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Abstract. Bipartite graphs are a common structure to model relation-
ships between two populations. Many times a compression of the graph
to one population, namely a one mode projection (OMP), is needed in
order to gain insight into one of the populations. Since this compression
leads to loss of information, several works in the past attempted to quan-
tify the connection quality between the items from the population that
is being projected, but have ignored the edge weights in the bipartite
graph. This paper presents a novel method to create a weighted OMP
(WOMP) by taking edge weights of the bipartite graph into account.
The usefulness of the method is then displayed in a case-based reason-
ing (CBR) environment as a local similarity measure between unordered
symbols, in an attempt to solve the long-tail problem of infrequently used
but significant symbols of textual CBR. It is shown that our method is
superior to other similarity options.

Keywords: bipartite graph, one-mode projection, textual case-based
reasoning, local similarity, weights, long-tail

1 Introduction

Complex network analysis is a field that is currently being vastly researched both
under theoretical models and for practical use. The bipartite graph is a special
type of network where nodes belong to two distinct populations, and includes
only connections between population, but not within them. An example of such
a graph can be seen in figure 1(a).

Bipartite graphs can model many real world systems, such as economic net-
works where countries are connected to the products they export [10], or col-
laboration networks of scientific coauthoring of papers where each author is
connected to the paper they (co)authored [13, 18]. Even human preferences can
be modeled and studied using bipartite graphs [14, 29].

Many times the goal of researching this type of networks is to model the rela-
tionships between items of only one population based on their connections to the
other, for instance the economic relations between countries, or coauthorships.



2 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

To this end the network is many times projected onto the population we want
to focus on, in a process called one-mode projection (OMP). Here nodes from
one population are connected to each other if they share at least one neighbor
in the bipartite graph.

Looking at the example of coauthorships, many times authors collaborate on
more than one paper, some more than others. If we look at authors l1, l2, and
l3, authors l1 and l2 could have coauthored five papers together, while authors
l1 and l3 only one. Clearly the relationship between l1 and l2 is different from
the relationship between l1 and l3. This information is lost if we disregard the
number of neighbors ri two items share in the bipartite graph.

Fig. 1: (a) A bipartite graph consisting of two populations, L and R. (b) The
WOMP of the L population with simple weights counting the number of common
neighbors

To reduce information loss, several methods have been proposed to take the
number of shared neighbors into account and introduce edge weight in the pro-
jected network. The simplest form of weighting is to count the number of common
neighbors two nodes share [19] (see Fig. 1(b)). When looking at nodes from one
population in the bipartite graph, a higher degree may cause a lower impact of
the nodes in the other population on each other. As an example we consider
again a collaboration network. Two authors who collaborated on a paper might
have a stronger connection if they were the sole authors, as opposed to a pa-
per with many other authors. In order to take this additional information into
account, Newman introduced a factor of 1/(nk − 1) to each weight, where nk

is the number of authors, or the degree, of paper k [16, 17]. Another problem
that might arise with such projections is that adding another connection for
authors who already collaborated on many papers before should not have the
same impact as a new connection between authors who collaborated on only one
or two papers in the past. To add a saturation effect, Li et al. suggested using a
hyperbolic tangent function [15].
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Another method to evaluate the relationship between two nodes l1, l2 from
the same population using a OMP is described by Zweig et al. [30]. Here random
graph models are used to find the expected occurrence of a connection motif
between two nodes l1 and l2, namely M(l1, r, l2), where r is a common neighbor in
the bipartite graph, and use it to quantify the interestingness of this motif. Only
the pairs with the highest interestingness are connected in the OMP. Although
the resulting one-mode graph does not contain weights, each edge describes a
strong relationship.

A problem that all these methods share is that all weights on the OMP, if
they exist, are symmetrical. Going back to our collaboration network example,
a new author with very little published papers would likely give a higher weight
to his relationship with a new coauthor, than an author who already has many
publications. All the methods described ’till now would give the same weight
to a connection between these two authors. Moreover, many papers are written
by a single author, and this information will be lost in the projection since
only collaborations are taken into account. Zhou et al. proposed looking at each
connection in a bipartite graph as a resource that is being allocated from nodes
of population L to nodes from population R, and vice versa [29]. This means that
each node l ∈ L equally distributes its resource to all nodes r ∈ R it is connected
to, and then all nodes r ∈ R distribute their resources to all nodes l ∈ L they
are connected to. This creates a path between each two nodes l1, l2 ∈ L that
share at least one neighbor r ∈ R, with a weight corresponding to the resource
allocation between all members of this path. As a result, walking this path from
two different directions would result in two different weights.

The methods described above assume that the connections between the pop-
ulations have an equal weight, and disregard the possibility that the edges in
the bipartite graph may be weighted. This work presents a new method to find
the weights between two items from the same population that are connected by
at least one neighbor in a bipartite graph, while taking into account the edge
weights of the bipartite graph, thus creating a weighted OMP (WOMP).

We will first describe our method for WOMP in section 2, then we will discuss
its usefulness in modeling similarities between keywords in a textual case-based
reasoning (CBR) system in section 3. Experiment results will be shown and
analyzed in section 5, demonstrating the superiority of the WOMP over other
methods in determining similarities in CBR systems. Section 6 will talk about
other works in the CBR field that are related to this work, while the conclusions
and future work will be discussed in section 7.

2 Method

We turn to look at a bipartite graph with two populations of nodes L and R,
where each edge between nodes li ∈ L and rj ∈ R holds a weight wij . Our goal is
to find the weight wL→L

ab between each la, lb ∈ L that share at least one common
neighbor in R. To derive this weight we expand the resource allocation method
described in [29] to include weights in the original bipartite graph.
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The idea behind the resource allocation method is that each node in the graph
holds a certain amount of resources, that is then distributed to its neighbors.
The weight of an edge then describes part of the resources that is passed along
the edge. To find the weight between two nodes from the same population we
need to follow the distribution path of the resources.

Fig. 2: (a) The flow of resources from population L to R in a bipartite graph.
(b) The flow of resources from population R to L in a bipartite graph. (c) The
WOMP of the bipartite graph.

Consider a bipartite graph G(L,R,E) where E is the edge list containing
tuples (li, rj , wij), where wij is the weight between nodes li ∈ L and rj ∈ R, and
|L| = n, |R| = m. Let’s say we want to find the WOMP of population L. First
we define the amount of resources that each node li ∈ L has as:

WL
i =

m∑
j=1

wij (1)

In case there is no edge between li and rj we consider wij = 0. Next, we
define the resource that li allocates to rj as the ratio between the amount of
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resources that this edge contributed to li and the total amount of resources that
li possesses:

wL→R
ij =

wij

WL
i

(2)

It is clear to see that wL→R
ij ∈ [0, 1], and represents the portion of resources

that flow through this edge. From here we can conclude that the resources that
node rj accumulates is the sum of those that have been allocated to it from all
its neighbors:

WR
j =

n∑
i=1

wL→R
ij (3)

This flow of resources is visualized in figure 2(a). Now we switch directions
and distribute resources from R to L. Nodes rj allocate the following to their
neighbors li:

wR→L
ij =

wL→R
ij

WR
j

(4)

The change in flow direction can be seen in figure 2(b). Please note that
wR→L

ij is calculated analogously to wL→R
ij , as the ratio between the amount of

resources that this edge contributed to rj and the total amount of resources that
rj possesses.

To find the weight between two nodes la, lb ∈ L one must follow the flow of
resources from la to lb:

wL→L
ab =

m∑
j=1

paj · pbj · (wL→R
aj + wR→L

bj ) (5)

Where pij ∈ {0, 1} indicates whether or not there is an edge between li and
rj . To make this notion concrete we give an example of how to find the weight
wL→L

12 between nodes l1 and l2 from figure 1(a). One can see that their shared
neighbors are r1 and r2. First we follow the flow of resources from left to right,
and then we follow the flow from right to left:

wL→L
12 = wL→R

11 + wR→L
21 + wL→R

12 + wR→L
22

In order to find the weight wL→L
21 , the same links are used but the flow

direction of resources is switched:

wL→L
21 = wL→R

21 + wR→L
11 + wL→R

22 + wR→L
12

One should note that at this stage wL→L
ab ≥ 0, and allows values greater than

1. To illustrate this we look at another specific case, namely wL→L
41 , we have:

wL→L
41 = wL→R

43 + wR→L
13
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It is clear to see that wL→L
41 ≥ 1, since wL→R

43 = w43

WL
4

= w43

w43
= 1 and wR→L

13 ≥
0. The next step is then to normalize the weights to values in [0, 1], and to do
that the following normalization is used:

WL→L
ab =

wL→L
ab

wL→L
bb

(6)

Where wL→L
bb describes the highest possible portion of resources that can

flow to lb.
This method produces asymmetrical weights for the projection onto popu-

lation L, creating a directed graph where each connection is bi-directional. An
illustration of a WOMP can be seen in figure 2(c).

3 Similarities in Textual Case-Based Reasoning

In the world of expert systems, an attempt is made to mimic the responses of
experts of a given field to certain situations, and possibly to surpass the experts
based on some performance measure. Case-based reasoning (CBR) is a paradigm
that can be used to implement an expert system. Under CBR, situations may be
described in many different ways, from attribute-value pairs, to object-oriented
(OO) classes, to graphs.

The idea behind CBR is that similar problems have similar solutions. In
order to solve a problem that is described by a situation, an attempt is made to
find past situations that are similar to the current one and adapt their solutions
to fit the problem [21]. A perfect CBR system would be able to evaluate the
a-posteriori utility of each case ci in the case base to a new problem. This utility
function is, however, unknown, and so an approximation attempt is made using
heuristics [25]. This means that a CBR system depends heavily on the similarity
measure between two situations to perform well.

Two types of similarities are used in CBR, local and global. If we focus on
an attribute-value type case description, the local similarity can be defined as
the similarity between the values of each attribute. Attributes with numerical
values may use a distance measure to define this similarity, while symbolic at-
tributes may utilize taxonomies or similarity tables to model the relationships
between the different symbols. The global similarity describes the similarity of
whole cases by amalgamating the local similarities. We define simlocal(v, w) as
the local similarity function between two values v, w of a given attribute, and
simglobal(c1, c2) as the global similarity of two cases c1, c2.

Many times the sources for the situation descriptions are in the form of
free-text, and a popular method to tackle this is to transform the text into an
attribute-value form by extracting wanted features from it [6, 7, 27, 28]. Usually
the values are an unordered set of symbols describing keywords and phrases,
meaning that the next step is to model the similarity between them. Many
times the extracted terms are presented to the experts in the field, and those
experts then provide insight into the local similarity. Unfortunately, descriptions
in free-text form can cause an explosion of keywords for each attribute, many of
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which are informative and descriptive of the situation but are used very rarely.
There is only so much information experts can provide a developer about the
situation descriptions, and so to best utilize their support experts may be asked
to model the relationships only between the most frequently used symbols. This
creates a long tail of rarely used attribute values that are informative to the case
description, but are excluded from the similarity modeling process. A possible
solution to this problem is to simply define simlocal(v, w) = equal(v, w) where
equal(v, w) is the equality function, if either v or w is unmodeled. This solution
is not informative and could affect the quality of the retrieval. In order to pre-
vent this and make full utilization of these values, we propose to use WOMP
to supplement our knowledge about the relationships between all values of an
attribute.

4 Application Area

This work is a contribution to the OMAHA project [1], which is a joint project
with Airbus and Lufthansa System to assist aircraft technicians in diagnosing
faults using CBR methods. It is a step in the toolchain that was developed
in order to tackle the challenges presented by this project [20]. The problem
descriptions of past experiences are given in free-text form, and following the
toolchain are transformed into an attribute-value form by extracting keywords
from the text and assigning them to features. The toolchain was also developed
to extract knowledge from the dataset, such as completion rules for the queries,
or the importance of each attribute [26]. Although the most common keywords
were modeled by the experts in the field, i.e. the experts explicitly quantified
their similarity values, many others were disregarded due to time and labor con-
straints. Our goal is to quantify the similarities of these keywords using WOMP
as follows:

1. For each attribute create a bipartite graph where L is the set of all keywords
that appear under the given attribute, and R is the set of all possible diag-
noses. A keyword k ∈ L in connected to a diagnosis d ∈ R if it appeared in
a case with diagnosis d. The weight of each edge is the number of cases with
diagnosis d that k appeared in.

2. Find the WOMP of the keywords L according to the method described in
section 2.

3. Use the weights of the edges between the keywords as their similarity value
for the given attribute.

Unfortunately the Airbus fault description dataset does not contain well de-
fined diagnoses yet, so in order to test our hypothesis we used a different dataset
with similar conditions, namely the internet movie database1 (IMDb). A case-
base was built using the MyCBR tool [5], where each case describes a movie
with only one attribute, namely the keywords related to the movie as reported

1http://www.imdb.com/
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by IMDb, and the diagnosis for each case is the genre of the movie. This means
that the system receives a set of keywords as a query, and tries to diagnose the
genre by retrieving movies with similar sets of keywords.

5 Experimental Results

Two disjoint sets of movie descriptions were constructed by randomly choosing
movies that were released between 2005 and 2015, contained a set of keywords,
and belonged to one of the following genres: horror, action, romance, and comedy.
Short films were ignored. One set contained 6,000 items, namely 1,500 movies
from each genre and was used as a training set, while the other contained 500
movies from each genre, 2,000 in total, and was used as the test set.

Fig. 3: The accuracy results of the four methods that were tested: the equality
function, the simple OMP representing the number of common neighbors, the
source allocation (RA) method suggested by Zhou et al., and the WOMP method
proposed in this paper.

Four weight functions were used to define the local similarity between the
keywords. First, the equality function was used. Then, a bipartite graph was
built where population L described the keywords, while R contained the genres.
The edge weights described the number of movies each keyword appeared in
that belong to the given genre. The second similarity function described the edge
weights of the simple OMP, counting the number of neighbors each two keywords
shared, disregarding the edge weights in the bipartite graph, and normalizing this
number by the maximal degree of the nodes in L. The third function was the
resource allocation (RA) method described by Zhou et al. [29], where again edge
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weights are disregarded. Lastly, the WOMP was used to define the similarity
function while utilizing the information in the edges. Only movies from the
training set were used to model each similarity. To evaluate how well these
similarities performed, four case bases were built from the test set, one for each
similarity function, and a retrieval test was performed on each movie in the test
set. A case was deemed correctly retrieved if it belonged to the same genre as the
query case. To quantify how well each similarity function performed confusion
matrices were constructed for the highest ranked retrieved results in the first 1-20
positions. The retrieval accuracy as described by equation 7 was then calculated
for each matrix.

accuracy =
CorrectDiagnoses

AllDiagnoses
(7)

Figure 3 shows the results of the evaluation. While all four similarity functions
performed above the random accuracy level (25%), the WOMP produced the
best results. The equality function started off as the best method for the first
rank, but then quickly decline and became the worse method starting from the
third rank. The graph for the simple OMP is similar in shape to the equality
function, however its decline is smoother, and the overall score is higher. The
results for the RA method performed the worse, and then the second worse,
however its shape is interesting. For the first 5 ranks the accuracy is increased,
and then it starts to slowly decline.

Fig. 4: The average similarity value by rank of the three methods that were
tested: the equality function, the simple OMP representing the number of com-
mon neighbors, and the WOMP method discussed in this paper.
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It is clear that the proposed method, namely WOMP, received the best results
starting from rank 2 by a comparably large margin. Another difference that can
be seen is the rise in accuracy in the WOMP when considering more ranks,
which can be compared to RA, as opposed to the decrease thereof in the other
two methods. This can be explained by the differences in average similarity values
for different ranks, as shown in Figure 4. The equality function and the simple
OMP show a rapid decline for higher ranks. This is probably due to the limited
similarity values two keywords can take ({0, 1} for the equality function and
{0, 0.25, 0.5, 0.75, 1} for the simple OMP), and the relatively big step between
each value (1 for the equality function and 0.25 for the simple OMP). This leads
to low confidence in the lower ranks, and a lower accuracy. The WOMP and
RA, on the other hand, produce more finely grained similarity values, creating
a continuous and smoother transition between ranks. Even well after rank 10
the average similarity value for WOMP is above 90%, creating a ripe condition
for a confidence vote, leading to the rise in accuracy the further we get through
the ranks. Even though it is not yet visible at rank 20, logically one can assume
that accuracy will decrease after a certain point for WOMP, and the shape of
its graph should be comparable to the RA. One can also see that the similarity
values for RA are also quite high, even though the accuracy for this method is
quite low. This leads to the conclusion that RA may not be a suitable weighting
method when the bipartite graph is weighted.

Table 1: The frequency of the keywords
for different number of appearances in
the dataset with bucket size interval of
100.

# Appearances Frequency

100 34771

200 191

300 41

400 24

500 8

600 3

700 2

800 2

>800 1

Table 2: The frequency of the keywords
for different number of appearances in
the dataset with bucket size interval of
10.

# Appearances Frequency

10 31930

20 1458

30 559

40 286

50 186

60 133

70 80

80 52

90 45

100 42

>100 272

In order to demonstrate the long tail abilities of the WOMP, we turn to look
at term frequency in the dataset. Table 1 shows the frequency of the keyword un-
der the different buckets of number of appearances with an interval of 100. This
table supports the long tail assumption that many keywords are infrequently
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used in the dataset. To make matters more precise, table 2 focuses on the first
bucket, and divides it into even smaller buckets with an interval of 10. When
considering that the dataset contains 35,043 keywords in total, 91% of them ap-
pear less than 10 times. Our assumption is that experts do not have the resources
to model the similarities of infrequent terms, and in order to demonstrate that
WOMP can help with this long tail, we constructed another case base where
the 9% most frequent terms remain with the similarity values as calculated by
WOMP to simulated the experts’ input (since it was shown to produce the best
results), and the remaining 91% were modeled with the equality function.

Fig. 5: The accuracy results of the WOMP and a WOMP version where the 91%
least frequent terms had their similarity values replaced by those produced by
the equality function

Figure 5 compares the retrieval accuracy of the both versions of the WOMP.
One can clearly see the boost in accuracy that WOMP provides when it is used
to model the similarities of the least frequent terms.

6 Related Work

Textual CBR is a well researched field, where problem descriptions and solutions
in textual form are processed and transformed into cases that can be compared
to each other. Usually, cases are represented in an attribute-value form. One of
the first examples of this is PRUDENTIA, a system that transforms legal texts
into cases and allows the retrieval of similar cases. This system as described
by Weber et al. [27] follows experts guidelines and the strict structure of legal
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texts to extract terms and assign them to the correct attribute. The similarity
between terms is completely modeled by experts.

A more recent example is described by Bach et al. [4], where cases in attribute-
value form were extracted from textual service reports of vehicle problems. Here
natural language processing (NLP) methods were used to extract terms from
the text. The relationship between these terms was completely modeled by the
experts, organizing them in taxonomies and similarity tables. This work is par-
ticularly similar to OMAHA, however the long-tail problem of infrequent terms
was solved by disregarded anything the experts did not model.

The task of modeling similarities of terms without the help of an expert
was tackled by Chakraborti et al. [8]. Here the 1st, 2nd, and 3rd co-occurrence
degrees of terms in documents were explored and combined using a weighted
sum to find the similarity value between two terms. A similar approach was
further explored by Sani et al. [22] who compared the 1st degree co-occurrence
with a lexical co-occurrence approach (LCA). In LCA the association patterns of
two terms are compared in order to produce a similarity value. Both approaches
were supplemented by term weights determined by the significance of the term
to the domain. These approaches can be seen as a graph problem, although
they were not so explicitly defined, and can be compared to the OMP method
described by Zweig et al. [30], since significant connections are rewarded. All
these approaches, however, disregard the strength of the connection between a
term and the document, as connections are unweighted.

There have been several works that explicitely describe the combination of
network analysis and graph theory with CBR. Cunningham et al. [9] tackled
the textual CBR problem by transforming text into a graph representation by
connecting terms according to their sequence of appearance. The similarity mea-
sure that was used was maximum common subgraph, meaning that a similarity
between individual terms was not necessary. A major drawback of this method
is that the complexity of the similarity assessment is polynomial, as opposed to
linear when using attribute-value form.

Another work that combines CBR and graph theory is the Text Reason-
ing Graph (TRG) as described by Sizov et al. [23, 24]. The TRG models causal
relationships with textual entailments and paraphrase relations. In their first
attempt, the TRG required that the solution of each case contain an analysis
part, from which the TRG was extracted. Case similarity was calculated based
on the vector space model with TF-IDF weights, while the graph was used only
in the reuse step of the CBR cycle [2]. The TRG was later expanded to in-
clude the problem description. Two cases are then compared by looking at the
problem description part of the graph and finding the so called longest common
paraphrase (LCP). Combining the LCP with an informativeness measure of the
phrases creates a ranked list of useful cases. As stated before, this method re-
quires an analysis description of how each case was solved, something that may
not be readily available in many applications, including our own.

An approach that was similar to ours is described by Jimenes-Diaz et al.
[12]. Here OMP was used for link prediction in a recommender system. The idea
here was to create a system that recommends programming tasks for students
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to practice on, according to previously solved tasks. The authors created a un-
weighted bipartite graph of tasks and students who solved them and derived
the simple OMP, with number of common neighbors in the bipartite graph as
weight. These weights were then used as a similarity measure between two tasks
with the goal of predicting new links between tasks and users. A comparison
was made between several weighting methods, and the simple OMP was found
to produce the best predictions. This comparison is closely related to Zhou et al.
[29], on which our WOMP method is based, who used resource allocation instead
of simple OMP to evaluate the relationships between two nodes from the same
population in a bipartite graph. The usefulness of this method was demonstrated
on a movie recommendation system, where a user was recommended movies ac-
cording the the ones he liked in the past. Resource allocation was shown to be
a powerful method compared to others.

When looking outside the scope of CBR there have been other attempts at
estimating the similarities between object, most notably SimRank [11]. Here
a PageRank-like algorithm was utilized to iteratively find similarities between
nodes in a graph, with an extension to bipartite graphs. The main idea behind
this algorithm is that “two objects are similar if they are related to similar
objects.” This work was later expanded with SimRank++ to take edge weights
into account [3]. Both SimRank and SimRank++, however, produce symmetrical
weights and have a relatively high time complexity.

7 Conclusions and Future Work

In this paper we presented a novel method to employ edge weights of bipartite
graphs when building a OMP of a single population, namely the WOMP. This
method is a generalization of the resource allocation based OMP presented by
Zhou et al. [29]. The resulting OMP is a directed graph where all edges are bidi-
rectional and are differently weighted in each direction, creating an asymmetrical
similarity value between each two nodes in the graph.

This method was then used as a similarity measure between keywords ex-
tracted from free text, and evaluated as a supplementary similarity function for
textual CBR. The idea here was to use WOMP as a similarity function between
keywords that are infrequent but informative and have not been modeled by
the experts in the field due to various constraints. An evaluation of the accu-
racy of WOMP weights, as opposed to the equality function, the simple OMP,
and the unweighted resource allocation method was made and it was shown
that WOMP produced superior results. A simulation of experts evaluation was
also compared to WOMP, and has shown the contribution of this method when
weighing infrequent keywords.

The WOMP uses resource allocation to model the relationship between two
items from a single population in a bipartite graph. The edge weights of the
bipartite graph are regarded as partial resources that make a whole, while each
node contains the same amount of resources. This means that weights with
different scales but a similar ratio produce the same wL→L

ab values. In the future
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we plan on integrating the actual edge weight into the resource, thus allowing
different amounts of resources to produce different results even if the scales are
the same.
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