
Augmented Things: Enhancing AR Applications leveraging the Internet of
Things and Universal 3D Object Tracking

Jason Rambach∗1, Alain Pagani†1 and Didier Stricker‡1,2

1German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
2TU Kaiserslautern, Kaiserslautern, Germany

ABSTRACT

With Augmented Reality (AR) reaching its technological maturity,
there is a constantly increasing request for AR applications that ad-
dress a broadened user base. Current AR applications still tend to
be spatially and temporally confined either by applying to a sin-
gle use case or by their tracking requirements. At the same time,
with the rise of the Internet of Things (IoT), more and more every-
day objects are fitted with wireless connection interfaces. In this
work, we present the concept of Augmented Things, in which ob-
jects carry all the necessary tracking and augmentation information
required for AR applications. This allows a user to connect to them,
load this information on his personal device and have augmenta-
tions such as maintenance instructions or product origin and usage
displayed. For this, we also present and evaluate a universally ro-
bust 3D object tracking framework based on high quality 3D scans
of the objects.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities—; I.4.8 [Scene Analysis]:
tracking—

1 INTRODUCTION

Augmented Reality is an emerging technology with numerous ap-
plications in a variety of fields such as industrial construction and
maintanance, medicine and rehabilitation, entertainment, education
and many others [4].

Accurate camera pose tracking is one of the key enabling tech-
nologies for AR using handheld or wearable devices. Precise track-
ing of the camera’s six degree of freedom pose (6DoF) correspond-
ing to its orientation and position in every video frame allows for
realistic placement of 3D augmentations and integration in the real
world [10, 16]. Existing tracking approaches rely either on uncov-
ering predifined targets such as markers or natural features (e.g.
edges and lines) of objects [6, 7] or employ Simultaneous Localiza-
tion and Mapping (SLAM) methods to uncover the structure of the
environment. In any case, an AR application needs to contain its
own tracking solution, either self-implemented or as an integration
of a commercially available tracking framework.

In parallel, with the advance of Internet of Things (IoT), origi-
nating from the reduced cost and size of sensors and miniature hard-
ware components, more and more devices and everyday objects are
embedded with microcomputers and wireless network connectivity
[12]. This leads to the idea of Augmented Things presented in this
paper. We propose to have objects that carry all the information that

∗Jason Raphael.Rambach@dfki.de
†Alain.Pagani@dfki.de
‡Didier.Stricker@dfki.de

Figure 1: In Augmented Things connected objects carry and share
their AR information

is required for them to be used as tracking targets and the augmen-
tation models that should be displayed for this model. Thus, a user
that wishes to display AR augmentations on that object (e.g. for
usage instructions, maintenance or simply entertainment) can use a
universal object tracking application from his personal device that
will connect to the object, receive the object AR package (tracking
information and augmentations) and directly track the object and
display augmentations. This leads to a separation of tracking and
content creation for AR, that greatly simplifies the creation of AR
applications.

The main contributions of this work are:

• The presented concept of Augmented Things and the applica-
tion architecture for its realization.

• A robust universal 3D object tracking framework suited for
the Augmented Things architecture utilizing off-screen ren-
dering of the object 3D model and a high degree of paral-
lelization.

• A fast and robust mulithreaded seamless initialization and
reinitialization method for tracking.

• The use of the pencil edge enhancing filter to improve KLT
tracking.

The rest of this paper is structured as follows: In the next sec-
tion we discuss related work on object tracking and AR applica-
tions (Section 2). In Section 3 the Augmented Things concept is
discussed further and an application architecture is proposed. In
Section 4 we present in detail our object tracking framework imple-
mentation. Subsequently, in Section 5 we present an experimental
evaluation of our object tracking framework in terms of tracking
accuracy and runtime performance. Finally, some concluding re-
marks are given.



2 RELATED WORK
A large amount of work has been conducted over the years on the
topic of camera pose tracking for augmented reality [10]. Ap-
proaches using markers or other fiducials provide robustness but
disrupt the natural scene and are sensitive to occlusions of the
tracking target and spatially confined to the area where the mark-
ers are visible. An alternative to that are Simultaneous Localiza-
tion and Mapping (SLAM) approaches that extract features 3D and
map their environment during tracking using structure from motion
methods [7, 13]. Some of these systems have shown very good
results, however they lack absolute orientation and tend to be com-
putationally demanding.

Using the object that should be augmented in an AR application
as a tracking target frees from the requirement for fiducials and di-
rectly sets the correct coordinate frame for augmentations on and
around the object. 3D CAD line models of objects were used in
[6] and [24] to perform tracking by minimizing the error between
the lines of the observed object and its CAD line model. In order
to provide more robustness it was proposed to fuse the edge-based
tracking with texture features in [23]. Textured 3D rendering of the
tracked object model is used to extract edges from depth and texture
discontinuities in [17]. Some of these approaches however appear
to be computationally very intensive as low frame-rates of 10−15
fps were achieved. These aforementioned methods using tracking
of edges from object models also show a deteriorating performance
in cluttered scenes. Direct methods matching the image intensity
of the object model to the scene in an iterative optimization have
recently emerged [20, 21]. Vuforia [3] is offering an object track-
ing framework based on CAD models which are not available for
all types of objects or scans made by the user himself by placing
the object on some marker pattern. The latter requires some exper-
tise of the user and does not recover the full structure of the ob-
ject. To our knowledge there are no approaches using textured 3D
rendering to perform pose tracking in a Frame-to-Frame (F2F) and
Rendered-to-Frame (R2F) feature matching manner in real time as
is presented in our work.

Concerning the Augmented Things concept, some authors recog-
nize the impact that the Internet of Things can have to augmented
reality mainly in terms of wearable AR devices [11] or AR as a
cloud service to reduce latency for computationally intensive oper-
ations [5]. ThingWorx [2] is developing an IoT platform of objects
that carry a specific marker and can be connected to in order to dis-
play among other things AR content that uses the Vuforia tracking
framework based on CAD models. Reality Editor [1] allows plac-
ing visual markers on objects and using them to track and create AR
information to add a digital layer to them. However, to the best of
our knowledge, the notion of connected objects that carry and share
their tracking and augmentation information has not been explored
yet.

3 APPLICATION ARCHITECTURE
The main concept of the Augmented Things framework is having
connected objects that carry all the information necessary to be
tracked and are able to share this information upon request. Cou-
pled with a universal 3D object tracking application that utilizes
this information to display useful or entertaining augmentations to
the end user/product consumer, it can provide a platform for ship-
ping products with customized AR content without the need for
defining a tracking and rendering infrastructure alongside. To give
a comprehensive overview of the proposed application architecture
we split the description of the components and requirements to the
object producer side and the object user or consumer side (Figure
2).

On Figure 3 examples of objects that could be integrated into
the augmented things application framework are displayed. These
objects can be common household devices (e.g. sewing machine)

Figure 2: The augmented things architecture separated in object pro-
duction and use

or complex industrial devices where augmentation regarding their
correct usage and maintenance can be overlayed to assist the user.
The idea can also apply to consumable products (e.g. cereal box)
that can display for example nutrition facts, expiration date, or ori-
gin. Objects presented in an exhibition (e.g. chinese lion statue) can
also be tracked to display historical information or other interactive
information in AR.

3.1 Producer side

The producer of an object with a wireless connection interface who
wishes to offer augmented reality content can use a predefined 3D
scanning technology (e.g. such as the one from 3Digify used in this
work [14, 8]) to create a high-quality 3D model of the product. Ad-
ditionally, a graphics/rendering engine such as Unity can be used
for the creation of the specific augmentations that should be dis-
played with this object. The augmentations could be maintenance
or correct usage instructions for a household device, information
about the production conditions for some consumable product, or
even general information and multimedia support for an exhibition
object. The augmentations can be placed in the same coordinate
system as the scanned 3D model without additional concern about
the tracking of the object. The 3D model, the tracking informa-
tion, and the augmentations can then be placed as a package on the
memory of the connected object to be shared upon request. The
estimated memory requirements of about 10 to 100 MB should not
pose a storage capacity issue.

3.2 User/consumer side

On the user side the only requirement is having the universal 3D
tracker application on their personal device. This application con-
sists of a tracker (described in Section 4.3.2) wrapped in a Unity



Figure 3: Sample candidate objects for the Augmented Things appli-
cation. These objects were also used for testing and evaluating our
tracking approach

interface that is responsible for the rendering of augmentations us-
ing the pose obtained from tracking. A user who is interested in
displaying augmentations over some object can use the application
to scan the space for objects that can be augmented and connect to
them via bluetooth or wireless network. Upon connection a copy of
the package of tracking information (object 3D scan and augmen-
tations models) placed by the object producer can be transmitted to
the user application and the tracking and displaying of augmenta-
tions can on the object can begin. The tracking information can be
stored by the application for as long as the user wishes to.

4 OBJECT TRACKING
In this Section we present our object tracking approach, imple-
mented for the realization of the Augmented Things idea. Thus, the
main requirements are the ability to accurately track arbitrary ev-
eryday objects in a computationally efficient manner in order to pro-
vide a good user experience. The main components of the presented
tracking framework are the object registration scheme based on the
generation of different poses from the scans of the object, a KLT
feature tracker modified for robustness to illumination changes, and
a quick initialization scheme based on ORB feature matching.

4.1 Problem Formulation
The addressed problem of 6DoF camera pose tracking consists
of estimating the rotation matrix RRR ∈ R3x3 and translation vector
ttt ∈ R3 that relates the camera coordinate frame to the tracked ob-
ject coordinate frame. Using a homogeneous representation of 3D
points PPP ∈ R4 in the object coordinate system and a homogeneous
representation of 2D points ppp ∈R3 in the camera image coordinate
system, the camera pose estimation problem requires an estimation
of the camera pose [RRR|ttt] such that the mapping

ppp = KKK[RRR|ttt]PPP, (1)

best fits a set of known 3D to 2D correspondences C = {PPPi↔ pppi},
KKK ∈ R3x3 representing the camera instrinsics matrix.

4.2 Object Registration
During the registration of an object for tracking a set of N anchor
points with known 3D positions in the object coordinate system
and strong edge characteristics is acquired. The idea is to select
3D points on the surface of the object that have a high probability
to be detected by a feature detector. To this aim, we use synthetic
rendering and statistical analysis of the frequency of detection of
3D points. This is done by first rendering a highly accurate 3D scan
of the object from a large number of random rotations of the camera
in all 3 axes (Figure 4). In every rendered pose [RRR|ttt]i of the object

strong corner features are detected using a standard feature detector,
and their 3D positions PPP are determined by using the depth buffer
of the renderer as follows. If ppp = [x,y,1] is the 2D homogeneous
representation of the point (pixel coordinates of the corner feature
center) and z is the depth obtained from the z-buffer of the renderer,
then the 3D coordinates PPP of this point are defined as:

PPP = RRRT
i

(
(KKK−1 ppp)z− ttt i

)
. (2)

For each random pose, all the found 3D points are registered in a
3D accumulator with millimeter accuracy. After the keypoints have
been collected for a large number of poses (usually in the order of
magnitude of 10.000 different poses), a non-maximum suppression
algorithm is run over the accumulator to keep only the local max-
imum number of occurrences. The remaining cells are then sorted
according to the decreasing number of occurrences. The first N 3D
positions are kept as features with the statistically highest probabil-
ity of being detected by the feature detector.

Apart from the registered 3D points, ORB[18] feature descrip-
tors and their 3D coordinates are extracted from a small subset Norb
of the rendered images and are stored to be used for initialization
of the tracking as described in Section 4.3.1.

Figure 4: Rendering of an object 3D model from different poses with
marked detected anchor points

4.3 Tracking Algorithm

Figure 5: Flow diagram of the proposed tracking framework



The outline of the proposed pose tracking framework is given in
Figure 5. Whenever a new video frame k is acquired, if the tracking
was successful on the previous frame k−1, an off-screen rendering
of the 3D model using the pose from the previous frame [RRR|ttt]k−1
is done and optical flow tracking is performed from the previous
frame to the current (F2F) and from the rendered model of the ob-
ject to the current frame (R2F). If enough matches are obtained, the
current pose [RRR|ttt]k is estimated within a RANSAC framework for
outlier rejection (Section 4.3.2).

Whenever the tracking is lost, the initialization modules are
activated (Section 4.3.1). A quick reinitialization scheme uses
ORB feature [18] matching between the current frame and a stored
keyframe. If this immediate reinitialization fails or a keyframe is
not available, the ORB Initializer matches features from the current
frame to a number of frames collected during the registration of the
object.

4.3.1 Initializer and Reinitializer
As the pose tracking from frame to frame can fail in some cases
when the image quality is compromised, e.g. due to motion blur,
occlusions or illumination changes, it is crucial for the tracking sys-
tem to be able to regain the correct pose efficiently. In this work we
propose a multi-threaded scheme based on ORB features that al-
lows the pose tracker to initialize and reinitialize seamlessly and
robustly.

The ORB initializer operates by matching the current video
frame to the ORB feature descriptors of rendered object poses
stored during registration (Section 4.2). Parallelization is used to
split the matching of descriptors sets from the Norb images among
all available threads. This allows to match to a large number of
descriptor sets without producing a large delay. A ratio test[9] is
applied to the matches from every descriptor set and the set having
the most good matches is used for pose estimation. The pose es-
timation is done by solving the perspective PnP problem using the
matches that passed the ratio test in a RANSAC scheme for outlier
rejection[15].

The ORB reinitializer is designed to rapidly regain the current
pose whenever tracking fails. It does matching of ORB features
from the current image to a reinitialization keyframe. During track-
ing the reinitialization keyframe is constantly renewed by a low-
frequency thread. Only frames of good tracking quality with a high
number of tracking matches and low reprojection errors are used as
keyframes. If a failure of the tracking is detected the reinitialization
module is immediately activated, attempting to do ORB matching
from the keyframe to the current image to regain the camera pose.
The reinitializer is highly effective because it matches between im-
ages that are very similar, especially when the keyframe gets re-
newed at a high rate. If the reinitializer fails to produce a correct
pose, the ORB initializer module is activated.

4.3.2 F2F and R2F KLT Tracking
The tracking module is given a camera pose [RRR|ttt]k−1 from the pre-
vious video frame Ik−1 as input and attempts to correctly estimate
and output the correct pose [RRR|ttt]k for the current video frame Ik.
Subsequently, the following steps are performed by the tracking al-
gorithm:

• Perform an off-screen rendering Rk−1 of the tracked object
3D model using the pose [RRR|ttt]k−1.

• If the previous pose was obtained through initialization,
project the object’s 3D anchor points PPPi,
i = 1, . . . ,N on the rendered frame Rk−1 using Equation 1 to
obtain their 2D image coordinates pppi. Before projection a vis-
ibility test is performed on the 3D points, in order to exclude
those that are not visible from the current pose because of ob-
ject self-occlusion. Square small image patches centered on

Figure 6: Result of pencil filter applied on rendered image (left) and
live image in challenging illumination condition with shadows and re-
flections (right)

the 2D points are extracted from the rendered image to be used
as KLT tracking features [22].

• If the previous pose was obtained through initialization, do
optical flow matching [19] (Rendered-to-Frame - R2F) of the
KLT features between the rendered frame Rk−1 and the cur-
rent frame Ik.

• Else first do optical flow KLT matching between previous
Ik−1 and current frame Ik (Frame-to-Frame) and then refine
the matches by R2F matching using the F2F output as initial
positions.

• After the matching phase, if enough matches are present,
solve a perspective PnP problem within a RANSAC frame-
work using the recovered 2D - 3D correspondences to esti-
mate the current camera pose [RRR|ttt]k. If RANSAC fails in
case of too few feature matches or large reprojection error
the tracking is interrupted and the initialization modules are
activated (Section 4.3.1).

The KLT optical flow matching is constrained to do matching by
local search around each feature’s position to improve the matching
speed since a feature is expected to have a displacement of only a
few pixels from frame to frame especially in a high camera frame
rate (>25fps). For algorithm speed-up purposes both the feature
matching and the RANSAC iterations are parallelized.

4.3.3 Pencil filter
The KLT tracking for objects with sparse texture is supported by ap-
plying the pencil filter to the images before matching features. The
pencil filter is commonly used as an artistic effect on images, how-
ever we found that its edge enhancing properties are very beneficial
for tracking. the filter consists of a dilation of the grayscale image
with an ellipse followed by local normalization. As can be seen in
Figure 6 the filter allows the recovering of edges under difficult il-
lumination conditions. The rendered model and its corresponding
pencil image are depicted on the left, while on the right side the
live image and its pencil image are shown. The two pencil images
are highly similar and this significantly improves the R2F KLT fea-
ture matching. Furthermore the edges of the pencil filter are very
consistent throughout an image sequence, compared to e.g. Canny
edge detection.

5 EVALUATION
In this section we present our results from the evaluation of our
object tracking framework described in Section 4. We evaluated the



Figure 7: Tracking results on a sparsely textured sewing machine and an industrial device. The object itself is shown on the first image of each
set and on the rest the object with its 3D model rendered over it. We demonstrate robust tracking from different angles and distances from the
objects, during occlusions or partial view of the object, motion blur, low illumination conditions and cluttered background.

two most important traits expected of a tracker, namely the tracking
accuracy (Section 5.1) and robustness and the runtime performance
(Section 5.2).

5.1 Tracking accuracy evaluation

Object Avg. Reprojection error (pixels)
Cereal Box 0.9799
Chinese Lion Statue 1.3651
Sewing Machine 1.7256
Industrial Machine 1.2292

Table 1: Average tracking reprojection error on all tested objects (Fig-
ure 3)

A qualitative evaluation of our tracking framework is given in
Figure 7. For this evaluation we selected two of our most chal-
lenging objects, a sewing machine with very sparse texture and an
industrial machine whose reconstruction had several flaws and was
less precise than the our other tested objects. In the presented im-
ages taken during tracking time we rendered the 3D model of the
objects over the real objects using the estimated pose. It is clear
that there is almost perfect overlap between the real object and the
rendering, which is a strong indication of the accuracy of our track-
ing. Furthermore, we show several challenging situations where
our tracking was successful, namely occlusion of the target object
by the user’s hand or other objects, partial view of the target ob-
ject, low illumination and motion blur due to fast movement of the
camera. The tracker’s success in these demonstrated cases is mainly
due to the robustness of our modified KLT tracking, since the pencil
filter applied before matching is very successful at retrieving edges
even in low contrast images (Section 4.3.2). However, even in cases
where the tracking inevitably fails, the ORB reinitializer 4.3.1 di-
rectly operates on the same frame and efficiently recovers the pose
in a seamless manner for the observer.

In Table 1 we provide measurements of the average reprojection
error during tracking for all 4 objects that were used for testing.
The measurements were made on challenging sequences with fast
camera translational and rotational motion. The accuracy of our
tracking framework is confirmed by the low reprojection error (< 2
pixels) achieved throughout the sequences for all objects. For the
more sparsely textured objects and for the objects whose 3D model
is less accurate the error is higher than for the others but still low
enough to provide stable tracking.

5.2 System Runtime evaluation
We evaluate the runtime performance of the different components
of our tracking framework on two devices. Primarily on a desktop

Total

RANSAC

KLT-matching

Off-screen Rendering

Preprocessing

28.96

2.21

16.45

8.53

1.77

39.66

2.33

16.63

18.54

2.16

Tracking runtime in ms

Desktop PC
Surface Pro

Figure 8: Runtime measurements in ms. per frame of all stages of
the tracking algorithm from Section 4 for a desktop and a handheld
device

Desktop PC (ms) Surface Pro (ms)
Re-init 18.5 33.94
Init Norb = 8 31.5 39.97
Init Norb = 16 44.0 55.11
Init Norb = 32 73.0 89.1
Init Norb = 64 133.0 155.2

Table 2: Runtime measurements in ms of the initialization and re-
initialization scheme

PC with an Intel Xeon processor at 3.07 GHz and 12 GB RAM
in order to make fairer comparison to other tracking frameworks
and secondly on a less computationally powerful Microsoft Sur-
face Pro 4 with an Intel Core i5 processor at 2.4 GHz and 8 GB
RAM which is a good example of a device often used for handheld
device augmented reality applications. A standard image resolution
of 640×480 was used in the experiments.

In Figure 8 we present the average required time in ms to per-
form the computations of the main parts of the tracking algorithm
corresponding to Figure 5. Preprocessing corresponds to receiv-
ing and undistorting the captured frame, Off-screen rendering is the
rendering of the model of the object with the previous frame pose,
and KLT matching and RANSAC is the core of the tracking as ex-
plained beforehand. We observe that the KLT matching is one of the
most costly operations. For the Surface Pro, we see that all results
are comparable to the Desktop apart from the Off-screen rendering
which requires more than double the time, due to the graphics card
which is the bottleneck of the system in this case. From the total
time required for the tracking we compute that frame rates of 34



and 25 fps can be achieved on the desktop PC and the Surface Pro
respectively. These high frame rates leave a good amount of time
for rendering high quality 3D augmentations on the user side.

One of the main contributions of our tracking framework are the
fast reinitialization and initialization schemes (Section 4.3.1). For a
good experience with the system it is of high importance that these
initialization schemes are computationally efficient. In Table 2 we
present runtime measurements of the initialization on the two de-
vices used in the experiments. The ORB reinitialization scheme is
very fast in both devices since it does matching only between two
images which are very similar because of the high rate of refresh-
ment of the saved reinitialization keyframe. Because of the image
similarity between keyframe and current image, the reinitialization
module is also very effective, managing to compute a pose from
the matches in more than 95% of the attempts. The initialization
time required depends heavily on the number of candidate poses
Norb used for matching and on the degree of parellelization that
can be achieved by the device processor. There is a clear trade-off
between initialization success rate and speed of initialization. We
have found that Norb values of 16 or 32 ensure high success rates of
initialization while not requiring too much time.

5.3 Discussion

The main limitation of our tracking approach is that there is a group
of objects (e.g. highly reflective, completely textureless) that are
not easily scanned with existing technologies. Furthermore, these
types of objects with no texture would not provide enough features
to be tracked. However, using the object texture for tracking in-
stead of lines or direct optmization methods creates a robust system
that is not affected by ambiguities due to the object shape and is
resilient to illumination changes due to the use of the pencil filter.
Furthermore, the absence of computationally expensive optimiza-
tion processes allows our tracking system to operate at high frame
rates. Finally, compared to AR platforms such as ThingWorx [2],
the use of object 3D scans appeals to a wide selection of objects for
which a CAD model is not available. Our tracking system showed
good performance on a large set of different objects in a variety of
different environments verifying its real world applicability.

6 CONCLUSION

In this work we presented the concept of Augmented Things for AR
applications and an application architecture for Augmented Things
was covering all stages from object production to usage. A univer-
sal object tracking framework that targets computational efficiency
and user experience was presented as a key enabling technology for
Augmented Things. In the evaluation of the system we show that
our tracking framework is able to robustly track a variety of sparsely
textured objects under challenging image conditions (motion blur,
illumination variations, occlusion) at a high frame-rate even on a
portable handheld device that is a realistic candidate for AR appli-
cations. Future work includes adding inertial sensor measurements
to further improve the tracking under fast camera motion. For the
same purpose, SLAM approaches can be applied to reconstruct part
of the object’s environment in order to also use this additional in-
formation for tracking.

ACKNOWLEDGEMENTS

This work has been partially funded by the Federal Ministry of Ed-
ucation and Research of the Federal Republic of Germany as part of
the research projects PROWILAN and BeGreifen (Grant numbers
16KIS0243K and 16SV7525K) and the European project Eyes of
Things under contract number GA643924. The authors would like
to thank Torben Fetzer and Carol Naranjo for the scanning of ob-
jects and Ruben Reiser, Oliver Stock and Narek Minaskan for the
design of AR content.

REFERENCES

[1] http://fluid.media.mit.edu/realityeditor.
[2] https://www.thingworx.com/.
[3] https://www.vuforia.com/.
[4] W. Barfield. Fundamentals of wearable computers and augmented

reality. CRC Press, 2015.
[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and

its role in the internet of things. In Proceedings of the first edition of
the MCC workshop on Mobile cloud computing, pages 13–16. ACM,
2012.

[6] T. Drummond and R. Cipolla. Real-time visual tracking of complex
structures. IEEE Transactions on pattern analysis and machine intel-
ligence, 24(7):932–946, 2002.

[7] G. Klein and D. Murray. Parallel tracking and mapping for small ar
workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th
IEEE and ACM International Symposium on, pages 225–234. IEEE,
2007.

[8] J. Köhler. Enhanced usability and applicability for simultaneous ge-
ometry and reflectance acquisition. 2016.

[9] D. G. Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, volume 2, pages 1150–1157. Ieee, 1999.

[10] E. Marchand, H. Uchiyama, and F. Spindler. Pose estimation for aug-
mented reality: a hands-on survey. IEEE transactions on visualization
and computer graphics, 2015.

[11] F. Mattern and C. Floerkemeier. From the internet of computers to the
internet of things. In From active data management to event-based
systems and more, pages 242–259. Springer, 2010.

[12] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet
of things: Vision, applications and research challenges. Ad Hoc Net-
works, 10(7):1497–1516, 2012.

[13] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense
tracking and mapping in real-time. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 2320–2327. IEEE, 2011.

[14] T. Nöll. Efficient Representation of Captured Geometry and Re-
flectance. 2015.

[15] T. Nöll, A. Pagani, and D. Stricker. Markerless camera pose
estimation-an overview. In OASIcs-OpenAccess Series in Informat-
ics, volume 19. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2011.

[16] A. Pagani. Reality Models for efficient registration in Augmented Re-
ality. Verlag Dr. Hut, 2014.

[17] A. Petit, E. Marchand, and K. Kanani. Tracking complex targets
for space rendezvous and debris removal applications. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pages 4483–4488. IEEE, 2012.

[18] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient
alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 2564–2571. IEEE, 2011.

[19] T. Senst, V. Eiselein, and T. Sikora. Robust local optical flow for
feature tracking. IEEE Transactions on Circuits and Systems for Video
Technology, 22(9):1377–1387, 2012.

[20] B.-K. Seo, H. Park, J.-I. Park, S. Hinterstoisser, and S. Ilic. Optimal
local searching for fast and robust textureless 3d object tracking in
highly cluttered backgrounds. IEEE transactions on visualization and
computer graphics, 20(1):99–110, 2014.

[21] B.-K. Seo and H. Wuest. A direct method for robust model-based 3d
object tracking from a monocular rgb image. In Computer Vision–
ECCV 2016 Workshops, pages 551–562. Springer, 2016.

[22] C. Tomasi and T. Kanade. Detection and tracking of point features.
1991.

[23] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and texture in-
formation for real-time accurate 3d camera tracking. In Proceedings
of the 3rd IEEE/ACM International Symposium on Mixed and Aug-
mented Reality, pages 48–57. IEEE Computer Society, 2004.

[24] H. Wuest, F. Vial, and D. Stricker. Adaptive line tracking with mul-
tiple hypotheses for augmented reality. In Proceedings of the 4th
IEEE/ACM International Symposium on Mixed and Augmented Re-
ality, pages 62–69. IEEE Computer Society, 2005.


