an episodic memory
database, and a generic interaction component.

Approach

The proposed system consists of four parts, an eye tracking
component to connect a head-mounted eye tracker, an
image classification server powered by two graphics
processing units (GPU), an episodic memory database to
store event sequences, and a generic interaction manager
component that receives all generated data (see Figure 2).

Eye Tracking Component
We use a Pupil eye tracker with an egocentric camera and
an eye camera in a lightweight package [5]. Calibration and
gaze estimation features are provided in the vendor’s
standard distribution. We extended it by fixation detection,
visual attention detection of a certain object, and in addition,
broadcast resulting data via network capabilities in
real-time. For fixation detection, we use a dispersion based
algorithm similar to Barz et al. [1]. To detect visual attention
to a certain object, we adopted the threshold-based
algorithm proposed by Toyama et al. [8]. In contrast to their

SIFT-based object recognition, we use an image
classification model based on deep learning running on an
additional high performance computer connected to the
system.

Image Classification Server
The image classification module is based on a pre-trained
model1 using deep neural networks comprising more than
1000 classes (nodes in output layer). For classification, we
use the caffe framework [4] as a background service and
offer a REST API for remote function calls. As input, it takes
images of size 256⇥ 256 pixels and reports the probability
of each class as output, with a top-1 accuracy of 68.7% and
a top-5 accuracy of 89%. For our system we defined a
probability threshold for attention detection of 20%.

Episodic Memory Database
This component stores data about the user’s attention
similar to the actual human episodic memory [9]. The
sequence of events can be used to compensate loss of
memory, e.g., caused by mental disorders such as
dementia. Utilizing this information can be the target of
future work.

Interaction Component
The interaction component is a generic node that offers
gaze as input modality for, e.g., ambient gaze-enabled
systems [1]. We implemented a sample application that
visualises all incoming data in real-time in terms of a
timeline. In particular, we show fixations, object detection
results such as the user’s visual attention including the
image patch and its label (see Figure 1). The top-1 result as
shown in the world camera view (’sunglass’) corresponds to
the most recent object detection event above the attention

1BVLC GoogLeNet
http://caffe.berkeleyvision.org/model_zoo.html
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event box. Previously, the system detected attention to a
cup (most recent events occur on the right).

Conclusion

In this work we presented a system for real-time
gaze-guided object classification based on a state-of-the-art
deep learning framework. Our system enables assistive
technologies based on a digital episodic memory with
manifold fields of application. Interesting scenarios are to
support people in recalling information [7]. A limitation of
our system is that we use the most probable result of the
image classification only. Incorporating the best five results
might increase performance of our system (top-5 accuracy
is higher by 20.3% compared to top-1 performance).
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