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Abstract— Motivation: For deep learning on image data, a
common approach is to augment the training data by artificial
new images, using techniques like moving windows, scaling,
affine distortions, and elastic deformations. In contrast to image
data, electroencephalographic (EEG) data suffers even more
from the lack of sufficient training data. Methods: We suggest
and evaluate rotational distortions similar to affine/rotational
distortions of images to generate augmented data. Results: Our
approach increases the performance of signal processing chains
for EEG-based brain-computer interfaces when rotating only
around y- and z-axis with an angle around ±18 degrees to
generate new data. Conclusion: This shows that our processing
efficient approach generates meaningful data and encourages
to look for further new methods for EEG data augmentation.

I. INTRODUCTION

Brain-computer interfaces (BCIs) link a user and ex-
ternal systems by detecting a specific brain activity (e.g.,
electroencephalogram (EEG)), which is correlated with the
users intent (e.g., attention, movement intention, etc.). In the
last decade, a great progress has been achieved by using
machine learning techniques in EEG-based BCI applications.
In particular, a single-trial detection of event-related poten-
tials (ERPs), which correlates cognitives processes, allows
to deliver the users intent to external systems per event in
real time. For example, embedded brain-reading, which uses
single trials from EEG signals to infer human’s intentions in
real time, allows to adapt the human-machine (or computer)
interaction [1].

Due to high sampling frequency (up to 5kHZ), EEG data is
usually first decimated, followed by a frequency filtering or a
frequency transform. For reducing the number of electrodes
(up to 256), numerous spatial filters have been developed,
e.g., [2]–[5]. Spatial filters linearly combine the data from
several sensors to create a reduced set of pseudo sensors
that condense the relevant information (as dimensionality
reductions like principal component analysis also do but
only on the spatial component of the data). However, these
algorithms are no spatial transformations and do not consider
the true position of the sensors.

EEG data processing chains are usually hand crafted and
the optimization is usually very difficult for various reasons:
a) EEG data is very noisy and non-stationary, b) there are

This work was supported by the Federal Ministry of Education and
Research (BMBF, grant no. 01IM14006A) and by a fellowship within the
FITweltweit program of the German Academic Exchange Service (DAAD).

1Mario Michael Krell is with the International Computer Science In-
stitute, University of California Berkeley, USA and the Robotics Group,
University of Bremen, Bremen, Germany.

2Su Kyoung Kim is with the Robotics Innovation Center (RIC), German
Research Center for Artificial Intelligence (DFKI) GmbH, Robert–Hooke–
Str. 1, 28359, Bremen, Germany. su-kyoung.kim@dfki.de

large differences in data between different recording days
with the same subject and different subjects, and c) real-
world applications do not often allow to record a large
number of labeled training samples for reasonable recording
time. Especially in case of stroke rehabilitation, it is more
difficult to record a sufficient amount of data, because the
patient (subject) cannot perform a large number of events
(movements) due to fatigue.

Several approaches have been applied to overcome these
problems, e.g., ensemble learning, transfer learning, and on-
line learning. In this paper, we propose a data augmentation
approach for EEG data, which, to the best of our knowledge,
has not yet been applied in EEG-based BCI applications. Our
approach is to modify existing data to increase its amount and
to support the learning algorithm in learning data invariances
(data augmentation).

In contrast, for image data it is common to apply different
distortions [6], scaling, or moving windows/pixel shifts to
create additional data and make the data processing more
robust/invariant to these transformations. This is especially
important for deep learning, which requires a lot of data
and to provide the network with examples of invariances
which it is supposed to learn. Krizhevsky et al. generated new
images at run time with translations and horizontal reflections
without great processing effort and increased the number of
images by a factor of 2048 [7]. Additionally, they randomly
altered the intensities of the RGB channels in the images.
For the first approach they report that “without this scheme,
(their) network suffers from substantial overfitting, which
would have forced (them) to use much smaller networks”
and for the second approach they state that it “reduces the
top-1 error rate by over 1%”.1 For EEG data processing, there
are only a few publications on deep learning and all suffer
from the low number of samples. Most of them focus only
on the temporal but not the spatial aspect of the data, even
though it is quite common to apply spatial filtering on EEG
data [8]–[10]. Especially, no data augmentation has been
used. In [11], a deep learning approach was applied which
was motivated by common EEG data processing chains
and which included temporal and spatial filtering but still
suffered from an insufficient amount of data and not using
augmentation techniques.

In this paper, we propose rotational data augmentation
for EEG data, (Section II). We evaluate our approach by
comparing different parametrizations and by analyzing the
effect of data dimensionality on classification performance

1 The training data consisted of 1.2 million images. The Alexnet has 60
million parameters, 650000 neurons, and 14 layers where 8 of them had
weights.



(Section III). We provide a conclusion and outlook in Sec-
tion IV.

II. ROTATIONAL DATA AUGMENTATION

In this section, we give an overview of the structure of
EEG data and introduce our approach. EEG data can be seen
as two-, three-, or four-dimensional data.

The most important dimension is the temporal dimension
because of its accuracy of sampling data with up to 5kHZ
that is directly related to the current brain activity.

The other dimension corresponds to the spatial component
of the data (different sensors/electrodes). This dimension
is usually handled as a linear list with arbitrary sorting
(1D). However, as regards content, it corresponds to the
sensors on the head surface (2D) with positions in the
3D space. In most EEG-based BCI applications/processing
cases, electrode positions and the underlying spatial relations
are not considered. In fact, there are correlations in data
between neighboring electrodes and hence it should be taken
into consideration. There are, of course, approaches that
consider the spatial relations between electrodes (e.g, source
localization methods, connectivity methods, etc). However,
such methods require a considerable amount of expert knowl-
edge and computational power compared to the classical BCI
applications.

For EEG data processing, spatial robustness is a major
issue. When an EEG cap slightly shifts during experiments
over time, it is not easy to find the original places of
electrodes and to reset the current positions of electrodes
to their original positions accordingly. Hence, there can be
differences in electrode positions between a first and second
recording session even during the same recording day (spatial
shifts within session and between sessions). Furthermore,
individually different head shapes of subjects can contribute
to differences in electrode positions between subjects (spatial
shifts between subjects).

Our approach to handle this issue is to generate artificial
data associated with differently shifted electrode positions
without much effort. This enriches the training data with
examples of shifted caps and enables the resulting classi-
fier to become robust against slight variations of electrode
positions. For reasons of simplicity, the way to generate
new data restricts to rotations around the three main axes
of the head as displayed in Fig. 1.2 Since electrode po-
sitions and head-shape are usually unknown, we use the
standard positions, according to the extended 10-20 system.
The new positions can be determined by standard rotation
matrices for the respective axes. The data of the rotation is
obtained by applying the interpolation based on radial basis
functions (RBF) from SciPy (scipy.interpolate.Rbf) [13]. For
this interpolation, it is crucial that the data is normalized
beforehand such that electrodes show comparable ranges. For
each time point, the current amplitudes are taken and a new

2 This graphic was created with Brainstorm [12], which is documented
and freely available for download online under the GNU general public
license (http://neuroimage.usc.edu/brainstorm).

Fig. 1. Spherical Head Model – The x-axis points to the right, the y-axis
to the front, and the z-axis runs through the vertex.

interpolation is generated. This approach is evaluated with
EEG data obtained from 5 subjects (details, Section III-A).

III. EVALUATION

In this section, the proposed approach is evaluated with
the P300 data, which was generated by the oddball paradigm
(Section III-A). We analyzed different parameters and prop-
erties of the rotational distortion. All data processing was
performed with the open-source signal processing and clas-
sification environment pySPACE [14] on a high performance
cluster.3

A. Dataset, Preprocessing, Classification

We used data generated from an experimental scenario4 as
described in [1], which contains a P300 oddball paradigm.
In the experimental scenario, the subject saw task-irrelevant
event (standard) every second with a latency jitter of
±100 ms. With a probability of 1/6, task-relevant event
(target) was displayed, which required a reaction from the
subject (see Fig. 2). Based on this reaction to the targets,
we can infer the true label for standards and targets. When
the subject correctly responded to targets, we can ensure that
targets were correctly perceived. The perceived task-relevant
event leads to a specific pattern in the brain, called P300.
In this scenario, the continuous EEG was recorded from 5
subjects. Two recording sessions were collected per subject
on two different days. Each session consists of five runs and
each run contains 720 standards and 120 targets.

We segmented the continuous EEG based on each event
with a segment length of one second and normalized them
to zero mean and a standard deviation of one. The sampling
rate of the data was reduced from 1000Hz to 25Hz. Then the
data was low-pass filtered with a cut-off frequency of 4Hz,
which was chosen based on our previous evaluations.

After this preprocessing step, the data augmentation ap-
proaches were applied. Afterwards, the xDAWN spatial filter
[3] was trained on the complete training data and then
applied with 8 resulting channels. Afterwards, local straight
lines were fitted for each channel and the respective slopes
(but not the offsets) were concatenated as features (segment
width of 400ms and step size of 120ms, see also [1]).

3 The code is provided as part of this framework.
4Study was approved by the ethic committee of the Bremen University

http://neuroimage.usc.edu/brainstorm


Fig. 2. Setup – EEG data is recorded while the subject plays a virtual
Labyrinth game and reacts to the target stimuli by pressing the buzzer.
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Fig. 3. Data augmentation with a rotation around the different axes: x, y,
z and a rotation angle of +angle and -angle (combined). See also Fig. 1
for the meaning of the axes. The augmented data of the different rotation
axes is combined for training. An angle of zero corresponds to the baseline
with no data augmentation.

Features were normalized to zero-mean and unit-variance on
the training data. The used classifier was a standard (affine)
SVM implementation with a linear kernel [15] and limited
number of iterations (100 times the number of samples). The
regularization hyperparameter C of the SVM was optimized
using 5 fold cross validation with two repetitions and with
the values [100,10−0.5, . . . ,10−4].

For our evaluation, we train with the data of one recording
session and then test on the other remaining recording session
of the same subject. This results in 10 samples (5 subjects * 2
sessions). EEG recordings on two different days (2 sessions)
lead to slight changes of the electrode positions.

To account for the unbalanced class ratio, we use the
balanced accuracy as performance metric, which is the
arithmetic mean of true positive and true negative rate [16].

B. Rotation Axes

In this section, we analyzed the effect of the three rotation
axes in the data augmentation. Here, we evaluated both
single axis data and possible axes combinations. For the
data augmentation, we took the original data and added an
artificial sample for the chosen angle in positive and negative
direction.

The results are depicted in Fig. 3. Note that using an angle
of zero means that the data has not been augmented but
kept as is. Using the x-axis reduced performance on average,
whereas the augmentation around the y- and z-axis increased
performance, in which the z-axis slightly outperformed the
y-axis. The combination of y- and z-axis slightly increased
classification performance, whereas adding data, augmented
with a rotation around the x-axis, decreased classification
performance in every combination. The best performance
was achieved with an angle between 12◦ and 24◦ over all
subjects.

We could also observe a variability between subjects in the
performance. Such subject-specific performance should be
considered, since we aim to configure the data augmentation
as independent from data properties as possible. Here, a
performance increase could be observed in 5 out of 10 cases.
In the other cases, there is no change or a slight decrease.
This absence of a substantial decrease is very important for
the applicability of our approach.

C. Data Reduction and Change of Data Dimensionality
In general, the dimensionality correlates with the cap

configuration (i.e., cap with different numbers of electrodes).
It is well known that machine learning algorithms behave
differently depending on the ratio between dimension of the
data after the preprocessing and number of provided samples
for each class.

For the xDAWN in the processing chain, the use of a larger
number of filters increases data dimension for the SVM
classifier. For the case of using small rotation angles, the
performance was reduced due to increased feature dimension
(see, Fig. 4). For 16 filters, the dimension is doubled, and
with 32 it is quadrupled. The same effect can be observed
when reducing the data size (see Fig. 5). Especially when
using one fifth of the data, the performance drops drasti-
cally. In contrast to the dimensionality increase, performance
decreases with less data which is common and expected.
Interestingly the large performance drop only occurs for
small rotation angles and it is not relevant for larger angles
over 10◦.

This result is very positive for our augmentation strategy
because it is still applicable when there is a lack of data. The
reason for the performance drop for small angles is probably
that the data augmentation is modeled by the classifier as
noise and degrades the classifier model whereas larger angles
are modeled like new data.

Further, we evaluated whether the data augmenta-
tion/interpolation is possible for smaller electrode constella-
tions (32 and 19 electrodes according to the 10-20 system).
This evaluation shows that the data augmentation did not
reduce the performance for smaller electrode constellation,
but there was also no relevant improvement between angles
(see Fig. 6). This indicates that the interpolation is not good
enough if the electrodes are positioned too sparse.

IV. CONCLUSION

In this paper, we proposed the rotational data augmentation
techniques for EEG data to generate new data without
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Fig. 4. Comparison of different numbers of spatial filters.
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Fig. 5. Comparison of different percentages of used training data.
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Fig. 6. Comparison of different cap configurations containing a different
number of electrodes.

reducing the performance. We analyzed and compared the
behavior of the used algorithm on real EEG data. Our
analyses show that our proposed novel approach results in
an increase of classification performance with a general
setting of rotating only around y- and z-axis with an angle
around 18 degrees. For the future, we want to analyze
statistical significance, further augmentation strategies, and
use our findings for deep learning. Furthermore, it would be

interesting to investigate whether complex head models or
aggregation of augmented results to one decision can further
improve the performance.
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