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1 Abstract

Series elastic actuators (SEAs) have been frequently used in torque control mode
by using the elastic element as torque measuring device. In order to precisely con-
trol the torque, an ideal torque source is critical for higher level control strategies.
The elastic elements are traditionally metal springs which are normally consid-
ered as linear elements in the control scheme. However, many elastic elements are
not perfectly linear, especially for an elastic element built out of multiple springs
or using special materials [1][2] and thus their nonlinearities are very noticeable.
This paper presents two data-driven methods for learning the spring model of
a series-elastic actuator: (1) a Dynamic Gaussian Mixture Model (DGMM) [3]
is used to capture the relationship between actuator torque, velocity, spring de-
flection and its history. Once the DGMM is trained, the spring deflection can be
estimated by using the conditional probability function which later is used for
torque control. For comparison, (2) a deep-learning approach is also evaluated
which uses the same variables as training data for learning the spring model.
Results show that the data-driven methods improve the accuracy of the torque
control as compared to traditional linear models.

Keywords: series-elastic actuators, nonlinear springs, DGMM, deep learning,
torque control

2 Introduction

In recent years, robots are increasingly developed to assist humans on direct
physical interaction, not only in the field of assistance and rehabilitation robotics
[4], but also start to be used in industrial scenarios [5]. For these robots that
work close to humans in shared workspaces, safety is of outmost concern (espe-
cially for industrial robots which normally are fast and powerful). To achieve a
safe human-robot interaction, one possible solution is to use a compliant actua-
tor that is able to immediately sense the torque and accommodate for external
force disturbances. For a rigid actuator, the torque can be measured by torque
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sensors, e.g. a load cell, a strain gauge or a current sensor, and then be controlled
by using a feedback loop [6]. Different from a rigid actuator, a serial elastic ac-
tuator (SEA) can estimate the torque from the deflection of its elastic element.
Due to the passive compliance between the actuator and its link, SEAs provide
additional benefits including lower reflected inertia, greater shock tolerance and
more accurate force control.

A large number of SEA designs has already been developed, for instance as
surveyed in [7],[4]. A typical design is a linear SEA, in which the spring system
either uses a single spring [8] or a set of serial-connected springs [9], which
connect to the motor through a ball screw. For a rotary series elastic actuator
(RSEA) the design of the elastic coupling that restricts the size and reduces
the weight of the device is usually challenging. For example, Kong and Jeon
developed a compact RSEA with a coil spring and worm gears for knee joint
assistance [10]; Stienen et al. developed a rotational hydroelastic actuator with
a symmetric torsion spring for a powered exoskeleton [11]; or the elastic element
of the CAPIO actuator [12] includes a set of small disc springs placed at both
sides of a lever which connects to the link. In recent years, new elastic materials
are also utilized: scientists at the Carnegie Mellon University used nonlinear
rubber as the elastic element of the actuators for their snake robots [1]; Sudano
et al. integrated a magnetic nonlinear torsion spring in a rotary elastic actuator
for biorobotic applications [13]. However, due to mechanical effects caused by the
construction itself, by the structure of the spring system (e.g. different initial pre-
compression of coil springs), or the properties of the materials, many of these
elastic couplings show very poor linearity, which is usually neglected. In this
work, we propose two data-driven methods for modeling the torque profile of an
SEA, which consider the nonlinearity of the elastic couplings for realizing better
torque control approaches. The data-driven modeling methods are validated and
compared using a newly designed RSEA.

Various torque control approaches have already been proposed for SEAs, e.g.
velocity-source control [14], a cascade control by using velocity or current in in-
ner loop and torque in outer loop; or feedforward force control with disturbance
observer [15]. The performances of these higher level control strategies are in-
fluenced by the torque sources, if the nonlinearity of the spring and resistive
frictions are too large, a precise model of the elastic element and the frictions
is needed. Therefore, Ford et al. [16] proposed an online calibration method to
compensate the nonlinear effects of the spring and accurately estimate the mod-
ules output torque by using motor current and spring deflection together. Lu
[17] modelled the nonlinearity of the spring of a SEA by using a BP neural net-
work and realized a stable velocity control. The paper is organized as follows. In
Section 3, the hardware design of the RSEA and analysis of the spring coupling
are presented. In Section 4, the two modeling methods of the elastic element
are discussed. The experimental validation of the two models is performed in
Section 5. In Section 6, based on the learned models, a torque control task is
demonstrated. Finally, conclusions are given in Section 7.



Learning the Elasticity of a SEA for Accurate Torque Control 3

3 SEA design and spring analysis

The assembled serial elastic actuator (see Fig. 1 left) is designed within the
project FourByThree [18]. The actuator is powered by a Robodrive brushless DC
motor and provides a maximum 50 Nm torque and 15 rpm speed in the link side
by using a 1:120 Harmonic Drive gear. An FPGA (Spartan6)-based control stack
incorporates all the required sensors (three absolute encoders, two motor current
sensors, temperature sensors, etc.) and perform the required actuator control
with an in-house developed communication protocol. A new elastic element based
on coil springs has been developed for the actuator (Figure 1 right) which consists
two springs in each spring segment: a lower-stiff spring firstly compresses singly
until its deflection reaches approx. 5 degree, then a smaller higher-stiff spring
which is placed inside the other starts to work. By using this design, the elastic
spring is relatively ‘soft’ in the lower torque range, so that it provides a higher
torque to deflection resolution in this torque range. Since the elastic spring is
‘stiff’ for a higher torque input, it brings a larger working range and avoid that
the spring completely compresses at the maximum torque.

Fig. 1. left: FourByThree 50Nm-Actuator. right: Elastic element based on coil springs.

As shown in Figure 1, coil springs are used and each single spring is a lin-
ear element. However due to the internal friction and different pre-compression
during assembly, the torque-deflection curve of the overall spring module is non-
linear. Figure 2 shows the result of an experiment used to demonstrate the
nonlinearity of the spring coupling. In this experiment, the elastic actuator is
controlled to a fixed rotation angle in position control. An external force/torque
sensor (Lorenz-DF30) is employed to provide a torque ground truth in a range
of -50Nm to +50Nm with an accuracy class of 0.05%. The motor is fixed on a
test bed, the external torque is externally applied to the spring through the link
lever in both directions. As the plot shows, the torque-deflection model of the
spring presents a hysteresis characteristic, where a simple linear regression line
is a poor choice of representation.
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Fig. 2. Torque to deflection curve of the spring coupling. The output torque is measured
with an external force/torque sensor and the deflection is measured by computing the
difference of two absolute encoders at both sides of the spring.

4 Spring modeling methods

Since a spring is used as a torque sensor in a series-elastic actuator, an accurate
spring model is the basis of a successful and accurate torque control. As discussed
in Section 3, the torque-deflection curve of the coil spring component exhibits
a nonlinear property. In order to account for the nonlinearity, two data-driven
modeling approaches are used: a dynamic Gaussian mixture model (DGMM)
and (2) a neural network (NN). Both methods will be described briefly in the
following sections.

4.1 Spring modeling by DGMM

As a probabilistic modeling method, Gaussian mixture models (GMM) [3] are
widely used in modeling complex and multi-variable data. To model the spring
with more variables besides deflection, a dynamic Gaussian mixture model (DGMM)
is studied, which represents a probability density function P (x) as a variable-
sized set of weighted Gaussian pairs (Eq. 1).

P (x) = Σm
i=1ω̂igi(x), (1)

where gi(x) is a multivariate Gaussian distribution

gi(x) = pi(x) ∼ Ni(µi, Σi), (2)

and ω̂i is the weight of the Gaussian gi(x)

ω̂i = ωi/Σ
m
k=1. (3)
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The quantity x is the observation vector. As Figure 1 shows, the torque to
deflection curve of the spring coupling is nonlinear, therefore more variables
are required: the rotation velocity v and the history of the spring deflection δ′.
Consequently, the observation vector is

x = [τ, δ, δ′, v], (4)

and the model of the system can be represented by

P [τ, δ, δ′, v]. (5)

As a result, once a DGMM model P [τ, δ, δ′, v] is learned with a training data
set, the output torque can be estimated analytically as

E[τ |δ, δ′, v]. (6)

For control purposes one can also similarly estimate the deflection using

E[δ|τ, δ′, v]. (7)

4.2 Spring modeling by using neural network

An artificial neural network consists of an interconnected assembly of simple pro-
cessing units [19]. In most of the cases, each processing unit calculates its output
by taking a weighted sum of its inputs and transforming the sum by an activation
function. In addition to the connection weights, the function represented by an
artificial neural network is determined by the architecture of the neural network.
Because of the possibility of optimizing a large number of parameters due to the
advancement in computing, neural networks are used in various application areas
such as computer vision, reinforcement learning, speech recognition and natural
language processing resulting in progress beyond the state-of-the-art in terms of
performance in most of the cases.

In this paper, five layered neural networks are used for modeling the spring
component, which are realized using an open-source Deep Learning tool Keras
[20]. Unlike DGMM, two separate networks are trained independently: once for
E[τ |δ, δ′, v] and once for E[δ|τ, δ′, v]. In both networks, three hidden layers are
created with 50, 20 and 10 neurons with relu activation function in each layer.
A relu is defined as f(a) = max(0, a), where a is a weighted sum of the inputs
to a unit. To optimize the networks, “Adam” [21] is used which is an algorithm
for the first-order gradient-based optimization of stochastic objective functions.
After training, 771 parameters are learned for the networks of inverse model
E[δ|τ, δ′, v].

5 Spring models validation

In order to validate the two modeling approaches, an experiment setup has been
constructed as shown Figure 3. The FourByThree 50 Nm SEA (for more details,
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see Section 3) is used and fixed on an adjustable base, so that the inclination
of the actuator can be changed and the effects of gravity can be accounted for.
An external force/torque sensor is mounted between the spring coupling and the
link lever, which measures the output torque with a 125 Hz sampling frequency
in order to validate the results.

Embedded Joint 
Electronics

PC

1

2

3

4

5

6

125 Hz

PWM 
30 kHz

1 kHz

Fig. 3. Experimental setup used for spring modeling and torque control: 1) actuator;
2) spring coupling; 3) external force/torque sensor; 4) brake; 5) adjustable base; 6)
load.

The models need to be trained first and then be used in the validation phase
by estimating the output torque given measured variables. In the training proce-
dure, the inclination angle of the actuator base is set to 0 degree and the training
data is gathered by controlling the load to rotate in the range of approx. ±170
degrees with position control smoothly in a very low speed. The position of the
load at the link lever is changed in each train test and the actuator torque τ ,
deflection δ, first derivative of deflection δ′ and velocity v are measured as the
training inputs. The spring deflection is extracted from two absolute encoders,
the first derivative of deflection δ′ is calculated from the change of the deflection
and the time used in a control cycle and the velocity v is acquired from the
position sensor.

In the validation phase, the same load is fixed at random selected position on
the lever arm and the inclination angle of the base is set to 37.8 degree. Based
on the trained DGMM and neural network models, the actuator torque τ can be
estimated by both methods respectively. Figure 4 shows the comparison results
between the trained DGMM model P [τ, δ, δ′, v], the neural network model, and
the linear regression model.

As can be seen from the upper left and upper right plots, both DGMM and
neural network models are able to predict the output torque given the measured
variables with high accuracy. In contrast, the fitted linear regression function
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Fig. 4. Upper left: measured torque-deflection curve (dash line) and estimated torque
with neural network model (crosses), Upper right: measured torque-deflection curves
(dash line) and estimated torque with DGMM model (crosses), lower left: measured
torque-deflection curve (dash line) and corresponding fitted linear line (line), lower
right: root mean square errors (bars) of the three models in torque estimation.

has problems to represent the torque-deflection curve (see lower left plot). The
RMSE between the estimated torque and measured torque is calculated for each
model, as the lower right plot shows; the DGMM and neural network models
present a comparable performances and have a large advantage compared to the
linear model.

6 Torque control

Based on the learned spring models, a torque controller is proposed to control the
spring torque to track the desired torque as precisely as possible. The complete
torque control scheme of the SEA consists of three cascaded control loops for
motor current, spring deflection and torque (see Fig. 5). Two absolute encoders
are installed at both sides of the spring coupling for measuring the rotation angle
and calculate the spring deflection. A deflection PID controller is implemented
into the FPGA which closes the loop with the spring deflection and then cascades
with an inner motor current controller. The first derivative of the deflection
and the velocity are calculated to be used as the inputs of the spring model,
together with the given desired torque, and the corresponding deflection value
is estimated. This deflection will be then controlled by the inner deflection and
current controllers. Due to an intrinsic property of the DGMM model, once
the model P [τ, δ, δ′, v] is learned from the training experiments, both forward
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E[τ |δ, δ′, v] and inverse models E[δ|τ, δ′, v] can be estimated, whereas the inverse
model is then used in the torque control. In contrast, the forward and inverse
models need to be trained individually when using a neural network model.

Current 
controller 

(PID)
Motor Load

Spring 
coupling

PWMDeflection 
controller 

(PID)
Spring model

δdes

Im

-
+δ
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Fig. 5. Complete actuator torque control scheme.

The proposed torque control is verified in two torque tracking experiments.
A chirp signal and a random-walk are given as the desired torques in these
two experiments respectively and the different controllers which are based on
different spring models are evaluated in measured output torques (see plot a,b
of Fig. 6). As can be seen from the comparison in tracking errors (see plot
c,d), the torque control by using DGMM model and neural networks present
better results than by using linear model in both experiments. Since the viscous
friction of the system can not be compensated by the spring models completely,
the performance of random-walk tracking is better than chirp tracking, and the
error of the chirp tracking is also raised slightly when the reference frequency is
increased.

7 Conclusion

In this paper, two data-driven modeling methods are proposed to account for
the nonlinearities of the spring coupling of a rotary elastic actuator. The models
are learned from the training experiments of the actuator and verified by esti-
mating the output torque with given measured variables in the test experiments.
The experiment result presents a comparable performances of the DGMM and
the deep learning/NN methods, which show a significant advantage compared
to a linear regression model. As compared to the DGMM model, the deep learn-
ing model shows a slight improvement in torque estimation. On the other side,
the DGMM model captures multiple relationship among the observed variables,
which is more flexible to be utilized once learned in multiple ways by choosing
which variables are used as inputs and which ones as outputs of the model. The
learned nonlinear spring model is then used as an torque estimation module for
a torque controller, which cascades with an inner motor current and deflection
control loops. The proposed torque controller is verified by a set of experiments
which demonstrated a precise torque control.
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Fig. 6. a: Result of the torque tracking with a chirp reference signal, b: Result of
the torque tracking with a random walk reference signal, c: Torque tracking error
with given chirp reference, the root mean square errors are RMSEDGMM = 0.93,
RMSENN = 1.07 and RMSElinear = 1.77, d: Torque tracking error with given random
walk reference, the root mean square errors are RMSEDGMM = 0.90, RMSENN =
0.80 and RMSElinear = 1.61 respectively.
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