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Abstract

A huge body of continuously growing
written knowledge is available on the
web. Real-time information extraction
from such high velocity, high volume text
streams requires scalable, distributed nat-
ural language processing pipelines. We
introduce such a system for fine-grained
event recognition within the Big Data
framework Flink, and demonstrate its
capabilities for extracting and localiz-
ing mobility- and industry-related events
from heterogeneous text sources. Perfor-
mance analyses conducted on several large
datasets show that our system achieves
high throughput and maintains low la-
tency. We also present promising ex-
perimental results for the event extraction
component of our system, which recog-
nizes a novel set of event types. The
demo system is available at sta-demo.
appspot.com.

1 Introduction

In the last few years text analytics has assumed
a very important role in the area of large scale
data processing, in particular, big data analytics of
unstructured textual data. Its applications range
from fulfilling very specific information needs to
building up knowledge resources serving a vari-
ety of purposes. An important task of text analyt-
ics is detection and monitoring of events reported
in various texts. For example, mobility providers
may wish to better serve their customers by incor-
porating real-time information about short-term
disruptions across the general mobility infrastruc-
ture (e.g. accidents, delays, roadblocks), whereas
supply chain managers require timely information

about critical supplier events (e.g. liquidity prob-
lems, strikes, disasters).

While general text analytics pipelines for event
detection focus on detecting and tracking “news
topics”, such as earthquakes or crisis events (Al-
lan et al., 1998; Osborne et al., 2014), monitor-
ing fine-grained events, such as strikes at a par-
ticular facility of a company, or a traffic accident
on a specific road crossing, raises additional chal-
lenges. It requires more extensive linguistic anal-
ysis of texts, including named entity recognition
(NER) for non-standard entity types such as roads
or facility locations, entity linking (EL) (Dredze
et al., 2010) and relation extraction (RE) (Mintz
et al., 2009).

The ever-increasing volume and velocity of tex-
tual data available on the web raises additional
challenges from an engineering point of view, es-
pecially if we aim for real-time processing. Data
must be processed and transformed “on the fly” so
that, when it reaches a persistent data store, it is
immediately available for querying and interpreta-
tion. The system also needs to be able to handle
the burstiness of input data streams, i.e. it must be
capable of adapting to the high variability in in-
put volume and handle the resulting back-pressure
appropriately. Existing NLP pipeline frameworks,
such as UIMA (Ferrucci and Lally, 2004), often
only allow for some degree of parallelization, but
are not designed to handle big data streams.

In this paper, we introduce a scalable, dis-
tributed linguistic analysis pipeline to detect fine-
grained events from heterogeneous text sources,
namely, social media, news sites and RSS feeds.
The pipeline’s main functionalities include en-
tity recognition, entity linking to well established
knowledge bases and event recognition. To en-
sure scalability, robustness, and near real-time
distributed processing, our platform is imple-
mented within the big data analytics framework
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Flink (Alexandrov et al., 2014). Our contributions
in this paper are as follows:

• A linguistic analysis pipeline for detecting
and localizing events, including NER for
fine-grained and non-standard entity types,
and a novel entity linking approach for re-
solving highly ambiguous geo-entities such
as street or train station names

• A scalable, distributed architecture for fault-
tolerant processing of data streams in (near)
real-time and a performance analysis in terms
of throughput and scalability.

• Experimental results on the event extraction
quality of the pipeline, based on a dataset col-
lected over a 3 month period

Moreover, we will discuss some observations on
the performance of our NER, EL and RE ap-
proaches (see Section 4).

2 NLP Pipeline

We give an overview of the pipeline architecture.
The current system is designed to deal with var-
ious text types such as Twitter messages, RSS
feeds, and web pages, and simultaneously handles
German- and English-language documents.

2.1 Preprocessing

Preprocessing consists of the following steps:
boilerplate detection, language detection, sentence
segmentation and tokenization, POS tagging and
dependency parsing.

Due to the high heterogeneity of website con-
tents, processing HTML websites is an inher-
ent challenge. Boilerplate detection is used
to retain the main content of an HTML docu-
ment (Kohlschütter et al., 2010), langid.py (Lui
and Baldwin, 2012) for language detection –
which achieves high accuracy for various text
types and short documents. In our current imple-
mentation, we focus on English and German docu-
ments, and discard all others. POS tagging and de-
pendency parsing is performed by the Mate Tools
suite (Bohnet, 2010) for German, and with Stan-
ford CoreNLP (Manning et al., 2014) for English.

2.2 Named entity recognition

Table 1 represents the main entity types covered
by our system, besides standard types such as date
and time expressions. NER is realized by adapt-
ing the general purpose entity recognition toolkit

SProUT (Drozdzynski et al., 2004). SProUT is
a rule-based framework that unifies analyzed fea-
tures of each module (e.g. tokenizer, morphology,
and gazetteer) as typed feature structure and ap-
plies grammar rules to recognize entities.

Type Size Resource Examples

Company 112,347 Internal BMW, Bayer AG
City 27,075 OSM Berlin, Hof
Street 104,598 OSM Hauptstrasse, A1
Station 9,860 Dt. Bahn S+U Hauptbahnhof
Route 25,907 Dt. Bahn ICE 557, U2, M47

Table 1: Named entity types and size of the cor-
responding gazetteers recognized by our pipeline.
Route refers to public transport identifiers.

Besides some general rules for recognizing
organizations and datetime expressions, we im-
plemented particular rules to deal with frequent
morphologic variations of names (e.g. German
“strasse” and “straße” for “street”) and abbrevia-
tions (e.g. “Pl.” for “Platz” (“place”)), as well
as special time or date formats often used in RSS
feeds.

Gazetteers store information about naming vari-
ants, database identifiers, and geospatial shapes.
We build gazetteers for companies, cities, streets,
public transport stations, and routes in Germany
from existing knowledge resources. For geo-
graphic entities (i.e., cities and streets) we uti-
lize data from OpenStreetMap (OSM). The pub-
lic transport datasets provided by Deutsche Bahn
AG contain information and geo-shapes for public
transport stations, timetables, and interconnecting
routes within Germany. The company gazetteer
is constructed from an internal dataset of enter-
prises, which includes a large number of small
and medium-sized enterprises, and thus consider-
ably extends the data available e.g. in Wikipedia
or Freebase (Bollacker et al., 2008).

2.3 Entity Linking

An entity linking step is required after NER to
disambiguate the recognized candidate entities.
Since our system utilizes a large set of company
and geo-location entities, entity linking is par-
ticularly challenging. For example, many pub-
lic transport route names are synonymous across
German cities (e.g. ”S1” for ”suburban train
line #1” exists in more than 15 metropolitan re-
gions) and street names are also very often re-
used in different municipalities. We implemented



a novel geo-location based disambiguation strat-
egy. As SProUT already uses mechanisms for
fuzzily matching gazetteer entries to text, there is
no need for a separate candidate lookup step as in
typical EL systems (Ji et al., 2014). For ambigu-
ous entities the algorithm chooses the candidate
whose coordinates are contained or intersect with
the geo-shape of “larger” entities co-occurring in
the same text.

For example, a street name is typically resolved
to the correct database entry by testing if the
street’s shape is contained in the geo-shape of a
city mentioned in the same document. In other
words, we combine document context and geo-
location context to link entity mentions to their
correct knowledge base entry. Additionally, Twit-
ter allows users to tag locations in a message. For
tweets with a location label, we prioritize recog-
nized entities within the user tagged region.

2.4 Event detection

In this work, we define events in the spirit of the
definitions of ACE (Automatic Content Extrac-
tion) guidelines (Doddington et al., 2004) as n-ary
relations with a set of required and optional argu-
ments, including location and time. For example, a
strike event has a required argument company, one
or multiple location arguments, and an optional ar-
gument time (see Table 2). We hence use a more
fine-grained definition of what constitutes an event
than the document-level view typically assumed in
topic detection and tracking (Allan et al., 1998).

We detect events by matching dependency parse
trees of sentences to relation-specific patterns, as
described by Xu et al. (2007). The dependency
patterns for each relation are extracted automat-
ically from a set of 2.000 training documents,
which have been manually annotated for event
type, argument types, and roles. For Twitter, we
additionally implement a keyword-based event de-
tection strategy, since dependency parsing is likely
to often produce erroneous results given the very
informal language of many tweets. We define a
set of relation-specific trigger phrases to detect
events, which are matched both to hashtags and
general tweet text. By carefully selecting the trig-
ger phrase set, we can identify events with high
precision. Figure 1 shows a screenshot of our web
demo for NER, EL and RE.

Name Arguments

Accident Street, route, loc, time
Delay Street, route, flight, cause, loc, time
Disaster Type, trigger, casualties, loc, time
Traffic Jam Street, loc, time
Rail Replac. Route, loc, time
Road Closure Street, cause, loc, time

Acquisition Buyer, acquired, loc, time
Merger Old, new, trigger, loc, time
Spin-off Parent, child, loc, time
Layoffs Company, trigger, number, loc, time
Strike Company, trigger, loc, time
Insolvency Company, trigger, cause, loc, time

Table 2: Event types and their arguments recog-
nized by our pipeline.

3 Stream Processing Architecture

Our system is separated into three distinct func-
tions: document retrieval, processing and annota-
tion, and data storage - which are connected via a
distributed message queue system, Kafka1.

Retrieval is handled by individual data source
adapters that fetch a continuous stream of new
documents and forward the results into the mes-
sage bus. This relieves the annotation proces-
sor from source specific data handling as well as
buffers documents in case of large traffic burst.

The core processing itself is handled by Apache
Flink, a distributed, streaming data flow engine
that provides data distribution, communication,
and fault tolerant stream computation. We mod-
eled the NLP pipeline within Flink as a series
of transformations, that each wrap one NLP as-
pect. Flink connects to the message bus and for-
wards each new document through the pipeline.
Fault tolerance, using check-pointing, guarantees
exactly once processing, avoiding to double pro-
cess the same document in case of failures. Fur-
thermore, with adaptive back pressure handling,
Flink will back off from retrieving new documents
when the pipeline itself falls behind in processing,
which guarantees the fastest possible processing
across all distributed compute nodes.

Transformations subsequently enrich an inter-
nal document representation whose schema is in-
spired by the Common Analysis Structure imple-
mented in UIMA. This schema defines major el-
ements, such as sentences, tokens, concepts, rela-
tions and generic attributes, including provenance
information, consisting of annotator, confidence
and license information for traceability. The data

1kafka.apache.org

kafka.apache.org


Figure 1: Screenshot of our web based demo system for location detection.

schema is extensible and allows us to easily inte-
grate additional annotation components.

Finally, annotated documents are pushed back
to the message system, where they can be read
by multiple consumers. In our implementation we
archive all results for offline analysis and index a
rolling window of the results for immediate query-
ing through a dashboard. The dashboard can be
used to serve alerts and notifications of extracted
events in near real-time, as they are happening.

4 Observations and Insights

In this section we share observations made during
the development of our linguistic pipeline.

Preprocessing: During preprocessing we ob-
served that boilerplate detection sometimes retains
navigational text, which impacts the subsequent
linguistic steps. Twitter and RSS feeds are easier
to process due to the structured and well-defined
format they are provided in (JSON and XML).

Named entity recognition: Our current ap-
proach substantially relies on gazetteers and gram-
matical rules implemented in SProUT. This ap-
proach provides some inherent difficulties for
NER: First, we are unable to detect entities not
covered by the gazetteers. To this end we imple-
ment a fuzzy matching strategy, but the problem
still remains to some degree. Second, public trans-
port stop names sometimes share the name with
the street or borough they are located in. For ex-
ample, “Baumschulenweg” can refer to a public
transport train station in Berlin, a street in more
than 15 cities, or a locality in Berlin. Third, we
observe a high ambiguity between smaller cities

and German nouns (e.g., Regen, Dom, Strom).
Entity linking: Entity linking is implemented

using a geo-location based disambiguation strat-
egy. This strategy works best for documents, men-
tioning the larger area (e.g., a city) and smaller
locations contained within this area in the same
sentence. In cases where multiple cities match a
named entity, we require a popularity measure to
rank target concepts. A simple measure currently
implemented is the surface area of a shape (in
square meters). However, this measure can some-
times be misleading in case of relatively large but
sparsely populated places (e.g., Frankfurt (Oder) is
only 40 % smaller than Frankfurt (Main), but with
only 8 % of the inhabitants).

Event extraction: Event extraction uses
relation-specific dependency patterns for RSS-
feeds and news articles. For Twitter we define a
set of relation-specific trigger phrases. The lat-
ter event detection strategy poses a problem for
metaphoric word usage. For instance, “a land-
slide victory in Berlin” would be tagged as natu-
ral disaster. Currently, the event extraction module
recognizes events and arguments according to the
types defined in Table 2.

5 Relation Extraction Experiments

We applied our pipeline to a dataset of 3,789,803
tweets, 412,652 RSS-feeds, and 860,307 news
documents collected in the time period of Jan 1st,
2016 to March 31st, 2016. Figure 2 visualizes the
distribution of the 12 different event types across
all sources. The largest proportion of events is
extracted from Twitter messages, which also con-
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Figure 2: Distribution of extracted events for the
three different text sources.
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Figure 3: Experiment runtime with varying degrees
of parallelism on the testing corpus.

stitutes the majority of all processed documents.
Company related events are mostly extracted from
news documents, while mobility related events are
almost exclusively detected in Twitter and RSS
feeds.

Event type Twitter RSS News Avg

Traffic jam 0.28 1.0 – 0.64
Strike 0.58 – 0.66 0.62
Delays 0.74 0.94 0.26 0.65
Disaster 0.52 0.94 0.48 0.57
Layoffs 0.66 – 0.76 0.71

Table 3: Precision of event recognition for se-
lected event types. Empty cells indicate that the
corresponding event did not occur in the given
document type.

For each event type, we manually judge the cor-
rectness of a random sample of 50 documents per
source (if available for a given relation). Docu-
ments were considered to correctly state an event
if their text explicitly reported the event, regard-
less of whether it was ongoing, took place in the
past, or was announced for the future (e.g. in the
case of strikes). Events that were only implied
were labeled as incorrect. Table 3 lists the pre-

cision scores of a subset of the events, for all three
sources and micro-averaged across sources.

Best results are generally observed for RSS
feeds. This is an expected result, as we selec-
tively collect only RSS feeds from traffic infor-
mation sources. Some events types are more reli-
ably observed in specific sources, e.g. Strike and
Layoffs in news. The overall accuracy of event
recognition on Twitter is surprisingly high, with
the exception of Traffic Jam events. This, however,
can be attributed to the fact that the keyphrase pat-
tern approach employed for Twitter used the Ger-
man word “Stau” (“jam”), which is often used in
other, non-traffic contexts to denote slow or halt-
ing progress. On average, 64% of the identified
events are judged to be correct.

6 Performance and Scalability

To assess the performance of our system we se-
lected 2.875.000 Tweets and 3.093.456 RSS mes-
sages, corresponding to a weekly data sample.

We first measured the time that each individual
step of the processing pipeline takes, to assess the
latency that an ideal streaming pipeline would pos-
sess. This determines the delay between message
acquisition and availability for querying or inspec-
tion of downstream systems. Overall, RSS doc-
uments contain more text, and thus incur higher
processing costs, compared to the much shorter
Twitter messages. On average, our pipeline takes
roughly 1s and 250ms to process an RSS docu-
ment and a Twitter message respectively.

Next we are interested in the scaling proper-
ties of distributing the processing across multi-
ple machines. We observed that the volume of
messages is not constant across each source, in-
stead these sources show a bursty behavior. Large
events for example, can generate huge temporary
spikes in message volume – but at the same time
we would like to retain the ability to process all
messages in near real-time by scaling out. The
experiment setup consisted of a cluster of 4 ma-
chines (24 cores and 64 GB RAM each), running
Ubuntu 14.04 and Flink v1.1.2. We varied the de-
gree of parallelism by specifying the number of
task managers that Flink could utilize to distribute
the processing and measured the overall runtime
to process each dataset sample.

Figure 3 shows the results of the scaling ex-
periment, varying the parallelisms from 2 to 20.
For both datasets the processing time drops sig-



nificantly when more and more tasks managers
are added. The performance gains are smaller
for larger degrees of parallelism, due to a cor-
responding increase in communication costs be-
tween worker nodes. In the highest setting,
we measured a throughput of 530 docs/sec and
123 docs/sec for Twitter and RSS respectively.
Thus we can can increase the currently monitored
weekly stream volume 100 fold while still retain-
ing the same low latency.

The price for the gained throughput is a modest
processing overhead introduced by Flink itself as
well as the time it takes to transport the documents
over the network. With 20 task managers we ob-
served an overall processing overhead of 10%.

7 Conclusion

In this work we introduced a system for scal-
able, realtime event extraction. Our system
currently implements both German and English
analysis pipelines that include components for
NER, EL and RE. It processes different input
text data streams, including high-volume, high-
velocity sources such as Twitter, but also contin-
uous crawls of web documents and RSS feeds. A
performance analysis conducted on several large
datasets shows that processing large volumes in
near-realtime is possible when running on the dis-
tributed stream processing platform Flink – not
only achieving high throughput, but also main-
taining low latency, crucial when extracted events
need to be monitored and acted upon. The demo
is available at sta-demo.appspot.com.
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