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Abstract

In this paper, we show how to minimise a quadratic func-
tion on a set of orthonormal matrices using an efficient
semidefinite programming solver with application to dense
non-rigid structure from motion. Thanks to the proposed
technique, a new form of the convex relaxation for the Met-
ric Projections (MP) algorithm is obtained. The modifica-
tion results in an efficient single-core CPU implementation
enabling dense factorisations of long image sequences with
tens of thousands of points into camera pose and non-rigid
shape in seconds, i.e., at least two orders of magnitude
faster than the runtimes reported in the literature so far.
The proposed implementation can be useful for interactive
or real-time robotic and other applications, where monocu-
lar non-rigid reconstruction is required. In a narrow sense,
our paper complements research on MP, though the pro-
posed convex relaxation methodology can also be useful in
other computer vision tasks. The experimental part provid-
ing runtime evaluation and qualitative analysis concludes
the paper.

1. Introduction
Template-free deformable surface reconstruction from

monocular image sequences, referred to as Non-Rigid
Structure from Motion (NRSfM) experienced significant
advances during the last ten years. Previously being able
to retrieve sparse structures under small non-rigid deforma-
tions, NRSfM methods nowadays can recover dense sur-
faces exhibiting large deformations. While entering the
realm of dense reconstructions, the computational time of
NRSfM methods has increased significantly due to the in-
herent ill-posedness of the problem, higher complexity of
the models, and high computational complexity of the op-
timisation methods. This tendency is aside from the in-
creased pre-processing time for the dense correspondence
establishment, which the vast majority of NRSfM methods
rely on. At the same time, many robotics and medical ap-
plication require not only dense reconstructions but also im-

pose harsh timing constraints — either new reconstructions
need to be obtained upon arrival of a new frame (real-time
requirement), or reconstructions are required within an ar-
guably reasonable time interval after the image sequence is
acquired (requirement of interactivity).

Among NRSfM algorithms, Metric Projections (MP)
[26] possesses properties which make it considerable for
interactive, real-world applications such as high reconstruc-
tion accuracy, feasible computational complexity, availabil-
ity of efficient and fast optimisation methods, notable scal-
ability with the number of points as well as robustness to
noisy and missing data. An important for this paper as-
pect is that MP requires solving a quadratic optimisation
problem on the set of orthonormal matrices of the follow-
ing form:

min
q=vec(Q)

q>Eq, (1)

where E ∈ R6×6 and Q ∈ R3×2 is an orthonormal matrix.
According to [26], the problem in Eq. (1) can be convex-
relaxed and approximated as

min
q=vec(Q)

tr(Eqq>) = min
X∈co(S)

tr(EX), (2)

where co(S) is approximated by a set of real symmetric

matrices X ∈ R6×6 =

(
A B
B> C

)
, whereby A ∈ R3×3,

X < 0, tr(A) = tr(C) = 1, tr(B) = 0, with an additional
constraint on the combined matrix Y :

Y =

(
I3 −A− C w

w> 1

)
< 0, (3)

with w =

b23 − b32
b31 − b13
b12 − b21

 (see Sec. 3 for further details).

The problem in Eq. (2) is a Semidefinite Programming
(SDP) problem. In an SDP, a linear objective function with
linear constraints over a set of Positive Semidefinite (PSD)
matrices needs to be optimised [21]. SDP is a field of con-
vex optimisation which finds applications in various areas



of science and engineering ranging from the approxima-
tion of NP-hard combinatorial problems (max-cut, graph
bisection, min-max eigenvalue problems) [21] and quantum
complexity [7], to the theory of automatic control [27]. An
SDP problem can be solved using a Matlab SDP solver, e.g.,
SeDuMi [30] which allows specifying constraints on a high
level of abstraction directly in terms of traces, block matri-
ces and values of particular elements. However, for an effi-
cient C++ SDP solver such as CSDP [9], an SDP problem
must be specified in a general form as

max tr(C ′U),

subject to
{
A(U) = a; U < 0

}
,

(4)

where

A(U) =
[
tr(A1U) tr(A2U) . . . tr(AmU)

]>
. (5)

In the optimisation model given by Expr. (4), the matrices
C ′, A1, A2, . . . , Am as well as the vector a are known, and
the operatorAmaps the unknown PSD matrix U to a vector.

Thus, the existing form of the convex relaxation as pre-
sented in Eq. (2) does not allow to employ CSDP and imple-
ment MP in C++ efficiently. A drawback is that robotic and
medical applications do not often allow to combine Mat-
lab and C++ source code on an embedded platform due to
performance and memory issues. Thus, research on MP al-
gorithm can not be considered as accomplished yet. More-
over, both academia and industry are interested in an ef-
ficient monocular NRSfM which supports real-time frame
rates. Accordingly, our contributions in this paper are as
follows:

• We show how to formulate the convex optimisation
problem given in Eq. (2) in terms of the standard
SDP problem as accepted by an efficient SDP solver
(Expr. (4)). The shown methodology can also be use-
ful in a broad range of algorithms taking advantage of
SDP. In this paper, it is applied to an optimised CPU-
only implementation of MP which we refer to as Ac-
celerated Metric Projections (AMP)1.

• We demonstrate experimentally that AMP is suitable
for dense factorisation of long image sequences with
tens of thousands of points in seconds, and compare
runtimes of AMP with an optimised implementation
of the Variational NRSfM Approach (VA) [17].

In the performed experiments, AMP finishes up to 20
times faster than an optimised implementation of VA. Con-
sidering the achieved performance, AMP can be useful as a
building block in a broad range of real-time and interactive
applications including medical and robotic ones which re-
quire monocular non-rigid reconstruction. AMP can also be

1we provide an AMP executable for academic use upon request.

used for initialisation of more accurate but computationally
expensive, perhaps sequential NRSfM algorithms.

The remainder of this paper includes an overview of pre-
vious and related works (Sec. 2), proposed convex relax-
ation (Sec. 3), implementation details (Sec. 4), experiments,
discussion (Sec. 5) and conclusion (Sec. 6).

2. Previous and related work
SDP was extensively applied in computer vision [23, 1,

22, 24] including NRSfM [26, 13, 12]. We noticed, on the
one hand, that a detailed consideration of SDP problems
and their efficient solutions for computer vision tasks were
rather sparsely discussed in the literature. On the other
hand, research in the area of NRSfM was mainly focused
on algorithmic improvements which were not always ac-
companied by an appropriate consideration of efficient op-
timisation methods. As a result, it is difficult to find high-
performance implementations able to handle dense data in a
few seconds among those shown in the literature, although
several algorithms are potentially capable of it [28, 17, 3].

Several algorithms were proposed for sparse and dense
NRSfM over the recent years. Most NRSfM methods re-
quire point correspondences as an input which are obtained
in a pre-processing step by sparse point trackers or dense
optical flow methods. In contrast to sparse NRSfM, the
dense counterpart allows reconstructing all visible points
of interest when considering reconstruction from image se-
quences (either visible in a reference frame and tracked
through the sequence, or visible at any moment in time).
Sparse NRSfM was initially proposed by Bregler et al. in
2000 [10], and the first dense implementation emerged a
dozen years later [28]. Previous work was focusing on algo-
rithmic improvements which allowed to handle more com-
plex deformations [32] and the higher number of points, re-
duce 3D RMS error (see Sec. 5 for the definition), perform
reconstructions in an online manner [2] and introduced new
models for NRSfM [4]. Efficient implementations of the
techniques remained in the background. Though, an effi-
cient implementation is often not possible without changes
in underlying optimisation methods. We discover that this is
the case with the MP algorithm. The optimisation proposed
in this paper allows to fully unfold the strength of the ap-
proach regarding the runtime. Whereas [26] reports around
30 seconds for sequences with 37 points tracked throughout
74 frames, AMP allows reconstructing 5 ·104 points tracked
throughout 202 frames in 30 seconds. Despite the original
MP implementation was performed in Matlab, the differ-
ence with our implementation can not be barely explained
by a re-implementation in another programming language
(C++ in our case) or an improved hardware during the last
48 months between [26] and our submission (recall that an
efficient implementation in C++ was not earlier possible).
Various runtimes for dense NRSfM were reported for other



algorithms in the literature so far. Thus, [28] reports 600
seconds for 90 frames with 7.8 · 104 points per frame. [34]
reports 720 seconds for 50 frames with 540 points in ev-
ery frame. The sequential algorithm of Agudo et al. [3]
achieves 62 seconds per frame for the dense flag sequence
[18] with ∼ 104 points. An efficient implementation of this
method could potentially run in real-time. Nevertheless, the
runtimes reported in the literature are still at least two orders
of magnitude higher than the runtime reported in this paper,
considering comparable number of points and frames (e.g.,
for the synthetic flag sequence [18]).

3. Accelerated Metric Projections
First, we summarise the core MP method. The input of

MP is a measurement matrix W which combines image co-
ordinates of the tracked points for all frames:

W2f×p = [W1W2 . . .Wf ]
>, (6)

where Wi = [wij ] = [(uijvij)
>], i ∈ {1, . . . , f} is a

frame index and j ∈ {1, . . . , p} is a point index. Values in
W are registered to the centroid of the scene. MP adopts
the low-rank shape model introduced in [10] so that every
non-rigid shape Si observed in frame i can be expressed as

Si =

k∑
d=1

lidBd, (7)

i.e., a linear combination of the basis shapes Bd with the
weights lid, d ∈ {1, . . . , k}. Since Wi = RiSi defines a
2D scene observed by an orthographic camera Ri for every
frame, Wi can be written as

Wi =
[
li1Ri . . . likRi

] [
B1 . . . Bk

]>
, (8)

and for the whole W as

W = MB =

M1

...
Mf


B1

...
Bk

 . (9)

Thus, MP factorises W into the motion matrix M (it con-
tains camera poses Ri multiplied with weights lik) and a
set of the basis shapes B using alternating least squares,
i.e., either B or M is fixed while for the other one is be-
ing optimised. Further, the motion matrix M is projected
onto the motion manifold (i.e., a Lie group with augmented
scalar weights) which guarantees the correct block structure
of the motion matrix and camera pose matrices contained in
it. The projection is performed for each lidRi submatrix of
Mi individually and can be written in a form of an optimi-
sation problem as

min
Ri,li1,...,lik

‖Mi − [li1Ri| . . . |likRi]‖2F (10)

or, after reordering, writing out the squared Frobenius norm
and eventually bringing the expression to a quadratic form:

min
Ri

r>i

[
−

k∑
d=1

midm
>
id

]
ri so that (11)

RiR
>
i = I2×2, (12)

with ri = vec(R>i ) and mid = vec(M>id). The quadratic
form in Eq. (11) has the form as in Eq. (1) and is convex-
relaxed as stated in Sec. 1, Eqs. (1)–(3). A detailed deriva-
tion of the convex relaxation is given in the recent work by
Dodig et al. [15].

Solving Eq. (11) leads to a provably optimal Mi update.
As proposed in [26], we use a warm-start strategy in com-
bination with a Newton-like iterative optimisation approach
[16], i.e., we compute only M0 using the convex-relaxed
Eq. (11) is each iteration, and the remaining Mi matrices
are obtained based on the optimal M0 estimate. Despite
this strategy is theoretically suboptimal, it was empirically
shown to converge to a local minimum in multiple experi-
ments while significantly reducing the overall runtime [26].

Once recovered, the R>i are used to update the weights:

lid =
1

2
tr
[
M>idRi

]
. (13)

Given the weights lid, projection of M onto the motion
manifold is complete — which, in turn, allows to obtain
a current estimate of S and an update of M. MP is an itera-
tive approach, and requires an initial estimate of M. Further
details on the core MP method can be found in [26].

Secs. 3.1 and 3.2 describe how Eq. (1) can be convex-
relaxed and brought to the general form as accepted by an
efficient C++ SDP solver. The modification given in the
following leads to the proposed AMP method.

3.1. Coefficient splitting

A symmetric matrix Z = [zij ] equals to its own trans-
pose, i.e., zij = zji. Moreover, the following property for
symmetric matrices holds:

tr(AZ) =

n∑
j=1

n∑
i=1

aijzij , (14)

where A = [aij ] is a real square matrix. Suppose a con-
straint is given in the form

c11z11 + c12z12 + . . .+ c1nz1n + . . .+ cnnznn = b.
(15)

The key observation is that the constraint in Eq. (15) can be
written with a coefficient splitting as

n∑
i=1

ciizii +
∑
i6=j

cij + cji
2

(zij + zji) = b (16)



(again, this holds for a symmetric matrix Z = [zij ]). Con-
sidering Eq. (14), Eq. (16) can be written as tr(AZ) = b,
where

A =


c11

c12+c21
2

c13+c31
2 . . .

c12+c21
2 c22

c23+c32
2 . . .

c13+c31
2

c23+c32
2 c33 . . .

...
...

...
. . .

 . (17)

In Eq. (17), only the divisor value 2 preserves matrix sym-
metry, i.e., an arbitrary re-distribution of the coefficients is
not possible. In particular, if cii = 1, then aii = 1; if
cij = 1, then aij = aji = 0.5 (i 6= j); if cij = 0, then
aij = aji = 0 (i 6= j). Note that a constraint can also
be formulated in terms of an upper/lower triangular subma-
trix of X . In this case, if cij defines a coefficient, then cji
always equals to 0 (no coefficient splitting is required).

3.2. Constraints in the unified form

Now, using the properties of the matrix trace (Sec. 3.1),
we can advance the convex relaxation of the quadratic opti-
misation problem given in Eq. (2) into the standard form of
an SDP problem given by Expr. (4). The main matrices —
on which elements (submatrices or particular values) con-
straints are imposed — are X and Y . In the following, we
will use the proposition (see App. A for the proof):

Proposition 1 If a matrix U =

(
U1 0
0 U2

)
has a block

structure, then U is PSD if both U1 and U2 are PSD. Con-
versely, if U is PSD, then the principal submatrices2 U1 and
U2 are PSD.

Using Prop. 1 we can join X and Y matrices into a block
matrix U and demand its positive semidefiniteness:

U =

[
X6×6 0
0 Y4×4

]
=

A3×3 B 0
B> C3×3 0
0 0 Y4×4

 !
< 0.

(18)

Thus, if the matrix U will be found, X and Y will be
guaranteed to be PSD.

Constraints on the traces. The SDP problem we are
interested in, contains three constraints on the matrix trace.
Constraint tr(A) = 1 can be rewritten as

∑3
i aii = 1 or

equivalently as

tr(A1U) = tr

([
I3 0
0 07×7

]
U

)
= 1. (19)

2 a principal submatrix is a square submatrix obtained by removing k
rows and columns with the same indexes (whenever i-th row is removed
from U , the i-th column is also removed).

In the same manner, we obtain constraint expressions for
tr(C) = 1:

tr(A2U) = tr

03×3 0 0
0 I3 0
0 0 04×4

U

 = 1 (20)

and tr(B) = 0:

tr(A3U) = tr

 0 I3
2 0

I3
2 0 0
0 0 0

U

 = 0. (21)

In total, we obtain three constraints on the traces of the
submatrices of X , and, accordingly, first three Ai matrices.

Constraints on Y . To formulate constraints on Y ,
we consider all its unique elements separately. Since
Y is symmetric, it has ten non-repeating elements. We
denote aij and cij elements of A and C in Eq. (2) and (3)
respectively. Consider matrix Y in Eq. (3) element-wise.
We see that the element y11 is constrained as

y11 = 1− a11 − c11. (22)

Therefore, A4 must fetch correct elements and equate them
to 1. We obtain a sparse matrix with the elements [1; 1],
[4; 4] and [7; 7] being equal to 1, and zeros otherwise. In a
similar way, A5 and A6 for the elements y22 and y33 can be
obtained, with non-zero elements shifted along the diagonal
by 1 and 2 positions respectively. Accordingly, A7 (element
y44) has only a single non-zero entry in the position [10; 10].
We proceed further with the elements of matrix Y . Thus,
y12 = −a12−c12. As these elements are not on the diagonal
of U , coefficient splitting is required, i.e.,

u12 + u21

2
+

u45 + u54

2
+

u78 + u87

2
= 0, (23)

and the constraint matrix A8 reads as

A8 =



0 0.5 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.5 0 0
0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


. (24)

Note that since A8 is symmetric, it expresses constraints
on both elements y12 and y21. For the elements y13, y31,
y23, y32, y14, y41, y24, y42 and y34, y43 we proceed in a sim-
ilar manner and obtain A9 – A13 respectively. For com-
pleteness, the remaining Ai matrices are given in our sup-
plementary material. In total, we obtain 13 constraints
tr(Ai U) = ai with

a = (1 1 0 1 1 1 1 0 0 0 0 0 0)>. (25)



Figure 1: Results of the AMP runtime measurements on the synthetic flag sequence [18] for different subsampling factors (1 or w/o subsampling, 2 and
3) : (a) the number of basis shapes K is fixed to 3, the number of frames is varying; (b) the number of frames is fixed to 20, the number of basis shapes is
varying. (c) runtime functions in the number of frames for VA [17], rigid factorisation [33] and AMP on the Xeon E5-1650 platform; AMP is an order of
magnitude faster than VA; AMP achieves a comparable to rigid factorisation runtime if the number of points equals to approx. 10% compared to the TK
case; (d) mean RMS error for AMP on the synthetic flag sequence as a function of the number of frames for K = 4 (top) and a function of the number of
basis shapes for F = 30 (bottom). In (a-c), light yellow colour marks configurations which require less than a second to complete.

So far, we have all components required for the approxima-
tion of Eq. (1) formulated in the general form3.

4. Implementation

In the AMP implementation, we use several lightweight
libraries (e.g., eigen3 [20] for linear algebra, lapack [5]
especially for svd decomposition) as well as the CSDP
library as an SDP solver. Our implementation is single core
CPU only which enables compilation and execution on
mobile platforms (though, a GPU can be used if available).

CSDP solver. CSDP is a C/C++ library for solving
SDP problems [9, 8]. It is built upon the lapack [5] library
and provides an efficient implementation of the Primal-
Dual Interior Point (PDIP) algorithm for SDP proposed by
Helmberg et al. [21]. PDIP has polynomial complexity.
The Interior point means that the method converges to an
optimum through the interior of the polyhedron (which is
the solution space), whereas the optimum always lies on its
surface. Primal-dual refers to the property of the algorithm
to solve both the primal and the dual SDP problems simul-
taneously. This property together with additional feasibility

3matrix C′ in Expr. (4) equals to identity in our case.

constraints on the solution space brings the advantage of the
increased stability as well as a faster convergence. CSDP
enables SDP programs to be solved in polynomial time and
the constraints are provided in the form as stated above in
Expr. (4). In computer vision, CSDP was used for camera
calibration [1], image clustering [24] and dimensionality
reduction of image data [35]. The constraints as derived in
Sec. 3.2 are provided to the CSDP library as a configuration
file containing non-zero elements of Ai matrices.

5. Experiments
MP was extensively evaluated on sparse data sets [26],

and played a role of the baseline in several works [17, 4].
In this section, we describe runtime evaluation of AMP
in the dense setting and show some qualitative results.
We test AMP on a mobile platform with 6 GB RAM and
Intel i5-2410M processor running at 2.30 GHz. We also
report runtimes on a more powerful desktop machine with
32 GB RAM, Intel Xeon E5-1650 and NVIDIA Titan X
GPU for comparing AMP with rigid factorisation [33] and
a heterogeneous implementation of VA [17]. We choose
several sequences for the experiments: the synthetic flag
[18], music notes [19], monkaa [25], shaman2 [11], barn



Figure 2: Qualitative evaluation of AMP: (a) selected frames from music notes (top), monkaa (middle) [25] and barn owl (bottom) [14] sequences; (b)
reconstructions of the above-mentioned sequences; the surfaces are shown pairwise as frontal and side views; (c) a selected reference surface reconstruction
from the shaman2 sequence [11] obtained by VA (top) and an AMP reconstruction shown in cyan overlayed with the reference shown in purple (bottom).
The mean RMS error for this 30-frame long sequence amounted to 0.42.

owl [14], face [17] and heart [29] sequences.

Quantitative evaluation. For quantitative evaluation,
we use the ground truth optical flow of the synthetic flag
sequence available from [18], and run AMP in different
modes. In the first mode, the number of basis shapes K
is fixed to 3 and the number of frames is varied. In the
second mode, the number of frames F is fixed to 20 and
the number of basis shapes K is varied. In both modes,
we perform the experiment for three different values of
the correspondence subsampling factor s. For instance, if
s = 2, correspondences are decimated so that every second
point in both image directions is included into the input
measurement matrix W. When undecimated, reconstruc-
tions contain 8.2 · 104 points. During the execution, the
influence of the operating system workloads is minimised
through launching the executable file without a graphics
environment in a command line terminal. We report
average runtimes for 10 runs for every mode and every
value of the respective variable. Fig. 1-(a),(b) illustrates
results of the experiment for both modes.

As can be observed in Fig. 1-(a), runtime grows as a su-
perlinear function of the number of frames. Depending on
the number of points, a shift along the time axis is observed,
whereas the function graph preserves its form. A similar ef-
fect if observed in Fig. 1-(b) for the case of varying number
of basis shapes. Allowing more complex deformations re-
sults in a higher computational complexity for a fixed num-
ber of frames. However, in certain cases (K = 3 for s = 1
or for K = 4 for s = 3), deviations from the monotonous
growth may occur. The deviations are explained by a faster
convergence of the CSDP solver, due to better initialisa-
tions, and are possibly related to an optimal number of basis

shapes for a given image sequence. From Fig. 1-(a),(b) it
can also be seen that for many configurations, the execution
time is below one second. Thus, for 2 · 104 points and 10
frames, the execution time amounted to 311.7 milliseconds
which allows building a window-based approach on top of
AMP and save processing time for other workloads. An op-
timal window size depends on an application and may vary
from 5 to 15 frames.

Next, we compare runtimes of AMP, VA [17] and rigid
Tomasi-Kanade (TK) factorisation approach [33] on the In-
tel Xeon platform with a GPU. We use own heterogeneous
C++/CUDA C implementation of VA and an optimised C++
version of the rigid factorisation. VA was shown to out-
perform MP in terms of reconstruction accuracy for dense
cases due to the Total Variation (TV) term [17]. However,
due to the same reason — the TV term as well as the prox-
imal splitting — it is computationally expensive. The run-
time of TK factorisation serves as a lower runtime bound
for every NRSfM approach. The runtimes as a function of
number of frames for the comparison are plotted in Fig. 1-
(c) (runtime comparison as functions of number of basis
shapes for VA is omitted, since the number of basis shapes
is determined in VA automatically as proposed by Dai et
al. [13]). For VA, we set 10 iterations with 10 primal-dual
alternations each, unless the algorithm converges in early
iterations. Despite AMP is a single core CPU implemen-
tation, it finishes in average one order of magnitude faster
than VA. On the other hand, TK finishes approximately ten
times faster than AMP. Using the decimation factor of 3,
the runtimes of AMP are approaching the runtimes of TK.
Thus, by decreasing the number of points by the factor of
nine, we are able to achieve a runtime comparable to TK for
the synthetic flag sequence.



Figure 3: Results on the face sequence [17]: (a) exemplary sequence
frames with the reference frame highlighted by yellow colour; (b) cor-
responding reconstructions, two different perspectives respectively.

In the next experiment on synthetic data, we perform
measurement of mean RMS error for the dense case. The
mean RMS error is defined as e3D = 1

F

∑F
f=1

∥∥∥Sref
f
−Sf

∥∥∥
F∥∥∥Sref

f

∥∥∥
F

,

where Sref
f are ground truth 3D shapes. We take the 3D

motion capture data [36] and create measurement matrix
by projecting it using an orthographic camera (which is
identity I2×3 — the third coordinate is omitted). Note
that in the reference frame, the object is not observed
frontally but is rotated by approx. 30◦. This makes re-
construction more challenging. Due to the orthographic
camera, ambiguities in the initial rotation may occur, and
reconstructions are rigidly pre-aligned to the ground truth
using a transformation estimation algorithm (Procrustes
analysis). Fig. 1-(d) shows the measured mean RMS
as a function of the number of frames (top) and basis
shapes (bottom). Starting from 10 frames, the 3D error
periodically increases with the number of frames. Since
the synthetic flag sequence represents motion with strong
deformations, AMP accumulates an error and becomes less
accurate locally. This example shows that the 3D error can
vary considerably with the number of basis shapes. An
optimal parameter K depends on the type of the observed
motion and deformations.

Qualitative results on real and rendered image se-
quences. We show results of dense reconstructions for
several real-world image sequences. The experiment shows
that AMP is able to generate spatially smooth results for the
dense cases if correspondences are estimated accurately and
context-aware, e.g., by multi-frame optical flow (MFOF)
approaches such as [18, 31]. Some exemplary results of
AMP on several image sequences are given in Fig. 2-(a),
(b). The shown reconstructions are smooth and detailed.
Bending of the music notes sheet is reasonably conveyed

through non-rigid deformations. Head movements of the
owl are realistically explained by combined rotational
effects and non-rigid deformations. Results on the pro-
cessed sequences are best viewed in the supplementary
video. Fig. 2-(c) shows an example of reconstruction of
the shaman2 sequence by VA (top) as well as AMP, given
point reprojections as an input. This experiment shows that
AMP can reconstruct an overall appearance of the scene,
despite a relatively high mean RMS error of 0.42. In many
applications, this accuracy can be sufficient. An excerpt
from the 120 frames long face sequence together with
exemplary reconstructions (two different perspectives) are
shown in Fig. 3. Every shape contains ∼ 2.8 · 104 points
and the complete reconstruction is accomplished within 10
seconds. Note how well the mouth expressions are reflected
in the reconstructed point clouds.

The experiment on the heart bypass surgery sequence
demonstrates the performance of AMP in the medical
context. This sequence contains 80 frames and has several
distinctive attributes. First, self-occlusion effects are
almost not presented (except, perhaps, the areas of drifting
specular effects). Second, point displacements from every
frame to every other frame are comparably small due
to the periodicity of heart beating and the fixed camera.
These circumstances create conditions for application of
a two-frame optical flow algorithm to compute corre-
spondences from a key frame to every other frame in the
sequence, instead of the computationally expensive MFOF.
Thus, we compute correspondences using the real-time
capable TV-L1 optical flow approach of Zach et al. [37]
in 21 seconds (computation is sequential). Based on the
established dense point correspondences, AMP computes
realistic reconstructions with 68 · 104 points each in 11.5
seconds. Only several frames exhibit insignificant surface
fluctuations due to the highest point displacements (e.g.,
see Fig. 4, frame 37). This experiment demonstrates that
an accurate dense non-rigid reconstruction, 80 frames in
length, can be obtained in combination with AMP within a
half minute after the acquisition; adaptation for a real-time
window-based operation is conceivable.

Discussion. Due to the runtimes achieved in the ex-
periments, AMP is suitable for building interactive and
real-time applications (e.g., robotic or medical ones) on
CPU only, possibly in combination with other methods.
We believe that AMP, being suitable for mobile platforms,
can at the same time provide initialisation for other, more
accurate NRSfM methods. We also observe that AMP
scales well with the number of points. Either 103 or 106

points, AMP is running reliably; we have not observed any
side effects as the number of points increases unless there
is not enough memory in the system.



Figure 4: Results on the heart sequence [29]: (a) the input image sequence with the reference frame highlighted by yellow colour; (b) optical flow
computed using TV-L1 approach of Zach et al. [37], together with the colour key [6] on the right; (c) corresponding reconstructions recovered by AMP.
Correspondence computation and non-rigid surface reconstruction with AMP are obtained within 33.5 seconds.

6. Conclusion

The methodology proposed in this paper enables con-
vex relaxation problems formulated on a high level of ab-
straction to be solved with an efficient SDP solver such
as CSDP. The feasibility of the proposed methodology is
demonstrated on the example of MP algorithm, for which
an efficient implementation or an implementation on a mo-
bile platform was not previously possible. The proposed
algorithm, i.e., AMP allows obtaining accurate dense re-
constructions with tens of thousands of points on a mobile
platform in seconds; it outperforms the more accurate VA
(own optimised heterogeneous implementation) in regard
to the runtime by at least the factor of 10. We discovered
that AMP scales well with the number of points, the num-
ber of frames as well as the number of basis shapes. Com-
bined with suitable methods for correspondence computa-
tion, AMP can produce spatially and temporally accurate
and realistic results in challenging real scenarios. These
properties suggest that AMP can be advantageously placed
in the context of modern real-time and interactive applica-
tions in such areas as robotics, medicine, and many oth-
ers. Readers interested in real-time and interactive applica-
tions of NRSfM may wish to further investigate the tempo-
ral smoothness constraint, as AMP reconstructions are cur-
rently independent of the frame order.
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A. Appendix – Proof of Prop. 1

To show validness of Prop. 1, we use one of the neces-
sary and sufficient conditions for positive semidefiniteness:
a symmetric matrix U is PSD if xTUx � 0 for all vectors x
(this is also definition of PSD).

Consider symmetric matrix Û =

(
U1 0
0 0

)
. Since U1

is PSD, yTU1y � 0 holds for all vectors y. Moreover,
ŷTÛ ŷ � 0, where ŷ is an arbitrary vector. Hence, Û is PSD.

Analogously, consider symmetric matrix Ũ =

(
0 0
0 U2

)
.

Since U2 is PSD, zTU2z � 0 holds for all arbitrary vectors
z. Furthermore, z̃TŨ z̃ � 0, where z̃ is an arbitrary vector.
Hence, Ũ is PSD. Now consider the sum Û + Ũ :

xTÛx+ xTŨx � 0, or (26)

xT(Û + Ũ)x � 0. (27)

Thus, Eq. (27) implies that U = Û + Ũ is PSD.
To show positive semidefiniteness of U1, we choose a

vector x̃ with non-zero entries at the first k = dim(U1)
positions. Since U is PSD, x̃TUx̃ � 0. Hence,
xT
1×k U

k×k
1 xk×1 � 0 for all vectors xk×1, i.e., U1 is PSD.

Analogously, we choose a vector x̃ with non-zero entries at
the last l = dim(U2) positions, and xT

1×l U2
l×l xl×1 � 0

for all vectors xl×1, i.e., U2 is PSD. �
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