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Abstract. ACTIVE ANKLE is a novel 3 DoF parallel mechanism which works in an almost spheri-
cal manner. Its geometry provides various advantages like good stress distribution, low link diver-
sity and robust construction. Determining all the solutions to the direct kinematics problem is an
important and challenging step in kinematic analysis of any newly invented parallel manipulator
due to the coupled nature of the constraint equations. In this paper, we make use of powerful meth-
ods in computational algebraic geometry to provide a rational univariate representation of direct
kinematics solution in the form of a 40 degree univariate polynomial. In the presented analysis, up
to 16 real solutions of the direct kinematics problem for this mechanism have been obtained. In ad-
dition, the results of its torsional motion analysis are presented and singularities of the mechanism
are highlighted during this motion. Also, the assembly modes where this mechanism behaves as an
almost-spherical device are identified, which is the main contribution of the paper.
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1 Introduction

A novel, almost-spherical parallel manipulator (ASPM) ACTIVE ANKLE (Fig. 1)
and its comparison with similar mechanisms like AGILE EYE has recently been
introduced in [5] and [6]. Due to its unique, simple and compact 3[R2 [SS]] design
(topological equivalent of DELTA robot), the constraint of moving the end-effector
about an exact center (of rotation) in case of spherical parallel manipulators (SPM)
is relaxed to almost spherical motions that includes a shift of the end effector about
a tolerated, very small domain. Due to the presence of a closed loop in each leg, the
mechanism offers high stiffness and orientation accuracy. The mechanism features a
low link diversity and its simple, robust and modular design makes it highly suitable
for many applications. While the primary application of the ACTIVE ANKLE is an
active ankle joint in an exoskeleton or a humanoid, it could also be integrated as a
submechanism into a regional manipulator for obtaining precise six DOF motions
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if the constrained translations of the ASPM are compensated by the previous joints
of the overall device.

Solving the direct kinematics of any newly invented parallel manipulator is usu-
ally challenging. Since the last few decades, increasingly sophisticated computa-
tional tools are being developed for numerical algebraic geometry that can assist
derivation and solution of polynomial systems which describe the mechanism ge-
ometry [2, 1]. This paper aims to provide the solution to direct kinematics prob-
lem (DKP) of the ACTIVE ANKLE mechanism using powerful tools from compu-
tational algebraic geometry. The motivation stems from the desire to identify those
DKP solutions, i.e. the assembly modes, that have the lowest deviation from a per-
fect spherical motion. In particular, we are interested in exploring the upper bounds
on the number of solutions of its DKP and identifying assembly modes where the
mechanism behaves in an almost-spherical manner. The torsional motion of this
mechanism corresponds to adduction-abduction movements when employed as an
ankle joint (see [6] for foot interface unit) and hence analysis of this movement is
of practical interest.

The paper is organized as follows: Section 2 presents the manipulator’s architec-
ture and constraint equations. Section 3 presents the solution to the direct kinematics
problem by first deriving an upper bound on the total number of solutions and later
exploring the number of real solutions by discretizing the configuration space. Sec-
tion 4 presents the torsional motion analysis of this mechanism and highlights some
of the singularities. Section 5 concludes the paper by summarizing new insights into
the mechanism’s geometry.

Fig. 1: ACTIVE ANKLE prototype

Fig. 2: ASPM architecture

2 Architecture and Constraint Equations

The mechanism ACTIVE ANKLE shown in Figure 2 comprises of three legs each
of which consist of a revolute joint and a spatial quadrilateral linkage with four
spherical joints. The motors actuate the three revolute joints whose axes are aligned
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along the vectors î, ĵ and k̂. The fixed global coordinate frame G is chosen such that
it is coincident with moving end effector coordinate frame E when the mechanism
is in its zero configuration. The position vectors of the spherical joint centers are ci
(on the crank) and ei (on the end-effector), i = 1,2, ...,6. The vector e = (ex,ey,ez)

T

indicates the position of the moving coordinate frame E. The connecting rod length,
l, crank radius, r and half-length of end effector segment d (= ||e− ei||) constitute
the design parameters. For input joint variables qx, qy and qz, the homogeneous
coordinates of ci in the ground frame G and ei in the end-effector frame E are written
as follows:

cG
1 = [1,0,rcos(qx), l + r sin(qx)]

T eE
1 = [1,0,d,0]T

cG
2 = [1,0,−r cos(qx), l− r sin(qx)]

T eE
2 = [1,0,−d,0]T

cG
3 = [1, l + r sin(qy),0,r cos(qy)]

T eE
3 = [1,0,0,d]T

cG
4 = [1, l− r sin(qy),0,−r cos(qy)]

T eE
4 = [1,0,0,−d]T

cG
5 = [1,r cos(qz), l + r sin(qz),0]T eE

5 = [1,d,0,0]T

cG
6 = [1,−r cos(qz), l− r sin(qz),0]T eE

6 = [1,−d,0,0]T

(1)

To express ei in the global frame, a coordinate transformation is used as follows:

eG
i = M eE

i (2)

where, M is the transformation matrix algebraically described by unit quaternions
and position coordinates. With this choice, we obtain a formulation in terms of 7
parameters which further eases the Gröbner basis computation.

M =


1 0 0 0
ex x0

2 + x1
2− x2

2− x3
2 −2x0x3 +2x1x2 2x0x2 +2x1x3

ey 2x0x3 +2x1x2 x0
2− x1

2 + x2
2− x3

2 −2x0x1 +2x3x2

ez −2x0x2 +2x1x3 2x0x1 +2x3x2 x0
2− x1

2− x2
2 + x3

2

 (3)

where, ex, ey and ez represent the position of the end effector center in the global
frame. The parameters xi (i = 0, ...,3) are the orientation quaternions satisfying:

g1 := x0
2 + x1

2 + x2
2 + x3

2−1 = 0 (4)

The distance between ci and ei is fixed and equal to rod length l (see Fig. 2). Thus,
we can set up six constraint equations for this mechanism:

||ei− ci||2 = l2 i = 1, ...,6 (5)

The six constraint equations after simplifications along with orientation quaternion
normalization equation (g1 = 0) form an ideal I= 〈g1,g2,g3,g4,g5,g6,g7〉, where:
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g2 := (−4ezr+4lr)sinqx−4r cosqxey−8exd(x0x3− x1x2)

+4eyd(x2
0− x2

1 + x2
2− x2

3)+8ezd(x0x1 + x2x3)−8dl(x0x1 + x2x3) = 0 (6)
g3 := (−4eyr+4lr)sin(qz)−4r cos(qz)ex−8ezd(x0x2− x1x3)

+4exd(x2
0 + x2

1− x2
2− x2

3)+8eyd(x0x3 + x1x2)−8dl(x0x3 + x1x2) = 0 (7)
g4 := (−4exr+4lr)sin(qy)−4r cos(qy)ez−8eyd(x0x1− x2x3)

+4ezd(x2
0− x2

1− x2
2 + x2

3)+8exd(x0x2 + x1x3)−8dl(x0x2− x1x3) = 0 (8)

g5 := (−8drx0x1−8drx2x3)sin(qx)+2e2
x +2e2

y +2e2
z −4ezl +2d2 +2r2

+(−4drx2
0 +4drx2

1−4drx2
2 +4drx2

3)cos(qx) = 0 (9)

g6 := (−8drx0x3−8drx1x2)sin(qz)+2e2
x +2e2

y +2e2
z −4eyl +2d2 +2r2

+(−4drx2
0−4drx2

1 +4drx2
2 +4drx2

3)cos(qz) = 0 (10)

g7 := (−8drx0x2−8drx1x3)sin(qy)+2e2
x +2e2

y +2e2
z −4exl +2d2 +2r2

+(−4drx2
0 +4drx2

1 +4drx2
2−4drx2

3)cos(qy) = 0 (11)

3 Solving Direct Kinematics

The sine and cosine in Eq. (6) to (11) are replaced with the tangent half-angle ex-

pressions: sin(qi) =
2ti

1+t2
i

cos(qi) =
1−t2

i
1+t2

i
where, ti = tan( qi

2 ), i = x,y,z. To this

end, tx, ty and tz are the inputs and x0,x1,x2,x3,ex,ey and ez are the outputs to be
solved for in the seven equations gi = 0, i = 1..7. The design parameters are substi-
tuted as l = 10 cm, d = r = 3.5 cm.

3.1 Rational Univariate Representation of DKP Solution

A Gröbner basis of the ideal I= 〈g1,g2,g3,g4,g5,g6,g7〉 is calculated over the field
K[x0,x1,x2,x3,ex,ey,ez]. It was possible to compute the Gröbner basis only after
substituting certain values to the inputs qx,qy and qz and to the design parameters.
For the lexicographic ordering x0 <lex {e j,xi} and xi <lex {e j,x0} (i = 1,2,3; j =
x,y,z), the univariate polynomial in x0 and xi turned out to be of degree 28 and 75,
respectively which should be halved to find unique solutions due to Eq. (4). For
e j <lex xi (i = 0,1,2,3; j = x,y,z), the polynomial in e j was of degree 40. Hence, a
bound on the maximum number of solutions can be found as max{28/2,75/2,40}.
Thus, the ACTIVE ANKLE can have a maximum of 40 direct kinematic solutions.

3.2 Finding Real Solutions

For tx = ty = tz = tan( 30◦
2 ), the RootFinding[Isolate] function of Maple is used

to find out all the real solutions for the set of constraint equations. The algorithm
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No. ex (cm) ey (cm) ez (cm) ax ay az θ (deg)

1 1.69 1.69 1.69 -0.57 -0.57 -0.57 159.1◦

2 4.93 4.93 4.93 -0.57 -0.57 -0.57 148.7◦

3 0.06 0.06 0.06 -0.57 -0.57 -0.57 44.3◦

4 6.6 6.6 6.6 -0.57 -0.57 -0.57 23.6◦

5 0.69 2.12 2.59 -0.28 0.12 -0.94 139.4◦

6 2.12 2.59 0.69 0.12 -0.94 -0.28 139.4◦

7 2.6 0.69 2.12 0.94 0.28 -0.12 139.4◦

8 1.82 3.47 3.78 -0.16 0.32 -0.93 157◦

9 3.78 1.82 3.47 0.93 0.16 -0.32 157◦

10 3.47 3.78 1.82 0.32 -0.93 -0.16 157◦

11 0.63 0.89 1.43 -0.57 0.22 -0.78 107.3◦

12 0.89 1.43 0.63 0.22 -0.78 -0.57 107.3◦

13 1.43 0.63 0.89 0.78 0.57 -0.22 107.3◦

14 5.16 5.88 5.37 0.52 0.06 -0.84 86.1◦

15 5.88 5.37 5.16 -0.06 0.84 -0.52 86.1◦

16 5.37 5.16 5.88 0.84 -0.52 -0.06 86.1◦

Table 1: Overview of 16 solutions for the DKP with qx = qy = qz = 30◦.

behind this function finds out the rational univariate representation of the set of
polynomials and isolates the real roots of these univariate polynomials based on
Descartes’ rule of sign and the bisection strategy in a unified framework [4].
A total of 32 direct kinematic solutions are obtained for qx = qy = qz = 30◦. Due
to Eq. (4), this number is to be halved to discard repeated roots. Thus, there are
16 unique assembly modes for the given input. For each assembly mode, the end
effector position (ex,ey,ez) and the axis-angle representation (ax,ay,az,θ ) are ex-
pressed as follows: ax =

x1√
1−x2

0
, ay =

x2√
1−x2

0
, az =

x3√
1−x2

0
, θ = 2cos−1(x0).

The configuration of these assembly modes is listed in Table 1.
Among them, No. 3 and 4 are shown in Figures 3 and 4. The points corresponding

to the position vector ci can move on the circumference of those circles drawn. The
points ei form a spatial cross, the center of which represents the end effector point
(shown as black sphere). No. 1 – 4 show the assembly modes where ex = ey = ez and
ax = ay = az. Since, qx = qy = qz, the other twelve assembly modes are observed in
triplets with the same axis angle θ and permuted values of (ex,ey,ez) and (ax,ay,az).
Four such triplets are observed in solutions 5 to 7, 8 to 10, 11 to 13 and 14 to 16
in Table 1. This pattern may not be visible when ti 6= t j ∀i, j = x,y,z. In addition,
this method is used to record the percentage of number of real solutions to DKP by
varying qx, qy and qz from −180◦ to 180◦ in finite increments [3]. For convenience,
the configuration space is partitioned into 1331 permutations of input angles and the
results are shown in Table 2. It may be noted that the number of real solutions for
any configuration can only be an even number due to an even upper bound on the
total number of solutions.
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Fig. 3: Assembly Mode 3 (refer Table 1)
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Fig. 4: Assembly Mode 4 (refer Table 1)

Real solutions 0 2 4 6 8 10 12 14 16
∑Complex solutions 40 38 36 34 32 30 28 26 24

Number of poses 204 282 237 222 287 83 12 0 4 1331
Fraction of poses 15.33 21.19 17.80 16.68 21.56 6.24 0.90 0 0.30 100%

Table 2: Overview of the solvability of the DKP for q = (qx,qy,qz)
T ∈ S3 with discretization S=

[−180◦,180◦] in 11 steps (|S|= 11 and |S3|= 1331).

4 Torsional Motion Analysis

The torsional motion of this manipulator is of practical interest because it corre-
sponds to the adduction-abduction movement when employed as an ankle joint.
The torsional motion can be characterized by substituting ex = ey = ez = e and
tx = ty = tz = t in seven constraint equations. The Gröbner basis for the ideal I, now
defined over a reduced field K[x0,x1,x2,x3,e], is calculated with pure lexicographic
order e <lex x3 <lex x2 <lex x1 <lex x0 using Maple software. This yields a Gröbner
basis consisting of five polynomials, out of which the first one is an input (t) – output
(e) agnostic description of the mechanism.

G1 := (9t8 +36t6 +54t4 +36t2 +9)e4 +(−1347t8−441t7−4359t6−1029t5

−5877t4−735t3−4065t2−147t−1200)e3 +(74251t8 +14700t7

+142899t6 +44296t5 +139207t4 +54096t3 +98701t2 +24500t +47350)e2

+(−1710100t8 +980000t7 +220500t6 +19600t5 +1239700t4−19600t3

+739900t2−980000t−490000)e+12005000t8−24010000t7−12005000t6

+48020000t5−12005000t4−24010000t3 +12005000t2 = 0
(12)
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It shows that a maximum of four assembly modes and a maximum of eight working
modes (solutions to the inverse kinematics problem) are possible on the subvariety
defined by ex = ey = ez. The implicit plot of Eq. (12) after substituting t = tan(q/2)
is shown in Figure 5 for e= 0, ...,7cm and q= qx = qy = qz =−180◦, ...,180◦. For a
value of q = qx = qy = qz = 30◦, four values of e observed in this figure match with
the values noted in Table 1. From Figure 5, one could also note that the assembly
modes shown in Figures 3 and 4 were actually the almost-spherical assembly modes
for this mechanism because in these assembly modes the change in end effector’s
position is minimal.

The second equation of Gröbner’s basis in e, t and x0 is found out to be:

G2 :=
(
9 t4 +18 t2 +9

)
e2 +

(
−600 t4−294 t3−906 t2−600

)
e

+
(
9800 t4−9800

)
x0

2 +4900 t4−14700 t2 +9800 = 0
(13)

Eliminating e from Eq. (12) and (13) and substituting t = tan(q/2) and x0 =
cos(θ/2) results in an implicit equation in terms of the axis angle θ (representing
the rotational workspace) and the actuated variable q. Figure 6 shows the implicit
plot of q vs. θ for θ =−180◦, ...,180◦ and q = qx = qy = qz =−180◦, ...,180◦.
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Fig. 5: Implicit plot between q and e

-1200-1800 18001200 60000-600

θ 

-1800

-1200

1800

 600

-600

1200

q 00 -1500  1420 610 450

Fig. 6: Implicit plot between q and θ

A Jacobian matrix J of dimension 5× 5 is calculated by partially differentiat-
ing the constraint polynomials with respect to the variables of the considered field.
When the determinant of this Jacobian vanishes, the mechanism reaches a singu-
larity. Considering the Gröbner basis equations and det(J) = 0, other variables are
eliminated to obtain the Eq. (14) only in terms of tx = ty = tz = t = tan(q/2).

det(J) := (t−1)(t +1)(t2 +1)(2601t12−408t11−55370t10 +54732t9

+240101t8−491700t7 +771464t6−925624t5 +751804t4

−497200t3 +259600t2−80000t +10000) = 0

(14)
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Solving for t and hence q results in six unique solutions which are noticeable as
cusps in Figures 5 and 6. For instance, q = 90◦ is one of the singularities when e
reaches a value of 6.6 cm. Since, other values of e are indeed possible for an input
angle of 90◦, it is important to mention the magnitude of the pair {e,q} or {θ ,q}
while representing these singularities.

5 Conclusion

This paper presents some global insights into the geometry of the ACTIVE ANKLE
mechanism through its direct kinematics analysis using tools from computational
algebraic geometry. It is established that the upper bound to the number of unique
solutions to direct kinematics problem is 40 which supports our observation that
once the actuator angles are fixed in the three legs, ACTIVE ANKLE behaves as a
special instance of 6−6 STEWART platform. In practice, a maximum of 16 real so-
lutions of the direct kinematics problem were found. In addition, the results of the
torsional motion analysis which is of practical interest is presented and some singu-
larities of the mechanism are highlighted. Moreover, the assembly modes where the
mechanism behaves as an almost-spherical device are identified.
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