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ABSTRACT
The design of various robots in industrial and academic contexts
integrates closed loops to improve the mechanical sti�ness in com-
parison with purely serial or tree-type topologies. In particular,
planar kinematic loops as parallelograms or double parallelograms
are employed in such hybrid robots. Since these systems are geomet-
rically overconstrained in the group of spatial Euclidean motions,
the computational performance and numerical accuracy of any
model-based dynamics software is negatively a�ected. This paper
introduces a novel method to avoid these numerical issues for any
hybrid system with loops that can be characterized by the concept
of linear mimic joints: these are passive joints which depend on an
active joint in a closed loop in a linear manner. With the proposed
approach, the loop closure functions are automatically composed
from the robot description �le and integrated into the analytical
equations for solving the forward and the inverse dynamics prob-
lems. The paper illustrates the application of this method for a
novel shoulder mechanism containing a planar six bar mechanism
that has been designed for the Recupera whole-body exoskeleton.
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1 INTRODUCTION
Serial and tree-type mechanisms are well known for their versatility
in applications, large workspace, and a simple modeling and control.
Hence, they often represent the state-of-the-art in robotic systems.
However, they generally feature only limited precision, low sti�-
ness, and poor dynamic characteristics. In contrast to serial robots,
parallel devices o�er higher sti�ness, speed, accuracy, and payload
capacity. At the downside, they provide a reduced workspace and a
more complex geometry which requires careful analysis and control.
To combine the various advantages of serial and parallel topologies,
hybrid serial-parallel robots have been developed in industry and
academia. For instance, the sti�ness of a manipulator can be signif-
icantly improved by including a simple parallelogram mechanism.
In particular, industrial robots as ABB’s IRB4400, IRB6660, KUKA’s
KR 30,50-PA., KR 700-PA robots, and Comau’s Smart H, NJ, NX
series, SR400 utilize this design concept [7, 23].

The usage of parallel submechanisms in a robot’s design intro-
duces a new level of complexity into its modeling, simulation, and
control. For describing serial robots, Denavit–Hartenberg (DH) pa-
rameters [8], and their modi�cations [10], have become the de-facto
standard: they specify each coordinate transformation by only four
parameters instead of six parameters, due to the particular place-
ment of local coordinate systems at speci�c locations. Since the
placement of these coordinate systems requires manual e�ort, work
has been invested to extract the DH parameters automatically from
CAD models of the serial manipulators [20].

In case of tree type robots and robots with closed loops, the tradi-
tional notion of DH parameters can not be used and hence various
extensions have been proposed in the literature [11]. A comparison
of various robot parameterization techniques can, for example, be
found in [2]. Due to the dependence of the frame placement on the
link geometries, the modeling becomes unintuitive in particular
for complex link shapes (for example in exoskeletons or human-
machine interfaces). For these reasons, standard open source ro-
bot description formats, as URDF (ROS), COLLADA (OpenRAVE), or
SDF (Gazebo), do not rely on DH parameters (or extensions) for
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Type position velocity acceleration

implicit: ϕ (q ) = 0 K q̇ = 0 K q̈ = k

explicit: q = γ (y ) q̇ = Gẏ q̈ = Gÿ + д

Table 1: Loop constraints [5]

representing the coordinate transforms and, instead, store the re-
quired transformations by six parameters. These displacements re-
quested by these description formats can be automatically extracted
from computer aided design (CAD) environments by programs as
CAD-2-SIM [1] with little manual e�ort: due to the automation, the
work�ow becomes reusable, less prone to erratic human in�uence,
and quickly adaptable to new design iterations.

Multi-body dynamics has been an area of extensive research
during the past decades. Notable works include Newton–Euler’s
[5, 10], the Lagrangian [10], the Decoupled Natural Orthogonal (De-
NOC) [21], and Kane’s method [3, 14]. Traditionally, the equations
of motion were described in 3D Euclidean space – which quickly
yields a large amount of equations for systems of connected bodies
[15]. To address this issue, alternate elegant formulations have been
developed based on screw theory which can be simply transformed
into program code for present day computers [5, 9]. The Rigid Body
Dynamics Library (RBDL) [6] is an open source library that imple-
ments such algorithms for generic tree-type systems and imports
robot descriptions using the URDF [24] format.

The presence of closed loops in robots signi�cantly increases the
complexity of the kinematics and dynamics problems associated to
the multi-body systems (MBS). In particular, planar kinematic loops
impose redundant constraints on the system – that either need
to be removed manually [5] or demand numerical decomposition
techniques which deteriorate the computational performance and
numerical accuracy of the solution [17]. In many practical instances
of kinematic loops within hybrid robots, the active joint guides the
other passive joints inside a loop in a linear manner. The contri-
bution of this paper is an explicit method to compute the forward
and inverse dynamics of arbitrary hybrid robots that involve planar
kinematic loops which can be described by means of linear mimic
joints (for example, parallelograms or chains of parallelograms).
Once speci�ed in a URDF �le, featuring the mimic joint tag, the
associated loop closure functions are detected and transferred into
a suitable form to be used in the computations of the analytical
the forward and inverse dynamics algorithms. The bene�t of this
approach is that e�cient dynamics algorithms for tree type system
with O (n) complexity can be directly used to solve the dynamics.
The results are free of numerical errors due to loop closure and free
of singularities arising from redundant constraints imposed by the
planar kinematic loop. The application of the dynamic modeling
is demonstrated for a novel shoulder mechanism which employs a
double-parallelogram mechanism at the second shoulder joint.

The organization of the paper is the following: Section 2 pro-
vides theoretical preliminaries for modeling robots with closed
loops along with an introduction to the concept of loop closure
functions. It derives the formulas for the forward and inverse dy-
namics for these mechanisms. Section 3 presents the concept of
mimic joints and the novel method to derive the loop closure func-
tions automatically from the robot description. Section 4 presents

the application of this approach to the forward and inverse dynam-
ics computation of a shoulder mechanism developed for a novel,
full-body exoskeleton. Section 5 draws the conclusions and presents
future work.

2 MODELING RIGID BODY SYSTEMS WITH
CLOSED LOOPS

This section brie�y introduces the theory of multi-body dynamics
subjected to holonomic and sceleronomic constraints. It strictly
adopts the notation and terminology introduced by Featherstone
in [5]. Therefore, consider a rigid body system with NB bodies,
N J joints, and NL = N J − NB kinematic loops. Assume that a
spanning tree is de�ned and that the joints are enumerated using
regular numbering scheme. Let n denote the degree of freedom
of the selected spanning tree, computed as n =

∑NB
i=1 ni , and let

nc denote the number of loop-closure constraints, computed as
nc =

∑N J
k=NB+1

nck . Further, let q indicate the vector of all joints
of the spanning tree (of size n) and let y indicate the vector of all
independent joints of the spanning tree (of size n − nc ).

2.1 Loop Constraints
Loop constraints are algebraic constraints on the motion variables
of a multi-body system. Loop constraints can be expressed in an
implicit and in an explicit way, they are summarized in Table 1
at position, velocity, and acceleration levels. Here let K = ∂ϕ

∂q ,

k = −K̇q̇, G = ∂γ
∂y , and д = Ġẏ. If both functions ϕ and γ describe

the same constraint, ϕ ◦γ = 0, KG = 0, and Kд = k can be deduced.
Algorithms to compute variables in Table 1 from the spanning tree
are provided in [5] and skipped here for brevity.

2.2 Equations of Motion (EOM)
The equations of motion for the spanning tree of a multi-body
system can be written as

τ = H (q)q̈ +C (q,q̈) (1)

where q,q̇,q̈ are (n × 1) vectors of joint position, velocity and
acceleration variables of the spanning tree,H (q) is the (n×n) mass-
inertia matrix,C (q,q̈) is a (n×1) vector for Coriolis-centrifugal and
gravity e�orts, and τ is the (n × 1) vector of force/torque variables.
In case of robots with closed loops, the equivalent spanning tree of
the robot system is subjected to loop constraint forces

H (q)q̈ +C (q,q̈) = τ + τa + τc (2)

where τc and τa are the constraint and active forces, respectively
produced by the loop joints. If the selected loop joint is passive,
τa = 0 can be substituted in Equation 2. The constraint force τc is
usually unknown but its value can either be calculated or eliminated
from the equation following the Jourdain’s principle [19] of virtual
power, i.e., τc q̇ = 0. Based on the (implicit or explicit) nature of
the loop constraints, the equations of motion are developed for the
entire system.

2.2.1 EOMwith implicit loop constraints. The loop joints impose
a set of kinematic constraints on the spanning tree which are brie�y
introduced in Table 1. Assuming that the position level implicit
constraints have been successfully di�erentiated two times, the
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acceleration level loop constraints can be collected in a single matrix
equation of the form

Kq̈ = k (3)
where K is (nc × n) matrix. If the system is subjected to an implicit
loop constraint then it can be shown that τc takes the form

τc = KT λ (4)

where λ is vector of unknown forces, also regarded as Lagrangian
multipliers. Combining Equations 2, 3 and 4, the equation of motion
of the overall system taking into account implicit loop constraints
can be written as

[
H KT

K 0

] [
q̈
−λ

]
=

[
τ −C + τa

k

]
. (5)

This is a system of (n+nc ) equations in (n+nc ) unknowns. The co-
e�cient matrix of dimension (n+nc )× (n+nc ) in Equation 5 is sym-
metric but not positive de�nite. If the rank of matrix r = rank (K )
is less than nc , then coe�cient matrix becomes singular and the
system is said to be over-constrained. Over-constrained systems
are actually very common. For example, any system containing
planar kinematic loop is over-constrained. Redundant constraints
usually a�ect the computational e�ciency and accuracy of any
model based dynamics software [17].

2.2.2 EOM with explicit loop constraints. Using explicit velocity
level loop constraint (refer to Table 1) and Jourdain’s principle of
virtual power, one can establish that τc will have the following
property

GT τc = 0 . (6)
Similarly, one can write the explicit motion constraints at an accel-
eration level

q̈ = Gÿ + д . (7)
Combining Equations 2, 6 and 7, the equation of motion taking into
account explicit loop constraints can be developed.



H −1 0
−1 0 G
0 GT 0





q̈
τc
ÿ


=



τ −C + τa
−д
0


(8)

2.3 Loop Closure Functions
It is usually more complex to deal with robots involving closed loops.
In contrast to a tree type robot, the mobility of closed loop system
is dependent on r which can vary with the con�guration. Also, the
di�erent assembly modes can lead to con�guration ambiguities.
Thus, it is useful to derive explicit functions for the modeling of
closed loop systems whenever and wherever possible.

Let us de�ne loop closure functions such that they provide a
unique mapping between the independent position variables y and
position variables in the spanning tree q. For this assumption to
hold true, let us de�ne a set C ⊆ Rn−r of acceptable values of y,
and assumey ∈ C . For ally ∈ C , there exists a function, γ such that

q = γ (y)

q̇ = Gẏ

q̈ = Gÿ + Ġẏ = Gÿ + д
(9)

It must be noted that the above relations are identical to the
explicit loop constraint equations noted in Table 1 when the loop
closure errors are zero. This method is less generic in nature than the
ones described before because it is not always possible to �nd such
a mapping analytically. However, the advantages outweighs the
manual e�ort needed to derive these functions because when loop
closure functions are used numerical loop closure errors can not
occur. Also there is no need to introduce a constraint stabilization
term unlike when practically dealing with Equation 3.

2.4 Forward and Inverse Dynamics
The equations of motion presented above could be either solved
for independent joint accelerations ÿ under given actuator force
conditions or for the actuator forces u required to generate given
acceleration. The former is called the forward dynamics problem
and the latter is called the inverse dynamics problem [5, 9]. In this
section, the forward and inverse dynamics formula are derived such
that a link between the loop closure functions and spanning tree
dynamics is established.

2.4.1 Forward dynamics solution. By using Equation 6 and mul-
tiplying by GT on both sides of Equation 2, the loop constraint
forces τc can be eliminated.

GTHq̈ = GT (τ −C + τa ) (10)

Substituting Equation 7 in Equation 10 and simplifying one can
arrive at the solution to the forward dynamics problem:

ÿ = (GTHG )−1GT (τ −C + τa −Hд) . (11)

2.4.2 Inverse dynamics solution. Equation 10 could be rewritten
as:

GT τ = GT (Hq̈ +C − τa ) = G
T τ ID (12)

where τID is inverse dynamics output of a spanning tree given by

τ ID = ID (q,q̇,q̈) = ID (γ (y),Gẏ,Gÿ + д) . (13)

The solution to Equation 12 is not unique becauseGT is an (n−r )×n
matrix which imposes (n−r ) constraints on ann dimensional vector
of unknowns, leaving r freedoms of choice. In other words, there are
∞r di�erent values of τ which will produce the same acceleration.
To arrive at a unique solution, the actuated degrees of freedom
must be separated from the passive degrees of freedom. This can
be done with the help of a matrix Gu which basically contain the
rows of G corresponding to the actuated degrees of freedom. If the
rank of matrix Gu is equal to (n − r ), then the system is properly
actuated and a unique solution to the inverse dynamics problem
can be found which is given by:

u = G−Tu GT τ ID (14)

where u is a vector of actuator forces required to produce the given
acceleration ÿ.

3 MIMIC JOINTS AND CALCULATION OF
LOOP CLOSURE FUNCTIONS

Mimic joints are passive joints that linearly mimic the motion of
independent active joint in a kinematic loop. They can be formally
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Figure 1: Parallelogram mechanism (left to right): (a) schematic, (b) topological graph, (c) comparison of actuator torque at
JB,01 between ADAMS, analytical solution and proposed method

described at position, velocity and acceleration levels by the follow-
ing equation:

qp =mqa + b

q̇p =mq̇a

q̈p =mq̈a

(15)

where m is a constant multiplier term, b is a constant bias/o�set
term, (qp ,q̇p ,q̈p ) represent the position, velocity and acceleration
of the passive joint and (qa ,q̇a ,q̈a ) represent the position, velocity
and acceleration of the active joint that is being followed. These
joints are de�ned in an input URDF1 �le with the help of mimic joint
tags as shown below:

<joint name=PASSIVE_JNAME type=JTYPE >
<parent link=PARENT />
<child link=CHILD />
<origin xyz=COORDS rpy=ANGLES />
<axis xyz=DIRECTION />
<mimic joint=ACTIVE_JNAME multiplier=m offset=b />

</joint>

3.1 Derivation of Loop Closure Functions
Let us choose a spanning tree Gt for a hybrid robot such that no
loop joint has active torque (τa = 0) and the resulting system has
na active joints. For this spanning tree, the relation between the
tree joints and active joints can be collected in the following matrix
equations:

q = My + b

q̇ = Mẏ

q̈ = Mÿ

(16)

where (q,q̇,q̈) are (n × 1) vectors of position, velocity and accel-
eration of the tree joints, (y,ẏ,ÿ) are (na × 1) vectors of position,
velocity and acceleration of the active joints in the tree, M is a con-
stant (n×na ) multiplier matrix (not to be confused with mass-inertia
matrix, H (q)), b is a constant (n × 1) bias/o�set vector. Following
are the guidelines for generating the multiplier matrix M and o�set
vector b:

• Multiplier matrix M contains 1 in positions where tree
joints are corresponding to the active joint and multiplier
value m in positions corresponding to passive joints in
the column corresponding to the active joint that is being
followed. The rest of the positions are �lled with zeros.

1http://wiki.ros.org/urdf/XML/joint

• O�set vector b contains 0 in positions corresponding to
active joints and o�set value b corresponding to passive
joints.

Comparing Equation 16 with Equation 9, the following could
be deduced: γ (y) = My + b, G = M and д = 0. A matrix Mu can
be de�ned by selecting rows of M corresponding to active degrees
of freedom. This corresponds to the matrix Gu in Equation 14 for
computing inverse dynamics.

3.1.1 Solution to forward dynamics. These expressions for loop
closure functions can be substituted in Equation 11 to arrive at
solution to forward dynamics problem

ÿ = (MTHM )−1MT (τ −C ) . (17)

Equation 18 can also be expressed as a function of input actuator
forces using Equation 14:

ÿ = (MTHM )−1MT (M−TMT
uu −C ) . (18)

Whileu is the input to Equation 18, the termsH ,C can be computed
e�ciently using RBDL [6] for any generic tree type system.

3.1.2 Solution to inverse dynamics. Similarly, substituting loop
closure function expressions to Equation 14, the solution to inverse
dynamics problem can be derived:

u = M−Tu MT τ ID (19)

While (q,q̇,q̈) is the input to Equation 19, the term τ ID can be com-
puted e�ciently using RBDL [6] for any generic tree type system.

3.2 Parallelogram Example
To demonstrate the calculation of loop closure functions using
mimic joints, let us take an example of a simple parallelogram
mechanism (see Figure 1 (a)). The chosen spanning tree of this
mechanism is shown in Figure 1 (b) where B is the �xed base, J02,03
is the loop joint and JB,01 is the active joint in the loop. For this
spanning tree, the relation between the tree joints vector (q) and
active joints vector (y) can be collected in the following equation:

q =



qB,01
q01,02
qB,03


=



1
−1
1


qB,01 +



0
0
0


(20)

On comparison with position part of Equation 16, it could be imme-
diately deduced that: M = [1,−1,1]T . Matrix Mu can be calculated
by selecting rows corresponding to active joints from M matrix
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Figure 2: Recupera upper body system (left to right): (a)mounted onwheelchair, (b) shouldermechanism, (c) built up prototype

Figure 3: Recupera shoulder mechanism (left to right): (a) Six bar mechanism schematic, (b) topological graph of prototype

which in this case is simply equal to [1]T . The expressions for M
and Mu can now be substituted in Equation 19 to compute the
actuator forces required to produce a given motion trajectory. An
input motion trajectory qB,01 = 2πt2 is provided from t = 0 to
t = 1 second in 100 time steps. The length of the links is equal to
2 m and center of mass lies at the middle of the links. Masses of
the three moving links are set to 1 kg, and the inertias are set to
4/3 kg m2. The comparison of torque required at JB,01 to produce
the given motion trajectory between ADAMS, analytical solution and
proposed approach described in this section is shown in Figure 1 (c).
It can be observed that the residual between the analytical solution
and proposed method is exactly zero.

4 APPLICATION TO EXOSKELETON
CONTROL

The concept of the Recupera-Reha full body exoskeleton (with 34
active degrees of freedom) that is being designed for upper body
rehabilitation of stroke patients is introduced in [12]. The design
is modular and upper body of the exoskeleton system can also be
mounted on a wheel chair. In this section, the design and dynamic
modeling of the novel shoulder mechanism from one of its arm is
presented. As an outlook, the CAD design of the Recupera upper
body exoskeleton system is also shown which is under physical
construction presently (see Figure 2 (a)).

4.1 Shoulder Mechanism Design
The motivation of the design is to achieve a light weight fully
actuated 3 degrees of freedom mechanism with a workspace similar
to human shoulder. Also, the three joint axes should intersect at a
central point (CP) in the human shoulder such that no two joint
axes become coincident in the allowed motion range. This ensures
a singularity free operation.

In contrast to purely serial shoulder designs [16, 18] where a col-
lision of the motors with the patient is possible, the novel Recupera
shoulder design, as shown in Figure 2 (b), hides the two motors
behind the shoulder by employing a variant of Watt six bar guiding
mechanism [4] which creates a virtual center of rotation in the
shoulder. The closed loop mechanism (actuated by motor M2) has a
limited workspace which is similar to the human shoulder. For the
other two motors (M1 and M3), mechanical adjustable end stops
are integrated to limit the range of motion for safety purposes. To
realize system level modularity, the shoulder motors are identical
with the ones used in the Active Ankle joint presented in [13, 22]. A
�rst prototype of the shoulder is already built up and commissioned
as shown in Figure 2 (c).

4.2 Dynamic Modeling
The variant of Watt six bar mechanism used in Recupera exoskele-
ton can also be interpreted as a double parallelogram mechanism
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(see Figure 3 (a)) which can easily be modeled using the concept
of linear mimic joints. The topological graph of the Recupera ex-
oskeleton arm prototype (Figure 2 (c)) is shown in Figure 3 (b).
The red edges (J100,200, J300,400, J400,600, J200,232) correspond to the
active degrees of freedom of the system and their joint position
values constitute the independent joint position vector y. The tree
joints (excluding the loop joints shown by dotted blue edges) are
collected in tree joint position vector q. The relation between q and
y is shown in Equation 21 from which the multiplier matrix M and
bias vector b can be deduced.

q =



q100,200
q200,222
q222,223
q223,300
q300,400
q400,600
q200,232
q232,233



=



1 0 0 0
0 0 0 1
0 0 0 −1
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 −1





q100,200
q300,400
q400,600
q200,232



+



0
0
0
0
0
0
0
0



(21)

Matrix Mu can be calculated by selecting rows corresponding to
active joints from M matrix which results in (4 × 4) identity matrix
in this case. The expressions for M and Mu can be substituted in
Equation 19 to solve for the inverse dynamics.

5 CONCLUSIONS
A novel method to determine the loop closure functions from the
de�nitions of linear mimic joints in a robot description �le has
been presented that is suitable for inclusion in forward and inverse
dynamics computations. The resulting formulae are derived such
that e�cient O (n) dynamics algorithms for tree-type systems can
still be utilized. Also, they are not a�ected by any loop constraints
stabilization errors. The proposed approach is applicable to all
hybrid robots with closed loops involving linear mimic joints –
that are used in considerable number of practical robot designs for
example with parallelogram or double parallelogram linkages. The
design of a novel hybrid exoskeleton is presented and the proposed
dynamic modeling approach is applied to it. Since the robot’s URDF
speci�cation can be generated in an automated manner (using
CAD-2-SIM), the proposed method closes the gap for obtaining
dynamics solvers automatically for speci�c classes of mechanisms.
The method has been implemented in a RBDL-based C++ library,
named as Hybrid Robot Dynamics (HyRoDyn). For the future, it is
planned to embed the obtained dynamic model into higher-level
control paradigms, as assist-as-needed control.
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