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Abstract

Recognizing fine-grained named entities,
i.e. street and city instead of just the coarse
type location, has been shown to increase
task performance in several contexts. Fine-
grained types, however, amplify the prob-
lem of data sparsity during training, which
is why larger amounts of training data are
needed. In this contribution we address
scalability issues caused by the larger train-
ing sets. We distribute and parallelize fea-
ture extraction and parameter estimation
in linear-chain conditional random fields,
which are a popular choice for sequence
labeling tasks such as named entity recog-
nition (NER) and part of speech (POS) tag-
ging. To this end, we employ the parallel
stream processing framework Apache Flink
which supports in-memory distributed iter-
ations. Due to this feature, contrary to prior
approaches, our system becomes iteration-
aware during gradient descent. We experi-
mentally demonstrate the scalability of our
approach and also validate the parameters
learned during distributed training in a fine-
grained NER task.

1 Introduction

Fine-grained named entity recognition and typing
has recently attracted much interest, as NLP ap-
plications increasingly require domain- and topic-
specific entity recognition beyond standard, coarse
types such as persons, organizations and loca-
tions (Ling and Weld, 2012; Del Corro et al., 2015;
Abhishek et al., 2017). In NLP tasks such as rela-
tion extraction or question answering, using fine-
grained types for entities can significantly increase
task performance (Ling and Weld, 2012; Koch et
al., 2014; Dong et al., 2015). At the same time,
freely-available, large-scale knowledge bases, such

as Freebase (Bollacker et al., 2008), DBpedia (Auer
et al., 2007) and Microsoft’s Concept Graph (Wang
et al., 2015) provide rich entity type taxonomies
for labeling entities. However, training models for
fine-grained NER requires large amounts of train-
ing data in order to overcome data sparsity issues
(e.g. for low-frequency categories or features), as
well as labeling noise, e.g. as introduced by training
datasets created with distant supervision (Plank et
al., 2014; Abhishek et al., 2017). Furthermore, the
diversity of entity type taxonomies and application
scenarios often requires the frequent adaptation or
re-training of models. The speed and efficiency
with which we can (re-)train models thus becomes
a major criterion for selecting learning algorithms,
if we want to fully make use of these larger datasets
and richer type taxonomies.

Linear-chain CRFs (Lafferty et al., 2001) are a
very popular approach to solve sequence labeling
tasks such as NER (Strauss et al., 2016). Param-
eter estimation in CRFs is typically performed in
a supervised manner. Training, however, is time-
consuming with larger datasets and many features
or labels. For instance, it took more than three days
to train a part-of-speech tagging model (45 labels,
around 500k parameters) with less than 1 million
training tokens on a 2.4 GHz Intel Xeon machine,
Sutton and McCallum (2011) report. This is due
to the fact that during training, linear-chain CRFs
require to perform inference for each training se-
quence at each iteration.

Fortunately, linear-chain CRFs hold potential
for parallelization. During gradient descent opti-
mization it is possible to compute local gradients
on subsets of the training data which then need
to be accumulated into a global gradient. Li et
al. (2015) recently demonstrated this approach by
parallelizing model training within the MapReduce
framework (Dean and Ghemawat, 2008). The au-
thors distributed subsets of the training data among
the mappers of their cluster, which computed lo-
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cal gradients in a map phase. The local gradients
were then accumulated into a global gradient in a
subsequent reduce step. The map and reduce steps
can be repeated until convergence, using the global
gradient to update the model parameters at each
iteration step. For large data sets, NER experiments
showed that their approach improves performance
in terms of run times. However, for each learning
step, their system invokes a new Hadoop job, which
is very time-consuming due to JVM startup times
and disk IO for re-reading the training data. As the
authors themselves point out, in-memory strategies
would be much more efficient.

In this paper, we employ a very similar par-
allelization approach as Li et al., but implement
the training within an efficient, iteration-aware dis-
tributed processing framework. The framework we
choose allows us to efficiently store model param-
eters and other pre-computed data in memory, in
order to keep the de/serialization overhead across
iterations to a minimum (Alexandrov et al., 2014;
Ewen et al., 2013).

Our contributions in this paper are:

• a proof-of-concept implementation of a dis-
tributed, iteration-aware linear-chain CRF
training (Section 3),

• the experimental verification of the scalabil-
ity of our approach, including an analysis of
the communication overhead trade-offs (Sec-
tions 4, 5), and

• the experimental validation of the parameters
learned during distributed training in a fine-
grained NER and typing task for German geo-
locations (Sections 6, 7).

In what follows, we first define linear-chain
CRFs more formally and explain in detail how pa-
rameter estimation can be parallelized. We then
discuss the details of our implementation, followed
by several experimental evaluations.

2 Parallelization of Conditional Random
Fields

This section closely follows Sutton and McCallum
(2011) and Li et al. (2015). Assume O = o1 . . .oT

is a sequence of observations (i.e. tokens) and
L = l1 . . . lT is a sequence of labels (i.e. NE tags).
Formally, a linear-chain CRF can then be defined

as

p(L|O) =
1

Z(O)

T

∏
t=1

exp

(
K

∑
k

θk fk(lt−1, lt ,ot)

)
(1)

where fk denotes one of K binary indicator – or
feature – functions, each weighted by θk ∈ R, and
Z is a normalization term, which iterates over all
possible assignments
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The parameters θk are estimated in a way such
that the conditional log-likelihood of the label se-
quences in the training data, denoted by L in the
following, is maximized. This can be achieved
with gradient descent routines.

Partially deriving L by θk yields

∂L
∂θk

= E( fk)−Eθ ( fk) (3)

where

E( fk) =
N

∑
i=1

T

∑
t=1

fk(l
(i)
t−1, l
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is the expected value of feature k in the training
data D = {O(i),L(i)}N

i=1, and
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is the expected value of the feature according to
the model with parameter tensor θ . The inconve-
nience with Eq. 5 is that it requires us to perform
marginal inference at each iteration, for each train-
ing sequence.

Fortunately, according to Eqs. 4 and 5, Eq. 3 can
be computed in a data parallel fashion since
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The next section explains how we distributed and
parallelized the training phase.

3 Implementation

We partitioned the data into disjoint chunks of size
p which we distributed among the mappers in a



Flink cluster. Each mapper computed a local gra-
dient on the chunk it received. In a subsequent
reduce job, the local gradients were accumulated
into a global one:

∑
p
i=1(E

(i)( fk)−E(i)
θ
( fk))

}
map

∑
2p
i=p+1(E

(i)( fk)−E(i)
θ
( fk))

}
map

(+) reduce

...

We used the global gradient to update the current
model parameters at each iteration. The informa-
tion flow is depicted in Fig. 1. As can be seen,
before the first iteration, we also distributed feature
extraction among the mappers.

Our system marries two powerful tools, the prob-
abilistic modeling library FACTORIE1 (McCallum
et al., 2009) and the parallel processing engine
Apache Flink2 (Alexandrov et al., 2014). It inherits
features and functions from both tools.
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Figure 1: Distributed iteration step. The dashed
lines represent Flink broadcasts.

The authors of FACTORIE convincingly pro-
mote it as a tool which preserves the ‘tradi-
tional, declarative, statistical semantics of factor

1Version 1.2 (modified).
2Version 1.3.

graphs while allowing imperative definitions of
the model structure and operation.’ Furthermore,
Passos et al. (2013) compared FACTORIE’s per-
formance with established libraries such as scikit-
learn, MALLET and CRFSuite and found that it is
competitive in terms of accuracy and efficiency.

We distributed the model we implemented in
FACTORIE with the help of Apache Flink. Flink
provides primitives for massively parallel itera-
tions and when compiling a distributed program
which contains iterations, it analyses the data flow,
identifies iteration-invariant parts and caches them
to prevent unnecessary recomputations, Ewen et
al. (2013) explain. Thus, contrary to prior ap-
proaches, due to Flink, our distributed system be-
comes ‘iteration-aware’.

FACTORIE already supported local thread-level
parallelism as well as distributed hyper-parameter
optimization. Nonetheless, we had to overcome
several obstacles when we ported the library into
the cluster. For instance, in FACTORIE, object
hash identities are used to map gradient tensors
onto corresponding weight tensors during training.
These identities get lost when an object is serial-
ized in one JVM and deserialized in another JVM.
To preserve identities throughout de/serialization
among the virtual machines within the cluster, we
cached relevant object hashes. We thus ended up
using a slightly modified library.

4 Scalability Experiments

We tested our system on a NER task with seven
types (including the default type). We compared
our distributed parallel system with a local sequen-
tial counterpart in which we removed all Flink di-
rectives. In both versions our model consisted of a
label-label factor and an observation-label factor3.
During training, we used a likelihood objective,
a belief propagation inference method which was
tailored to linear chains and a constant step-size op-
timizer; all of which FACTORIE’s modular design
allows to plug in easily.

To evaluate performance, we varied three values

1. the level of parallelism,

2. the amount of training instances, and

3. the number of parameters, K.

Points 2) - 3) were varied for both the local ver-
sion and the distributed version. When we tested

3We refer to a token’s features as observations.



the local version we kept the number of partici-
pating computational nodes constant at one. In
particular, no local thread parallelism was allowed,
which is why point one does not apply to the local
version.

All distributed experiments were conducted on
an Apache Hadoop YARN cluster consisting of
four computers (+ 1 master node). The local exper-
iments were carried out using the master node. Two
of the computers were running Intel Xeon CPUs
E5-2630L v3 @ 1.80GHz with 8 cores, 16 threads
and 20 MB cache (as was the master node), while
the other two computers were running Intel Xeon
CPUs E5-2630 v3 @ 2.40GHz again with 8 cores,
16 threads and 20 MB cache.

Each yarn task manager was assigned 8 GB of
memory, of which a fraction of 30% was reserved
for Flink’s internal memory management. We used
the Xmx option on the master node (with a total
of 32 GB RAM). The nodes in the cluster thus had
slightly less RAM available for the actual task than
the master node. However, as a general purpose
computer, the master node was also carrying out
other tasks. We observed a maximal fluctuation
of 1.7% (470 seconds vs. 478 seconds) for the
same task carried out on different days. Loading
the data from local files and balancing it between
the mappers in the cluster was considered part of
the training, as was feature extraction.

5 Scalability Evaluation

We first performed several sanity checks. For exam-
ple, we made sure that multiple physical machines
were involved during parameter estimation and that
disjoint chunks of the training data reached the
different machines. We also checked that the gra-
dients computed by the mappers differed and that
they were accumulated correctly during the reduce
phase.

The most convincing fact that led us to believe
that we correctly distributed feature extraction and
parameter estimation was that after we trained the
local version and the distributed version using the
same training set - with just a few parameters and
for just a few iterations - extremely similar parame-
ters were in place. Consequently, the two models
predicted identical labels on the same test set con-
taining 5k tokens. The parameters diverge the more
features are used and the more training steps are
taken. We suspect that this is due to floating point
imprecisions that result in different gradients at

some point.
The first two experiments we conducted ad-

dressed the scalability of our distributed implemen-
tation. The results are summarized in Figs. 2 and 3.
Fig. 2 shows that our distributed implementation
managed to outperform its sequential counterpart
after a certain level of parallelism was reached.
The level of parallelism required to beat the local
version increased with the amount of parameters.
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Figure 2: Execution times for increasing numbers
of mappers (M). Each training involved around
100k tokens (numbers rounded for better read-
ability) and 25 iterations. The diamonds mark
the points from which on the distributed version
needed less time than its local counterpart. The
sequential version needed 125 seconds for around
10k parameters and 126 seconds for twice as many
parameters.

Fig. 3 shows to what extent we were able to
counterbalance an increase in training size with an
increase in parallelism. The results suggest that
our model was indeed able to dampen the effect of
increasing amounts of training examples. The av-
erage rate of change in execution times was higher
when we kept the number of nodes constant. As we
doubled the level of parallelism along with the train-
ing size, the rate of change reduced significantly.
We also compared the distributed implementation
with the local implementation in Fig. 3. As can be
seen, the average rate of change is higher for the
local version than for the distributed version with
an increasing level of parallelism. However, it is
still much lower when compared to the distributed
runs with a fixed level of parallelism.

We conducted a third experiment to address the
effect of communication overhead. Thus far, we
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Figure 3: Scalability of the distributed model. The
figure offers a comparison between the execution
times required by the local version and the dis-
tributed version to process an increasing (doubling)
amount of training data. The distributed version
was tested with a fixed number of mappers (M) and
with an increasing (doubling) number of mappers
(starting with two mappers at around 10k training
instances). For each run, around 20k parameters
were considered and the number of iterations was
fixed at ten.

have worked with a relatively low number of pa-
rameters. This was to ensure that the execution
times of the distributed version were falling within
the execution time range of the local version. The
reason for why the low number was necessary is
evident in Fig. 4: an increase in the number of pa-
rameters had a significant effect on the distributed
runs. This is due to the fact that it is θ which needs
to be communicated during MapReduce and it is
also the size of θ which co-determines how much
data needs to be cached. By contrast, it had little
effect on the local version when we increased the
size of θ . The execution times increase linearly for
the distributed version, while locally they stay at a
constant rate. In our cluster, around 40k parameters
require more than eight mappers to outperform the
local implementation in a distributed run.

6 Accuracy Experiments

The sections above address the scalability of our
approach. In this section we report on experiments
which demonstrate that our distributed linear-chain
CRF learns meaningful parameters. We tested our
model in a NER task.

The task was to recognize six fine-grained
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Figure 4: Execution times for increasing numbers
of parameters. Each run involved around 100k
tokens and 25 iterations. During the distributed
runs, the level of parallelism was fixed at eight.

geospatial concepts in German texts, namely streets
(‘Berliner Straße’), cities (‘Berlin’), public trans-
portation hubs (‘Berliner Straße’), routes (‘U6’),
distances (‘5 km’) and the super-type location
(‘Germany’). The task involves the typical chal-
lenges of NER, such as disambiguation. Further-
more, the training sets (which were annotated by
trained linguists) contained user-generated content,
which is why noise was also an issue.

Table 1 characterizes the two datasets and ex-
plains what we refer to as noise. The RSS dataset
consists of a sample of traffic reports crawled from
more than 100 RSS feeds that provide traffic and
transportation information about road blocks, con-
struction sites, traffic jams, or rail replacement ser-
vices. Feed sources include federal and state po-
lice, radio stations, Deutsche Bahn, and air travel
sources. Traffic reports are typically very brief,
may be semi-structured (e.g. location, cause and
length of a traffic jam), and often contain telegraph-
style sentences or phrases. The Twitter dataset
consists of a sample of German-language tweets
that were retrieved via the Twitter search API us-
ing a list of approximately 150 domain-relevant
users/channels and 300 search terms. Channels
include e.g. airline companies, traffic information
sources, and railway companies. Search terms com-
prise event-related keywords such as “traffic jam”
or “roadworks”, but also major highway names,
railway route identifiers, and airport codes. Both
datasets therefore consist of documents which con-
tain traffic- and mobility-related information that



refer to the fine-grained location types defined pre-
viously.

Besides the well-established features in NER
(e.g. word shape, affixes) our application (‘Loca-
tor’) also considered task specific features and took
measures towards text normalization. In the end, a
larger number of parameters (100k-150k) was in
place than during the scalability experiments.

We again used the FACTORIE components
listed in Section 4, such as the BP method for
chains and a constant step size optimizer. FACTO-
RIE provides more sophisticated optimizers such
as LBFGS or Adagrad. In our current system, how-
ever, only the model parameters survive a Flink-
iteration step but methods like LBFGS and Ada-
grad need further information about past update
steps.

We conducted a ten-fold cross-validation on the
datasets. Feature extraction and parameter esti-
mation were performed in parallel in the way de-
scribed above. The level of parallelism was fixed at
four, for all experiments. After training, the models
were serialized and saved for the test phase. The
test runs took place on a single machine.

To put the performance of our model into
perspective, we also conducted a ten-fold cross-
validation using the Stanford NER (v. 3.6.0) in its
standard configuration4. The Stanford NER used
the same tokenizer as our system.

7 Accuracy Evaluation

The results of our accuracy experiments are sum-
marized in Table 2. The F-scores achieved on the
Twitter dataset and the scores achieved on the RSS
dataset reveal similar trends for both systems: In
both cases, the RSS-score is higher than the Twitter-
score.

Our distributed model slightly outperforms the
Stanford NER on the Twitter dataset but is beaten
on the RSS dataset. Since the Twitter dataset is
noisier than the RSS dataset, we suspect that the
task-specific features and text normalization meth-
ods of our system have a greater impact in this
case.

Overall, we conclude that the experiments pro-
vide sufficient proof that during distributed training
our system indeed learns meaningful parameters.
It achieves comparable scores.

4The configuration file we used can be found in the ap-
pendix.

Dataset Tokens Noise

RSS 20152 35.6%
Twitter 12606 45.3%

Table 1: Datasets. Size and noise. We refer to noise
as the percentage of tokens that the Enchant v 1.6.0
Myspell de DE dictionary did not recognize.

System Dataset P R F1

Locator RSS 80.7 75.8 75.2
Stanford RSS 82.8 78.8 80.5
Locator Twitter 57.0 50.4 51.7
Stanford Twitter 79.0 35.9 47.2

Table 2: Results of 10-fold NER experiments. Clas-
sification performance was evaluated on token level
so that multiple-token spans resulted in multiple
true positives or false negatives, for instance. To
compensate class imbalances, for each fold, we
weighted the fine-grained scores (i.e. precision (P),
recall (R) and F1-score (F1) of the entity ‘street’)
by the support of the entity in the test set and aver-
aged over all fine-grained scores. The listed scores
are averages over the ten fold scores.

8 Discussion & Conclusion

We distributed and parallelized feature extraction
and parameter estimation in linear-chain CRFs.
The sequence labeling experiments we conducted
suggest that our system learns meaningful parame-
ters and is able to counterbalance growing amounts
of training data with an increase in the level of par-
allelism (see Table 2 and Figs. 2 and 3). We reached
speedups greater than one and F-scores comparable
to the ones produced by a state-of-the-art approach.

To achieve this, we combined the parallel pro-
cessing engine Apache Flink with the probabilis-
tic modeling library FACTORIE. Our proof-of-
concept implementation now inherits functions and
features from both tools.

Contrary to prior approaches, for instance, it is
iteration-aware during distributed gradient descent.
In addition, our system also benefits from FACTO-
RIE’s modular design and rich pool of functions.
With little programming effort it is possible to plug
in alternative choices for an optimizer or an infer-
ence method.

There is, however, room for improvement. The
choice for an optimizer, for instance, is restricted
by the fact that currently, only the model param-



eters survive an iteration. But some optimization
procedures that FACTORIE provides, like LBFGS,
require additional information about past updates.
Enhancing the system to provide this feature re-
mains future work.

Furthermore, the increase in runtime in Fig. 4
seems disproportionate. Working with sparse vec-
tors to reduce the amount of data that needs to
be cached will most likely reduce runtime. There
might also be a serialization bottleneck. Register-
ing customized serializers for FACTORIE’s types
with Flink may thus also improve performance.
Fortunately, the number of features is typically
fixed at some point in most settings. At this point
the amount of available training data and the num-
ber of mappers in the cluster determine from when
on our approach pays off.
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Appendix A. Stanford NER Properties File

trainFile=path/to/training_file
serializeTo=path/to/model
map=word=0,answer=1

useClassFeature=true
useWord=true
useNGrams=true
noMidNGrams=true
maxNGramLeng=6
usePrev=true
useNext=true
useSequences=true
usePrevSequences=true
maxLeft=1
useTypeSeqs=true
useTypeSeqs2=true
useTypeySequences=true
wordShape=chris2useLC
useDisjunctive=true
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