
Online Context-based Object Recognition for
Mobile Robots

J.R. Ruiz-Sarmiento∗, Martin Günther†, Cipriano Galindo∗, Javier González-Jiménez∗ and Joachim Hertzberg†‡
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Abstract—This work proposes a robotic object recognition
system that takes advantage of the contextual information latent
in human-like environments in an online fashion. To fully leverage
context, it is needed perceptual information from (at least) a
portion of the scene containing the objects of interest, which could
not be entirely covered by just an one-shot sensor observation.
Information from a larger portion of the scenario could still
be considered by progressively registering observations, but this
approach experiences difficulties under some circumstances, e.g.
limited and heavily demanded computational resources, dynamic
environments, etc. Instead of this, the proposed recognition
system relies on an anchoring process for the fast registration
and propagation of objects’ features and locations beyond the
current sensor frustum. In this way, the system builds a graph-
based world model containing the objects in the scenario (both
in the current and previously perceived shots), which is exploited
by a Probabilistic Graphical Model (PGM) in order to leverage
contextual information during recognition. We also propose a
novel way to include the outcome of local object recognition
methods in the PGM, which results in a decrease in the usually
high CRF learning complexity. A demonstration of our proposal
has been conducted employing a dataset captured by a mobile
robot from restaurant-like settings, showing promising results.

I. INTRODUCTION

Nowadays, object recognition systems tend to incorporate
contextual information between objects, which has proven to
increase the performance of local object recognition methods,
i.e., those that only rely on features of the objects themselves
(such as their geometry or appearance), and neglect the intrin-
sic relations among objects in the scene [1]. Let’s consider a
classic scenario from the Artificial Intelligence and Robotics
fields consisting of a waiter robot checking the tables’ config-
uration in a restaurant. This contextual information can guide
the recognition process stating that a long, thin object to the
left of a plate is more probable to be a fork than a spoon,
since that is the common, preferable configuration.

A large, growing body of literature has resorted to the
Probabilistic Graphical Models (PGMs) framework [2] for
modeling contextual relations [3–10]. In this framework, a set
of weights are learned in a supervised training process [11],
and then exploited by probabilistic inference to categorize and
recognize sensory data. Applied to object recognition, training
weights are associated with the different object classes (e.g.,

Fig. 1: Robot observing a partial view of a tabletop. Notice that
only a part of the table is captured, but the world state model
used by the object anchoring process still retains previously
observed objects and relations.

mug, vase, milk-pot, etc.), and the features used to character-
ize them (e.g., color, height, size, etc.) and their contextual
relations (e.g., distance between two objects, relative position
with regard to a supporting surface, etc.).

Most works address the problem through one-shot recog-
nition systems [3], [4], [9], [10], which recognize objects
relying on single observations of the scene (in the form of
RGB, depth or RGB-D images). Regarding the exploitation of
contextual information, one-shot systems are seriously limited
by the sensor frustum and possible occlusions, given that
they are able to observe only a portion of the objects and
relations appearing in the inspected scene. Some approaches
cope with this issue by registering a number of observations
prior to the recognition process in order to obtain a wider view
of the scene [5–10]. However, the time and computational
resources needed for gathering and registering such obser-
vations prevents their use in most robotic applications. Less
attention has been paid to online recognition methods, which
can mitigate these drawbacks by incorporating and exploiting
objects and contextual relations not appearing in the current
sensor observations, but previously perceived by the robot.
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The contribution of this work is twofold. First, we present
an online object recognition system that handles contextual
information beyond the sensor frustum in an online fashion.
For achieving that, we rely on an anchoring process [12]
for fast registering and propagating the location and features
of the perceived objects over time, even when they are out
of the current camera field of view (see Figure 1). The
output of the anchoring process is used to build and update
a graph-based representation of the world, which combined
with a Conditional Random Field (CRF) [2], a particular type
of PGM, permit the system to fully exploit the contextual
information in the environment by also considering that from
past observed areas.

Our second contribution tackles the problem of the PGM
training complexity, which seriously increases when the num-
ber of weights employed to comprehensively model the prob-
lem is large [11]. For that, we modify the usual CRF formu-
lation to include the results of any local, off-the-shelf object
recognition method able to provide a confidence measure of
its results. Local methods can specialize in dealing with some
kind of low level features, relieving the burden of learning their
related weights, hence decreasing the training complexity. It
is worth mentioning that the difference with previous works
in the literature stems from the possibility to also model
complementary, possibly higher-level features that are not used
by local methods.

The next section puts our work in context, while Section III
introduces CRFs and their application to object recognition. In
Section IV, we describe the proposed online object recognition
system, and experimental results are presented in Section V.
Finally, Section VI outlines some conclusions and future work.

II. RELATED WORK

Several object recognition systems can be found in the
literature relying on geometric or appearance features of
objects, like SIFT based approaches [13], bag of features
models [14] or methods based on CAD model matching [15].
However, these methods yield ambiguous results under some
circumstances, a drawback that can be alleviated with the use
of contextual information [1].

The Probabilistic Graphical Models (PGMs) framework [2]
is widely used for modeling and exploiting this kind of
information. For example, the work in [5] proposes a model
isomorphic to a Markov Random Field (MRF) and a rich set
of features to represent the scene objects and their relations,
while in [3], MRFs are combined with segmentation trees for
the recognition of objects. There are also examples relying
on Conditional Random Fields (CRFs), like [6], to classify
objects into four categories: wall, floor, ceiling and clutter,
and the work presented in [7], where the faces of a triangular
mesh representing the scene are assigned to object classes.
CRFs are also used in [8], [9], and [10], in conjunction
with common-sense information codified into an ontology, for
the recognition of objects appearing in office and domestic
scenes, and in [4] for the modeling of context in RGB images.
However, despite of the effort that has been made for properly

modeling and exploiting objects’ contextual information, less
attention has been paid to their applicability to different mobile
robot tasks [16], which probably imposes computational and/or
time execution constrains.

Some other works, in addition to the use of contextual in-
formation, also expand the recognition results of observations
over time. For example, in [17] a CRF is used for model-
ing both objects appearing in a scene and human activities
over a set of observations. In [18] a pixel level semantic
segmentation is performed through probabilistic inference over
a CRF enforcing temporal consistency of segments between
consecutive observations, resulting in a highly demanding
computational task. A similar approach is presented in [19]
with a temporal window of one observation. In this work
we rely on an anchoring process to expand the locations and
features of previously recognized objects over time, without
the restriction of a temporal window. Anchoring [12] has been
previously used to maintain a coherent representation of the
robot surroundings [20], [21], which in addition is useful to
perform efficient high-level robotic planning.

III. APPLYING CRFS TO SCENE OBJECT RECOGNITION

Probabilistic Graphical Models (PGMs) [2] have been used
to compactly and efficiently exploit contextual relations be-
tween random variables. Applied to scene object recognition,
where the aim is to assign to each of the scene objects their
respective class (e.g., mug, dish, spoon), such a problem is
modeled as follows. Let x = {x1, .., xn} be a set repre-
senting n observed objects within a given scene, where each
object xi is characterized through a vector of m features
fxiu = [fxiu1 , .., fxium ]T , e.g., size, height or elongation,
L = {l1, .., lk} the set of the k possible object classes, and
y = {yi, .., yn} a set of discrete random variables over L,
that assign to each object in x a class from L. Thus, the
scene object recognition problem, modeled by a CRF, consist
of maximizing the probability distribution P (y|x), i.e., to
find the most probable classes assignment to y given the
characterized objects’ observations in x.

A CRF is represented through a graph structure
H = (V,E), where V is a set of nodes representing random
variables, and E a set of edges linking related nodes. Con-
cretely, in the scene object recognition problem, each variable
in y introduces a node in V , and two contextually related
variables, i.e., variables whose associated objects are close
to each other in the scene, set an edge in E between their
respective nodes. Then, according to the Hammersley-Clifford
theorem [2], a number of functions called factors are defined
over parts of H , encoding each one a piece of P (y|x). In
this work we rely on two factor types: unary, related to nodes,
and pairwise, associated with edges. The insight behind this is
that unary factors encode the likelihood of a variable yi to be
assigned to a certain class li given the characterized object xi,
while pairwise factors express the compatibility of two related
variables belonging to a certain pair of classes.

Concretely, unary factors U(·), and pairwise factors I(·),
are defined by linear classification models as follows:
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U(yi, xi,ω) =
∑
l∈L

δ(yi = l)ωlf(xi) (1)

I(yi, yj , xi, xj ,θ)

=
∑
l1∈L

∑
l2∈L

δ(yi = l1)δ(yj = l2)θl1,l2g(xi, xj) (2)

where f(xi) is the function that computes the vector of
features fxiu of the object xi, g(xi, xj) provides the pairwise
features fxixjp = [fxixjp1 , .., fxixjpq ]

T for objects xi and xj
(e.g. perpendicularity, size ratio, etc.), ωl = [ω1,l, .., ωm,l] and
θl1,l2 = [θ1,l1,l2 , .., θq,l1,l2 ] are vectors of weights associated
to the class l and the combination of classes l1 and l2 respec-
tively, both learned during the CRF training, and δ(yi = l) is
the Kronecker delta function.

Once these factors have been defined, the computation of
P (y|x) can be expressed by means of log-linear models as:

P (y|x,ω,θ) = 1

Z(x,ω,θ)
e−ε(y,x,ω,θ) (3)

where Z(·) is the partition function, which plays a normalizing
role so that

∑
ξ(y) P (y|x,ω,θ) = 1, with ξ(y) being a

possible assignment to the variables in y, and ε(·) is the so-
called energy function defined as the sum of all the factors
defined over the graph:

ε(y,x,ω,θ) =
∑
i∈V

U(yi, xi,ω) +
∑

(i,j)∈E

I(yi, yj , xi, xj ,θ) (4)

The CRF training yields the weights ω and θ that maximize
the likelihood function:

max
ω,θ

LP (ω,θ : D) = max
ω,θ

∏
d∈D

P (yd|xd) (5)

where D is the set of all the scenes used for training, xd is a set
containing the characterized objects in the scene d ∈ D, and yd
are their corresponding ground truth classes [11]. Since solving
Eq. 5 requires the computation of the partition function, which
is intractable in practice, usually an approximated function
replaces it. We have chosen the pseudo-likelihood one in this
work [2].

Despite this simplification, the learning process remains
complex if the number of considered object classes |L| and
features used to describe them

∣∣fxiu

∣∣ and their relations∣∣∣fxixjp

∣∣∣ is high, which results in a large number of weights
as well. On the other hand, it is desirable to account for
a comprehensive variety of features in order to properly
characterize both objects and relations. In Sec. IV-C2 we
describe our approach to tackle this issue.

Once these weights are learnt, and provided a graph repre-
sentation H = (V,E) of the objects and relations appearing
within a given scene (see Sec. IV-C1), a probabilistic inference
process over the resultant CRF predicts the objects’ most
probable classes, as described in Sec. IV-C3.

IV. CONTEXT-AWARE ONLINE OBJECT RECOGNITION

The proposed recognition system is a combination of: i)
a local object recognition method, ii) an anchoring process,
and iii) a Conditional Random Field (see Figure 2). In a
nutshell, the local object recognition method1 (Sec. IV-A)
segments the sensor point cloud into object clusters and yields
a recognition result for each one in the form of vector of
confidence values. This is the input for the anchoring process
(Sec. IV-B), which tries to anchor the newly detected objects
to previously observed ones, and supports the creation of a
scene graph comprising all the currently observed objects and
nearby ones that are out of the camera frustum, with edges
connecting objects that are close to each other. A CRF is
then built incorporating the nodes and edges of the scene
graph along with their features, as well as the confidence
values from the local object recognition (Sec. IV-C). Finally, a
probabilistic inference process over the CRF yields the scene
object recognition results.

A. Segmentation, Tracking and Local Object Recognition

The first steps in our processing pipeline perform the
segmentation of the current sensor (RGB-D) data and a local
object recognition, which classifies each segmented object
separately. Here, we use the state-of-the-art spin-image based
object recognition method by Oliveira et al. [22]. Its output is a
set of positions and bounding boxes for each object, along with
a vector cxi

= [cl1 , .., clk ] of confidence values, representing
the confidence with which object xi belongs to the respective
class in L. This output is used both by the anchoring process
(Sec. IV-B) and the CRF (Sec. IV-C2).

Apart from segmentation and local object recognition,
Oliveira et al.’s method [22] also provides real-time tracking
of the recognized objects: a unique track ID is attached to
all observations of the object in subsequent camera frames.
However, this tracking is lost when the object is no longer in
view of the RGB-D camera.

Notice that the proposed system can integrate any off-the-
shelf local object recognition method yielding a bounding box
and a confidence vector for each object. Although we make use
of the tracking functionality in Sec. IV-B, our system does not
require it. In fact, we have also used the system to process the
output from the ROS tabletop object detector [23] recognition
method, which does not provide track IDs2.

B. Object Anchoring and World Modeling

The anchoring process keeps a persistent world model of
the locations, features, identities and classes of the objects
perceived so far. This enables the CRF to exploit context
between currently observed objects and previous ones which
are outside the current camera view (Figure 3 shows an
example situation).

1In this paper, we use the term local object recognition for this process to
distinguish it from the presented, complete object recognition system, which
does joint classification of all objects in the scene.

2We have not used that detector in the context of this paper since it requires
CAD models of all objects and can only handle rotationally symmetric objects.
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Fig. 2: Overview of the proposed system. Ovals represent consumed/produced data, while boxes stand for processes. The
contribution of this paper is highlighted by the dotted box. Locally tracked objects are anchored to previously observed ones,
and a scene graph of objects is built including both currently tracked objects and nearby known ones out of view of the camera.
All objects in the graph are jointly classified by an inference process over a CRF, and the set of known objects is updated.

Whenever a new set of objects is reported by the local object
recognition, the following steps are executed:
1) Anchoring attempts to match the new objects to all nearby
known ones from the current world model. In order to do so,
the similarity between pairs of objects is calculated by a Sup-
port Vector Machine (SVM) that was trained on the distance,
size and difference of the two objects’ class confidence vectors
ci, cj . Next, the best assignment of all objects is calculated by
the Hungarian method [24], using the computed similarity as
a cost function. If the cost of assigning an object exceeds
a certain threshold, a new object is inserted into the world
model; otherwise, the object representation is updated. If the
local recognition system supports tracking and the object is
already tracked, its track ID will be used to instantly match
the new observation to its representation in the world model.
2) A scene graph for the local scene is created by first adding
one node for each currently observed object, then recursively
adding nodes for objects that are closer than a certain context
range to a node already in the graph (which can include known
objects that are close to currently observed objects, but outside
the camera frustum). An edge is added to the graph between
each pair of nodes that are within context range of each other
(see Figure 3).
3) After computing the objects’ MAP classes (see following
section), the world state model is updated with the result.

C. CRF Building and Inference

Given the scene graph in the world model, a CRF model
is built according to it and the features and relations of its
constituent objects (Sec. IV-C1), which also integrates the
confidence vector from the local object recognition method
(Sec. IV-C2). Finally, an inference process over the CRF
computes the most probable classes of all objects (Sec. IV-C3).

1) Graph building and Feature Extraction: The building of
the CRF graph structure H = (V,E) is straightforward, since
the anchoring process already provides the set of nodes V ,
each one associated with a random variable from y represent-
ing the class of a scene object xi, and the set of edges/relations
E between those objects. Note that a scene object xi can be
an object present in the current sensor observation, or a closer
one out of the sensor view but previously detected.

These objects and relations are subsequently characterized
through the vectors of features fxiu and fxixjp respectively,
which are integrated into the CRF model as introduced in
Eq. 1 and Eq. 2. The (unary) features used in this work
to describe an object are: volume, horizontal and vertical
area, horizontal and vertical elongation, and distances from
the estimated table center and table border. The (pairwise)
features describing objects’ relations are: ratio between the
objects’ volumes, difference in height above ground, horizontal
distance between their centroids, difference in distances from
table center/border, and angle between the objects and the
table center. Also a bias term is included to allow the CRF to
consider the co-occurrence probability between object classes.

2) Integrating local object recognition results: Our CRF
model can be enriched with the outcome from any local object
recognition method (or a combination of them) able to provide
a confidence vector of its results, which permits the recognition
system to take advantage of methods exploiting specialized
feature descriptors. For that, we introduce the confidence
vector cxi

of an object xi into the usual CRF unary factor
formulation (see Eq. 1) in the following way:

U(yi, xi,ω) =
∑
l∈L

δ(yi = l)ωlf(xi)cxi(l) (6)

Thus, the components of the confidence vector play the
role of an additional feature, not related to any weight, that
have a different value for each object class. This integration
also leads to a reduction in the number of weights present
during the CRF learning, alleviating the training complexity.
In this way, the CRF focuses on exploiting high-level features
of objects and relations, and releases the work with specialized
feature descriptors to the local method, which modeling into
the CRF typically involves a large number of weights. For
example, in our experiments where we have considered 9
different object classes, the number of weights associated
with features of objects is

∣∣fxiu

∣∣ · |L| = 7 · 9 = 63, while
the number of those related to contextual features results∣∣∣fxi,xjp

∣∣∣ · |L|2 = 6 · 81 = 486, giving a total of 549 weights.
The employed local recognition method represents each object
by a set of 10 shape features, each one with a descriptor
vector of 45 components, resulting in a total descriptor length
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(a) robot observing a tabletop scene (b) a later observation of the same scene from a
different viewpoint

Fig. 3: Top-down views of a robot observing a tabletop scene. Transparent boxes: bounding boxes of anchored objects with
their CRF classification result (CRF nodes; green: currently tracked, blue: not currently tracked); lines: context edges between
nearby objects (CRF edges). The bounding polygon of the currently observed table surface and its center are also shown. Note:
Figure 3b is an orthographic projection of the situation depicted in Figure 1.

of 450. Thus, their modeling into a CRF would suppose the
addition of 450 · |L| = 4050 weights, which clearly would
increase the training complexity, even dropping the recognition
performance.

3) Probabilistic inference: Once the CRF has been modeled
including: a graph representation H = (V,E), the extracted
features of the graph components, and the confidence values
from the local object recognition method, a probabilistic
inference process over such a CRF is in charge of providing
the recognition outcome. Concretely, the objects’ recognition
consists of finding the classes assignation ŷ that maximizes
the probability distribution P (y|x), that is:

ŷ = argmax
y

P (y|x,ω,θ) (7)

This calculus is commonly referred as the Maximum a
Posteriori problem (MAP), which in this work is carried out
by means of the Iterated Conditional Modes method [25], an
approximated solution that mitigates the heavy computational
burden required by exact approaches. We have resorted to the
implementation of the aforementioned training and inference
processes within the UPGMpp library [26].

V. EXPERIMENTAL RESULTS

To test our system, we collected a data set of 15 scenes
of a robot equipped with a RGB-D camera driving around
a table and turning towards it from different locations. The
table contained a number of objects in varying table settings.
In total, the data set contains 1387 seconds of observation and
144 unique objects from 9 object classes 3. We have followed a
five-fold cross-validation process, training the CRF on twelve
of the scenes while using the other three for testing, and then

3Available at https://goo.gl/BQiXC8

TABLE I: Classification accuracy on sub-data sets (“small
objects”: Fork, Knife, Spoon). Loc: local object recognition
only (base line [22]); CRF+A: CRF with objects outside the
field of view supplied by Anchoring; CRF+Loc: CRF inte-
grated with local object recognition; CRF+A+Loc: complete,
proposed system (CRF, anchoring, local object recognition).

Loc CRF+A CRF+Loc CRF+A+Loc

small objects 46.32 % 75.00 % 72.58 % 75.54 %
other objects 91.15 % 90.73 % 94.38 % 93.15 %
total 76.64 % 85.05 % 85.43 % 86.82 %

switching the folds. This data set was intentionally chosen
because of two challenging characteristics: on the one hand,
the small objects (fork, knife and spoon) only produce a small
set of points in the captured point clouds; they are almost
the same size and contain reflective parts, so only the handle
is actually visible. This combination makes them hard to be
distinguished based only on local features. On the other hand,
the robot normally sees only a part of the scene, which means
that the full object context information is not available from
the current sensor data (see Figure 3).

The results are summarized in Table I. As expected, rec-
ognizing small objects yields poor accuracy results when
using only the local object recognition method. However,
our combined system exploits context to achieve a signifi-
cant improvement (29.22 % increase in accuracy). The results
also demonstrate the performance boost by using context
with objects outside the current field of view (CRF+A,
Sec. IV-B) and integrating local object recognition results
into the CRF (CRF+Loc, Section IV-C). In total, the com-
plete combined system (CRF+A+Loc) achieved an increase
of 10.18 % in accuracy over the employed local object recog-
nition method [22]. Figure 4 shows the aggregated confusion
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Fig. 4: Confusion matrix of the combined method
(CRF+A+Loc in Table I) – classification accuracy: 86.82 %.

matrix yielded by the proposed system over the data set.
Regarding computational costs, training, which has to be

completed only once, took on average 1421.5 s per fold.
The runtime of feature extraction was 0.064 s, and for MAP
inference 0.005 s per scene graph (excluding time for the local
object recognition). All experiments have been performed on
a standard laptop (2.6 GHz Core i7 CPU, 8 GB RAM).

VI. CONCLUSIONS

This paper has presented an online object recognition system
that exploits contextual relations between the scene objects
beyond the sensor field of view. This is achieved through
the use of an anchoring process, which in an online fashion
propagates the features and locations of previously perceived
objects over time, and a Conditional Random Field (CRF)
that captures the scene objects’ relationships and enables their
exploitation by means of a probabilistic inference process. We
have also tackled the problem of the CRF training complexity
by proposing a new formulation that leverages the confi-
dence results provided by an off-the-shelf object recognition
method, which specializes in dealing with low-level features.
The conducted evaluation supports our claims: i) the use of
contextual information has improved the recognition results
yielded by a state-of-the-art local recognition method, ii) the
integration of the outcome of such method into the proposed
CRF formulation has shown a positive effect on performance,
and iii) the inclusion of information previously perceived
by the robot through anchoring leads to further performance
improvements.
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