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In running, knee-related injuries are very common. The main cause are high impact forces when striking the ground with the
heel �rst. Mid- or forefoot running is generally known to reduce impact loads and to be a more e�cient running style. In
this paper, we introduce a wearable running assistant, consisting of an electrical muscle stimulation (EMS) device and an
insole with force sensing resistors. It detects heel striking and actuates the calf muscles during the �ight phase to control the
foot angle before landing. We conducted a user study, in which we compared the classical coaching approach using slow
motion video analysis as a terminal feedback to our proposed real-time EMS feedback. The results show that EMS actuation
signi�cantly outperforms traditional coaching, i.e., a decreased average heel striking rate, when using the system. As an
implication, EMS feedback can generally be bene�cial for the motor learning of complex, repetitive movements.
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1 INTRODUCTION
Running is the most popular sport with regard to the number of active hobby athletes. According to Timex,
76% of the 1048 adults claimed in an online survey to exercise at least once a week, and the majority run
without assistance or monitoring from a coach [4]. In 2015, more than 17 million runners �nished competitions
ranging from a 5km distance to the full marathon distance (42.195 km) in the United States alone1. The growing
popularity of recreational sports has recently gained attention by the tech industry. In 2014, the sports and �tness

1www.runningusa.org/statistics
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Fig. 1. A runner wearing the FootStriker prototype.

performance wearable market was valued at $3.5 billion and is expected to reach $14.9 billions by 2021 [31]. The
market used to be dominated by sports specialists (e.g., Adidas and Nike), but recently, big tech companies (e.g.,
Apple, Microsoft, and Samsung) have entered the industry. The currently available tools provide GPS tracking,
speed, distance, and heart rate monitoring. Many users are motivated to upload their activities to gami�ed social
networks speci�cally made for sports (e.g., Nike+, Runkeeper, or Strava) to share with friends, compete and
collect badges [21].

The currently used measures are mostly quantitative, although some wearables also provide real-time qualitative
data about the running style, such as ground contact time [29]. In this work, with qualitative training data we
generally refer to data that directly provides a measure of the e�ectiveness of the running technique, e.g., at a
given pace a shorter ground contact time usually is a direct indicator of a more economic running technique.
In contrast, we describe training data as quantitative if it provides only a measure of running performance and
thereby is only indirectly informative about the e�ectiveness of the running technique. For example, we refer to
the pace as quantitative, as it could be increased either with more physical e�ort or with an improved running
economy even if the physical e�ort is constant.

For recreational runners, it is often not easy to interpret the measured numbers, usually displayed on a small
screen on a fast-moving wrist while running. Many factors in�uence adequate information representation and
are not taken into account by current sports technologies [27]. An e�ective analysis of the running technique
can therefore only be provided by professionals or expert coaches using slow motion videos.

As many amateur athletes do not have access to a coach, long distance running generally causes a high
incidence of repetitive stress injuries per year, including stress fractures and knee problems. Approximately 56%
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Fig. 2. An example highlighting the di�erence between heel striking (le�) and forefoot striking (right)

of recreational runners sustain a running-related injury each year [28]. Other studies report a high correlation
between long distance running and injuries [16].

Ideally, the initial foot contact (i.e. foot strike) should absorb the high impact forces, which is not the case
when striking the ground with heel �rst. Heel striking is nevertheless natural for most runners as they learned it,
i.e. adapted it form walking. It is the prevalent running style as it requires less physical e�ort at slow paces, but it
becomes ine�cient when running fast [1]. An example highlighting heel striking compared to forefoot running
is shown in Figure 2.

There exist several bio-mechanical di�erences between forefoot strikes and heel strikes. With regard to injury
prevention, the most important di�erence is the higher impact peak measured for the vertical ground reaction
force. This generates a more rapid, high-impact peak when initially contacting the heel with the ground. Heel
strikers have an overall injury rate that is approximately twice as high compared to forefoot runners [2]. On
the other hand, a midfoot or forefoot strike pattern, contacting the ground with the midfoot �rst, can reduce
the mechanical stress for the body. Transitioning to a midfoot strike pattern is accepted as a potential way to
decrease impact [5].

Besides the decrease in the risk of injury, runners often have an intrinsic motivation to change their running style
to mid- or forefoot running that results in a shorter stride length and a higher stride frequency. Rotschild surveyed
785 runners, of which 94.8% self-reported to be either recreational or amateur runners. When questioned about
the most helpful resource for the transition, the participants most frequently mentioned supervised instruction by
a coach or running professional (n = 208, 26.5%) [22]. Heel striking not only increases the chances of injuries but
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leads to a lower running e�ciency and should thus be avoided [30]. Amateur athletes who want to become faster
therefore want to change their running style to imitate professional athletes, as one-third of the elite runners in
the world engage in midfoot running [8].

To address this issue, we propose FootStriker, a wearable system that detects the user’s running style using
force sensitive resistors (FSR) in the insole of a running shoe and uses electric muscle stimulation (EMS) as a
real-time feedback channel to intuitively assist the runner in adopting a mid- or forefoot strike pattern (see
Figure 1). The runners wearing FootStriker were not given any further instructions. In a between subject study
with 18 participants, we compared this novel approach against classical running technique analysis that consisted
of slow motion videos and verbal instructions. We measured the improvement of the running technique as the
ratio between number of heel strikes and total number of steps (heel strike rate). We show that FootStriker leads
to signi�cantly lower heel strike rates compared to classical coaching after running with the device for three
kilometers and then disabling the EMS actuation. By collecting qualitative feedback from the participants we
prove that all participants developed active knowledge about their newly-learned running technique and could
verbally express it only by using the device. In a third control group, we removed the actuation e�ect on the
calf muscles and used the EMS signal only to alert the user if a heel strike was detected. At the same time, we
ensured that the signal could still be perceived during running. As in this alert condition, we could not observe a
signi�cant e�ect, overall we show that EMS actuation actually was necessary to achieve the desired running
style adaptation, and alerting the user was not su�cient.

2 RELATED WORK
Our work is related to previous studies on ubiquitous running technology and EMS actuation in HCI.

2.1 Ubiquitous Running Technology
Sports has recently received more attention in UbiComp and HCI. Running watches, wearable �tness trackers and
other training tools are ubiquitous today [7, 27]. As surveyed in [17], one direction of work is concerned with how
technology can help athletes in rehabilitation and generally to avoid injuries. Other themes include motivation
for athletes through interactive computer games [15]. Jensen and Mueller [10] reviewed current technologies
that are used for run training, and based on that, present a design space and initial guidelines for research and
development of future run training interfaces. Our work complements the blind spot in their design space with a
run-training technology that focuses on running technique and assistive feedback. Many wearable devices exist
today that can be used to track and analyze running activities. However, most of them only provide assistance
and feedback on running performance (for example distance, elevation, pace), not running technique [10].
While existing commercial products focus on performance, Wijnen et al. [29] aim to provide real time analysis of
running technique. During actual �eld training, they measured technique-related parameters such as ground
contact time, heel-o� time, gait line, and pressure distribution during roll-o�. However, this data was not provided
to the athlete in real-time but sent wirelessly to a computer for post-training or post-race analysis. Harms et
al. [6] used several miniature orientation sensors to measure motion and body posture and Stohrmann et al. [24]
demonstrated the feasibility and comfort of using the inertial measurement unit (IMU) for assessment of kinematic
parameters of running.

Existing approaches using wearables to improve running technique mostly provide post-analysis only. In
contrast, our work provides real-time feedback on running technique using EMS. To the best of our knowledge
this is the �rst application of EMS actuation to correct running technique. In the following we introduce general
work on EMS actuation in HCI.
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Fig. 3. Overview of the hardware components of the prototype. Fig. 4. Placement of the EMS electrodes and
wearable control unit.

2.2 EMS Actuation in HCI
Some research on EMS as an interface exists in HCI. Lopez and Baudisch [12] proposed an EMS interface for
video games. In their approach a mobile game is controlled by tilting the device, and the EMS signal is sent to
the player’s arm to add a level of di�culty into the game. In [13], the physical impact of a virtual reality boxing
game is simulated by actuating the arm in a similar movement to what actually happens in a physical boxing
match. In [20], users could experience the feeling of the softness and hardness of virtual 3D objects on a computer.
A�ordance++ by Lopes et al. [14] is an extension to the physical a�ordance of everyday objects. Objects can
communicate with users and tell them how they are supposed to be used. For example, a can of paint can direct
the user to shake it before using it.

An approach that is closely related to our work is using EMS for pedestrian navigation [19] Typical GPS
navigators rely mostly on visual and audio feedback. The EMS-based actuated navigation is a new kind of
pedestrian navigation where the system could steer participants and change their walking direction by applying
an EMS signal to the sartorius muscles in the upper legs.

Passive haptic learning allows the learning of a new motor skill while not keeping any attention on the learned
task. In [23], users were able to acquire the keyboard typing skill passively while listening and focusing on audio.
In [9], users learned to play the piano while engaging in everyday activities. In these two studies, users used
tactile-enabled gloves with a vibrating motor for each �nger. We follow a similar approach to passive haptic
learning by using EMS to directly actuate muscles and thereby enable subconscious motor learning.

3 PROTOTYPE
The goal is to design a system that can reliably detect heel strikes, and can control the EMS signal on time. We
design the system taking into consideration the technical engineering challenges:
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Fig. 5. Positions of the FSR on the shoe insole. Fig. 6. Design of the detection circuit.

(1) During a foot strike, the duration between the heel touching the ground and the forefoot touching the
ground is about 0.05 sec, which poses an engineering challenge to detect heel striking.

(2) With an average cadence of 100 strides/min, runners have a 0.60 sec duration per stride. That is 0.30 sec
for the swing phase and 0.30 sec for the foot touching the ground. The EMS signal needs to be activated
or disabled in these short intervals. To ensure safety, we use optocouplers to galvanically isolate the
circuit of the commercial EMS device and the control unit.

The prototype consists of three main parts (see Figure 3): (1) a force-sensitive shoe insole to detect the running
strike type, (2) a medically approved EMS generator2, and (3) an Arduino-powered control unit that reads the
data from the force sensors, sends the data to a computer for logging and controls the EMS signal.

3.1 Force-sensitive Shoe Insole
The shoe insole contains three force sensing resistors (FSR)3, one on the heel area and two on the forefoot area, as
denoted in Figure 5; there are two sensors in the forefoot area so that runners with foot pronation or supination
are not neglected. Pronation and supination are the inward and outward roll of the foot while running. The FSR
sensors are connected to the Arduino, as in Figure 6. The sensors change their electrical resistive value based on
the force applied to them, and hence the voltage value read by the Arduino indicates the force applied at the
corresponding sensor.

3.2 Arduino Unit
The Arduino unit reads the values from the sensors continuously, detects the foot strike, and activates the EMS
control circuit in the case of heel striking. We use the Bluetooth-enabled RFduino board RFD22301 as the main
microcontroller4. Desktop Python scripts are used to read the data sent via Bluetooth from the RFduino unit, to
�nd the calibration thresholds (as shown in Figure 8), to log the data, and to visualize the results.

2Beurer Sanitas SEM 43 Digital EMS/TENS with Axion electrodes.
3Interlink model 402 FSR, 1.5cm-diameter.
4www.rfduino.com
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Fig. 7. Design of the EMS control circuit.

3.3 Control Circuit
The control circuit is based on the Let Your Body Move [18] toolkit. We implemented a simpli�ed version of it
(Figure 7) which contains only three electronic switches (relays) and a low resistance (470 ohms). The circuit will
either direct the generated EMS signal to the user or to a small resistance and disconnect the user from the EMS
circuit loop. The low resistance circuit is necessary as the EMS generator has a safety option to switch o� once it
is disconnected.

3.4 Calibration
Because the resistive values of the FSR sensors depend on the person's weight, the curvature of the foot and
the sti�ness of the shoe, a calibration is needed for each participant. For each sensor, two thresholds are used
(see Figure 8): the higher threshold is the lowest value above which the sensor is considered ON, which means
this part of the foot is touching the ground. The lower threshold is the highest value below which the sensor is
considered OFF, which means this part of the foot is not touching the ground. We de�ne three states of the foot
during running, as shown in Figure 9:

(1) IN AIR: when all three sensors are o�.
(2) LANDING: When only one sensor is on and its previous state is “IN AIR”.
(3) TAKING OFF: when a sensor's state is o� while the previous state of the same sensor was on.

3.5 Heel Strike Detection
Heel-striking is de�ned by the state if the heel sensor is ON and the state is LANDING. The calibration and
detection mechanism was developed during pilot-testing using a slow-motion video capture of di�erent strike
types. We compare the output of the Arduino which was sent via Bluetooth to a mobile phone with the actual
foot-strike as it appeared in the video. During the experiments, we took a slow-motion video of participants and
we achieved a recognition rate of 100%.

3.6 Portability
From a technical perspective, the prototype works outdoors as well, as it was designed to be very lightweight and
uses wireless communication via BLE. It senses heel strikes and triggers the EMS actuation standalone without
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Fig. 8. Example of the calibration data and the corresponding thresholds.

the need for an additional host computer. The wireless data interface is used only to read out the statistics of the
run. We took special care to keep the control unit, at only 42 grams, as light as possible. This unit is directly worn
on the shoe and we thereby did not signi�cantly increase the moving weight such that it would be noticeable to
the runner.

4 EXPERIMENT
The goal of the experiment was to measure the improvement in running technique towards a mid- or forefoot
running pattern (i.e. the avoidance of heel striking) using di�erent feedback methods. The improvement is
measured by the decrease in the heel strike rate. The experiment has been approved by the ethical review board
of the Faculty of Mathematics and Computer Science of Saarland University. Informed and written consent has
been provided freely by the participants. All participants were eplicitly told that they can stop the expiriment at
any time without loosing bene�ts. They were compensated with 10 Euros per participation.

4.1 Conditions
Participants are divided into three groups that get di�erent feedback (between-subjects): Classical, EMS actuation,
and EMS alert.

Classical In the classical approach the participants are shown a 240fps slow-motion video capture of their
�rst run highlighting the foot striking using a 9.7-inch tablet during the �rst break (i.e. after Block 1).
Participants are given a verbal explanation of the danger of heel striking for long term injury avoidance as

Fig. 9. The di�erent defined states for the gait cycle.
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well as its e�ect on performance. Participants are shown a side-by-side slow motion video of their running
alongside a professional runner to emphasize the di�erence. Lastly, participants are given instructions to
help with running on the mid- or forefoot by correcting the body posture and preventing over-striding
(too long steps).

EMS Actuation During the �rst break, participants are given a general introduction about electrical muscle
stimulation and are shown a live demo of using an EMS device to move the hand by putting the electrodes
on the forearm. Then the EMS generator is connected to the control unit and to the electrodes which
are on the participants' calf muscles, and the strength of the EMS signal is set to the max intensity at
which the users still feel comfortable running with it. The max strength varied between participants
(from 5 to 15), while the device allows a range from 0 to 30. In this group users are given no instruction
or explanation about foot-striking or running technique in general. Only two pieces of information are
given to them: (1) When you feel the signal, it means something is wrong, and when it is o� it means
you’re running correctly; (2) The EMS signal is trying to correct your running, so you should be relaxed
and try to work with the signal. Participants run their second 3km run with the EMS signal triggered
when a heel strike is detected and active during the swing phase (while foot is in the IN AIR state).

EMS Alert In this condition, the EMS signal is used as a noti�cation rather as an actuation or direct steering
of the participants' movements. This is accomplished by applying the signal while the foot is on the
ground (LANDING and TAKING_OFF states). This way the EMS signal can hardly actuate the muscle as
EMS actuation is not strong enough to actuate the foot while it is on the ground.

The purpose of the second condition is to measure how much improvement (if any) this new type of feedback
can have on learning a new running technique, and the short term e�ect of adopting the new learned technique
after removing the device, so that we measure the dependence on the device. The rationale behind the third
condition is that we want to investigate whether a possible improvement of the participant's running technique
is due to the actual control of the participant's movement, as in the second condition, or only the alerting e�ect.
We introduced this condition in order to exclude the possibility that the running technique adaptation in EMS
actuation was due to its pure noti�cation e�ect. Hypothetically, by testing only EMS actuation, it could have
been concluded that the e�ect was introduced by its timing and side noti�cation e�ect, not by the electrical
stimulation and change of landing foot angle.

4.2 Participants
From a group of 21 recruited volunteers, 18 participants (15 males and 3 females) were considered, neglecting
one overquali�ed participant (who already runs on the mid- or forefoot) and two outliers (their results varied
signi�cantly from the norm). Participants were aged between 24 to 36 years (M = 26.5, SD = 3.31). Their height
ranged from 160 cm to 190 cm (M = 180.5, SD = 7.87) and their weight range was 52 kg to 92 kg (M = 74.5,
SD = 12.41). Participants were recruited through a poster advertisement on a university campus asking for
amateur/mid-level runners who run at least once a week and can run a 5km distance in 20 to 35 minutes on a
treadmill.

After a participant arrived, he/she was assigned to one of the three conditions randomly while keeping the
three conditions balanced. There was one participant who was overquali�ed. For this participant we did not
measure any heel strike in the �rst run, and thus he was already a mid-/forefoot runner. After we were done
with all the data points we noticed two outliers, one in the classical condition and the second in EMS actuation.
These two participants had results that varied signi�cantly from the other participants in the same condition. We
omitted these two data points and recruited two more participants to �ll in the missing data points and keep the
number of participants per group balanced.
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4.3 Task
Participants were divided into three groups; all three groups were asked to run 5km in three blocks (1km + 3km
+ 1km) with 5-minute breaks in between. Design A between-subjects design was used with feedback as the
independent variable and heel strike rate as the dependent variable.

4.4 Procedure
After signing an informed consent statement, each participant was introduced to the experiment. After �lling
out a demographic questionnaire, the participant was equipped with the wearable device. During the whole
experiment, all participants used the force-sensitive shoe insole and the RFduino unit to detect the heel strike rate
and send the data via Bluetooth to a laptop to log the results. The calibration is done in a 5-minute warm-up run
before the 5km main run. In the �rst 1km run, users are asked to run normally at their average 5km pace. The
heel striking rate is collected and used as a baseline to measure how much improvement users will make. The
second 3km run was conducted according to the di�erent conditions. A third 1km run is used to investigate the
learning e�ect, so only the detection mechanism is used for all participants in the three groups and no feedback
of any form is given.

4.5 Apparatus
The apparatus consists of the wearable device, as introduced in the implementation section, and a treadmill.
During the whole experiment, all participants used the force-sensitive shoe insole and the RFduino unit to detect
the heel strike rate and send the data via Bluetooth to a laptop to log the results. Even though the prototype we
built features out-of-lab portability, we decided to conduct the user study on the treadmill as we thereby assured
a valid detection of heel strikes by backing up the data of the FSR sensors in the insole with slow-motion videos.
However, a previous study [3] found out that there is a signi�cant di�erence in running biomechanics between
treadmill running and overground running at a speed faster than 17.46km/h, and no signi�cant di�erence at
a slower speed. In our study the fastest participant was running at 15km/h, so we expect there will not be a
signi�cant di�erence if the same experiment is done out-of-the-lab.

4.6 Hypotheses
Our hypotheses for the experiment are formulated as follows:

H1 Participants are able to learn mid-/forefoot running (i.e. avoid heel striking) using EMS actuation
without further instruction.

H2 Participants are better able to learn mid-/forefoot running using EMS actuation feedback than with the
classical approach.

H3 EMS alert feedback (without further instruction) is not su�cient to instruct the runner towards a correct
mid-/forefoot running technique.

5 RESULTS
We evaluated our approach by measuring the e�ectiveness of the EMS feedback and additionally collected
subjective feedback after completing the three-kilometer run.

5.1 The E�ect of Feedback
The e�ectiveness of feedback (independent variable) was measured in heel strike rate (in percent) as the dependent
variable. Heel strike rate determines the ratio of heel strikes to the total number of steps:

HeelStrikeRate =
numberO f HeelStrikes

totalNumberO f Steps
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Table 1. Heel strike rates (in percent) in each participant of the classical feedback group

Participant 1st Block,1km 2nd Block,3km 3rd Block,1km
P1 97.03 81.48 88.35
P2 100 96.40 99.39
P3 100 65.69 64.39
P4 89.51 85.58 81.53
P5 98.95 87.42 98.18
P6 96.8 73.64 91.75

MEAN 97.05 81.70 87.27
SD 3.95 10.82 12.99

Table 2. Heel strike rates (in percent) in each participant of the EMS actuation feedback group

Participant 1st Block,1km 2nd Block,3km 3rd Block,1km
P13 93.64 9.19 8.59
P14 84.1 29.92 24.02
P15 100 9.63 3.6
P16 98.13 3.19 2.69
P17 99.78 33.55 2.94
P18 98.1 9.48 4.71

MEAN 95.63 15.83 7.76
SD 6.09 12.61 8.25

Table 3. Heel strike rates (in percent) in each participant of the EMS alert feedback group.

Participant 1st Block,1km 2nd Block,3km 3rd Block,1km
P7 99.26 99.64 99.84
P8 99.68 99.96 100
P9 92.06 76.42 49.05
P10 100 96.96 99.78
P11 99.78 96.83 97.3
P12 97.56 97.15 98.51

MEAN 98.06 94.49 90.75
SD 3.07 8.96 20.45

Tables 1-3 show the heel strike rate for each participant in the three blocks. In the third block no feedback was
provided and this run was used to measure the learning e�ect of each feedback approach.

In Block 1 all participants performed equally badly in all conditions, with a very high heel strike rate (M =
91.81, SD = 22.64). A one-way between-subjects ANOVA shows no signi�cant e�ect of feedback on heel strike
rate at the p < .05 level for the three conditions [F (2, 15) = 0.43,p = 0.66]. This result indicates that our sample
represents the target population of heel strikers.

In Block 2 the participants' running technique was corrected using the di�erent feedback approaches. A one-
way between-subjects ANOVA was conducted to compare the e�ect of feedback on heel strike rate for classical,
EMS actuation and EMS alerting conditions. There was a signi�cant e�ect of feedback on heel strike rate at the
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p < .05 level for the three conditions [F (2, 15) = 90,p < .0001]. Post-hoc comparisons using the Tukey HSD test
indicated that the mean score for the EMS actuation condition (M = 15.83, SD = 12.61) was signi�cantly di�erent
than for the classical condition (M = 81.70, SD = 10.82) and the EMS alerting condition (M = 94.49, SD = 8.96).
The classical condition did not signi�cantly di�er from the EMS alert conditions. These results (summarized in
Figure 10) suggest that the EMS actuation approach really does have an e�ect on heel strike rate when used in
runners. The results further suggest that EMS actuation signi�cantly outperforms both the classical approach
and the EMS alerting approach. Figures 11, 12 and 13 show the progress of each participant over time in Block 2.
Participants of the classical condition started out very promising but quickly fell back into the bad habit of heel
striking (see Figure 11). In the EMS actuation group the heel striking rate quickly drops for every participant and
remains at at very low level (see Figure 12).

In Block 3 all participants ran without feedback. This run was used to measure the actual learning e�ect of
di�erent conditions. A one-way between-subjects ANOVA was conducted to compare the e�ect of feedback on
heel strike rate for classical, EMS actuation and EMS alert. There was a signi�cant e�ect of feedback on heel
strike rate at the p < .05 level for the three conditions [F (2, 15) = 60.53,p < .0001]. Post-hoc comparisons using
the Tukey HSD test indicated that the mean score for the EMS actuation condition (M = 7.76, SD = 8.25) was
signi�cantly di�erent than for the classical condition (M = 87.27, SD = 12.99) and the EMS alerting condition (M
= 90.74, SD = 20.45). The classical condition did not signi�cantly di�er from the EMS alert conditions. Taken
together, these results suggest that the EMS actuation approach really does have a learning e�ect on heel strike
rate. Speci�cally, our results suggest that EMS actuation signi�cantly outperforms both the classical approach
and the EMS alerting approach.

Fig. 10. The average and standard deviation of the heel strike rate (in percent) for the three groups in the three block runs.
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Fig. 11. Heel strike rate of the second block run of the classical feedback group over time.

Fig. 12. Heel strike rate of the second block run of the EMS actuation feedback group over time.

5.2 Subjective Feedback and Observations
Subjective feedback was gathered after the experiment by a short questionnaire. The participants in the classical
feedback group were asked how hard they had to work to adopt the new learned running technique. 3 of 6 found
it physically harder speci�cally for the calf muscle and one participant found it harder to concentrate on adopting
the new technique while running.

When asked about how much improvement they think they made, only one participant thought he did
signi�cantly better (P3); the others admitted it was hard to change the running style they have used for years.
One participant said “I tried my best but it was hard to carry on” (P5). Another participant said “it is di�cult to
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Fig. 13. Heel strike rate of the second block run of the EMS alert feedback group over time.

change running technique” (P6). Participants in the EMS actuation and EMS alert conditions were asked about
what they thought the device was trying to make them do, and when it was triggered.

Every participant in EMS actuation was able to explain the e�ect after Block 2. In contrast, the EMS alert group
participants were not able to explain the semantics of the EMS alert, except for one participant (P9). Being asked
what they did to �gure out the reason for the error alerts, they answered that tried out di�erent strategies to
�nd the error source (e.g. di�erent cadence, running with high knees, faster speed, slower speed, landing on a
di�erent area of the treadmill (middle or the sides), the direction the feet were pointing (inward or outward),
short and long strides).

Participants in EMS actuation and EMS alert groups were asked to assess the comfort of EMS as a wearable
device based on the Comfort Rating Scales (CRS) [11]. Participants were asked to rate the following criterion on
a scale from 0 to 10, 0 being very low and 10 very high.

Emotion I am worried about how I look when I'm wearing this device. I feel tense or on edge because of
wearing the device.

Attachment I can feel the device on my body. I can feel the device moving.
Harm The device is causing me some harm. The device is painful to wear.
Perceived Change Wearing the device makes me feel physically di�erent. I feel strange wearing the device.
Movement The device a�ects the way I move. The device inhibits or restricts my movements.
Anxiety I do not feel secure wearing the device.

6 DISCUSSION
In the experiment we evaluated our approach to use EMS actuation as a feedback technique to improve running
technique. In the following we discuss the results of the experiment.

6.1 The E�ect of Feedback on Motor Learning
The experiment reveals that runners are able to learn mid-/forefoot running (i.e. avoid heel striking) using EMS
actuation without further instruction. The qualitative feedback from the participants of the EMS actuation group
we received after completing the three-kilometer run implies that they were able to �gure out what they learned,
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Fig. 14. The average scores on the Comfort Rating Scales.

since all participants correctly verbalized it. Thus, all participants were able to explain that they must not touch
the ground with the heel �rst; we assumed that the device could correctly communicate the kind of movement,
the correct direction and the time at which the movement had to be performed. They were then able to run with
a low heel strike rate without feedback in Block 3, which already con�rms H1.

However, this result couldn't be explained only by the fact that they �gured out what they did wrong, because
the classical group also was aware of the source of error, but they were not able to permanently avoid heel striking.
The results of Block 3 suggest that EMS actuation feedback is signi�cantly better than classical. This indicates
that EMS actuation directly supports motor learning and is thus more e�ective than the classical approach (H2).

EMS alert only (without further instruction) was also not su�cient as feedback to guide the runner towards
the error source. The results of Block 3 suggest that EMS actuation feedback is signi�cantly better than EMS alert.
This indicates that an EMS signal alone, that alerts but does not actuate the feet into the right pose, is not enough
(H3). Looking at the total number of heel strikes of the EMS actuation group compared to EMS alert and the
classical coaching approach, we can see that the runners had more time to practice the correct running technique,
as they on average did pick up the correct technique earlier and did not fall back into incorrect behavior as
in the classical approach. Thus, they would also have more total time to practice midfoot or forefoot running
compared to the other two groups, which might be one explanation of why the EMS actuation group still did
perform better even when the device was turned o� during the last kilometer. From a physiological perspective,
this explanation is in line with the current understanding of muscle memory, which increasingly develops over
time with every correctly executed movement. The more correct repetitions are executed, the more likely this is
to create long-term muscle memory, meaning that the movement could be correctly executed unconsciously.

6.2 Fatigue E�ect
Figure 11 indicates a fatigue e�ect on participants who don’t get real-time feedback. Participants started running
relatively well with lower rates of heel strikes, but then the heel strike rate increases again. This is supported by
the subjective feedback gathered after the experiment.

6.3 Learning Pa�ern with EMS actuation Feedback
Figure 12 shows a pattern where all participants started their second block run with a very high heel strike rate,
but could quickly (maximum 6 minutes) learn and adopt the new foot striking technique. However, some spikes
appear later in the curve. The reason for these spikes might be the fatigue e�ect, as in the classical feedback
group. Unlike the classical feedback group, the issue of falling back to heel striking is instantly and continuously
corrected. On the other hand, only one participant (P9) in the EMS alert feedback group (Figure 13) could �nd
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out how to correct the foot striking technique, but it was too late (after 16 minutes) compared to participants in
the EMS actuation group. Moreover, this participant couldn’t keep the new technique in the third run (49.05%
heel strike rate) compared to the EMS actuation group where the average heel strike rate was 7.76%. Another
explanation for the low but non zero heel strike rate after the six minutes mark would be a general inaccuracy of
the movements, as the motor skill was still fresh and not completely internalized. In a long-term test, if this e�ect
does not disappear, the system could be implemented with a certain degree of tolerance.

6.4 Perceived Comfort of EMS
The CRS scores suggest that our EMS-based system is considered comfortable to wear and run with. Perceived
pain or harm got the lowest average score from participants, indicating that the strong EMS signal that was able
to actuate user foot was not perceived as painful based on users’ own rating.

6.5 Correlated E�ects
Although we used the device only on one leg, we observed from the videos that participants who corrected their
striking patters did so for both sides. Moreover, participants who changed their striking from heel striking to
mid- or forefoot striking also changed their body posture and started using the more preferable falling forward
body posture. Avoiding over-striding is also another correlated e�ect that was observed in that same group
of participants who successfully started avoiding heel striking. This e�ects con�rms the intuition of running
biomechanics, that runners who do heel striking are more prone to have the less preferred very long strides
technique (over-striding).

7 CONCLUSION
In this work, we demonstrated the potential of using EMS-based assistive feedback to trigger an unconscious
motor learning process at the time of physical exercise. Our wearable system FootStriker detects the user’s running
strike pattern and provides real-time feedback via EMS to intuitively assist the runner in adapting to mid- or
forefoot running. The runners wearing FootStriker were not given any further instructions, and accepted and felt
comfortable using the device. We conducted a user study, in which we compared FootStriker against classical
coaching. We could show that using EMS actuation, our systems signi�cantly outperformed classical coaching.
Subjective feedback from the participants indicates that all participants developed active knowledge about their
newly-learned running technique and could verbally express it after completing the run. In a second control
group (EMS alert), we removed the actuation e�ect on the calf muscles and used the EMS signal only to alert the
user if a heel strike was detected. At the same time, we assured that the signal could still be perceived during
running. As in this alert condition, we could not observe a signi�cant e�ect, overall we show that EMS actuation
actually was necessary to achieve the desired running style adaptation; alerting the user was not su�cient.

With a signi�cant improvement over the classical coaching technique, showing technical feasibility and
e�ectiveness in terms of motor skill learning, we laid the foundation for novel assistive wearable devices for
sports. Previous work using haptic feedback as a noti�cation could perform just as well as classical coaching
techniques [25].

Still, running professionals and coaches cannot be replaced by our system, as their expert knowledge is required
for the externalization of domain knowledge at the time of building or reprogramming the system. Actuating
more complex movements requires accurate and timely orchestration of the muscles. Identifying those as well
as sensing body postures correctly, together with the establishment of rules for connecting the sensors, is not
trivial and requires knowledge about biomechanics. However, we think that our approach is generalizable to
other areas, and EMS-based assistants for learning new motor skills can be bene�cial, especially for amateur
athletes. We envision that athletes who do not have constant access to professional coaches can in the future
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use the proposed class of wearable devices as an inner feedback loop to communicate with experts and receive
qualitative feedback about their personal technique advancements.

8 FUTURE WORK

8.1 Long-Term Study for the Learning E�ect
Our short experiment showed an overall signi�cant improvement in adopting the new running technique using
only a short three-kilometer run as the learning window and a one-kilometer run to test the learning e�ect. A
future study could measure the long-term learning e�ect, measuring how long users can adopt the new technique
they learned through EMS actuation feedback before falling back to the old heel striking technique. A clinical
study [26] showed that using EMS can help people with foot-drop disability to learn the correct walking technique
and users could sustain the new technique for at least three months. In our case, the target users are physically
healthy and active, and the long-term e�ect is expected to last longer.

8.2 Muscle Coordination
In this study, we focused on only one running mistake (heel striking) and we stimulate only one muscle group
(calf muscle). EMS actuation achieved a signi�cant improvement over the classical coaching approach. A potential
direction for future work is to study actuating multiple muscles to correct multiple mistakes, hence to learn a
complex movement or help in synchronizing a speci�c required pattern. Muscle coordination is an important
aspect in most sports, and teaching a complex movement requires a lot of practice time from coaches and athletes.
EMS can provide a more intuitive interface for learning such patterns.

8.3 Out-of-the-Lab Study
The perception of the EMS feedback might be di�erent outdoors. A future �eld study should be done out of the
lab to investigate whether the improvement we measured using EMS as actuation also holds for outdoor running.
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