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ABSTRACT

Hand Gesture Recognition is completed on top-view hand images
observed by a Time of Flight(ToF) camera in a car. The work at-
tempts to solve two important problems of touchless interactions
inside a car. First, low latency identification of the gestures which
are unobtrusive for the driver. Second, reducing the labelled data
required to train learning based solutions, this is particularly impor-
tant because labelling of gesture sequences is expensive and exi-
gent.
This work attempts to improve the fast detection of hand-gestures
by correcting the probability estimate of a Long Short Term Mem-
ory (LSTM ) network by pose prediction made by a Convolutional
Neural Network(CNN). Weak models for hand gesture classes
based on five hand poses are designed to assist in the prediction-
correction scheme. A training procedure to reduce the labelled
data required for hand pose classification is also introduced. This
method tries to utilise the statistical property of the dataset to iden-
tify a good initialization of weights for the CNN, here we demon-
strate this using the Principal Component Analysis(PCA) embed-
ding of non-labelled hand pose sequences. While solving a nine
class hand gesture problem we demonstrate an accuracy of 89.50%
which is better than existing systems. We also show that a PCA
embedding based initialization improves the classification perfor-
mance of the CNN based pose classifier.

Index Terms: I.5.4 [Computer Vision]: ;— [H.5.2]: Interac-
tion styles—; H.m [Hand Gestures]: Hand Pose—; I.4.m [Ac-
tivity recognition and understanding]: ;— [I.5.1]: Neural nets—
LSTM,CNN

1 INTRODUCTION

Ease of interaction with the elements of augmented reality in the
real space is of much research interest. Both, posture and gesture
of body and hand are simple interaction tools for an augmented real-
ity application. The benefits of Head-Up Displays(HUD) and con-
tactless dashboards inside an automobile have been discussed for
decades [17], [8]. Researchers have aimed at reducing the distrac-
tion of interaction and a minimum eye contact time for improving
driver safety. With increasing research on HUD [15] and the arrival
of proposed augmented reality display systems [9] it is important to
develop convenient hand gesture systems to interact with both aug-
mented reality and classical applications inside a car. The work by
[19] shows that both on-wheel gestures and head-up displays can
be integrated. This work shows that frequently used controls in a
car can be displayed on a head up display and can be controlled by
extending a specified number of fingers without leaving the steering
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Figure 1: Grab of application for hand pose and gesture in car en-
vironment.

wheel.
Work by [13] also shows that the performance of the driver can

degrade sharply with small increase in the shift of attention, thus
touch- free gesture interaction based on vision can improve the
safety of the driver. It has been shown in these studies that the
in vehicular interactions are most safe when they are close to the
natural gestures and are simple [16].
More flexibility is allowed while designing a hand-gesture vocab-
ulary which uses varying hand pose and hand motion over frames.
We will define such gestures as dynamic gestures. There is a broad
range of solutions for interaction using such hand-gestures. Early
solutions of dynamic hand gestures include solutions based on finite
state machines [4]. Inspired by the results on handwriting recogni-
tion [14] and speech analysis [25], various adaptations of Hidden
Markov Models(HMM) for gesture recognition systems have been
used [3]. Such works used a feature space to learn the dynamics of
each action class [21]. Recurrent neural networks have also been
used for hand gesture classification extensively [28]. Both the state
machine and Recurrent Neural Network(RNN) based strategies use
the information of the pose to identify the gestures.
Further, many interaction systems use motionless hand-posture for
input interaction. These posture based methods are defined as static
hand gestures. In these gestures, the shape of the hand is not ex-
pected to modify until the interaction is completed. These methods
can use a hand pose classification solution like [5], [20]. Further,
posture estimation is another solution for static input interaction
with hand. Various works in recent past have used convolutional
neural networks(CNN) for hand pose estimation[24].
More recently, deep neural networks have been trained with a multi-
modal training strategy. Considerable work on language and speech
research uses a combination of texts and vision input for the speech
recognition and caption generation[10], [18]. It was shown in these
works that learning patterns in one feature set is supported by the



presence of another feature set. For pose and gesture estimation
these multimodal datasets may include a bag of skeletal points, in-
ertial measurements from on-body sensors or a sequence of image
frames. Such networks use convolution based networks for image
input and the LSTM version of the RNN for inertial inputs.
The LSTM network [12] is a variation to the traditional RNNs. It
attempts to solve the problem of vanishing gradients [11] by adding
a constant error carousel and forget gate to the recurrent nodes in
the neural network and has shown exceptional results on various
applications[6],[7]. It is also easier to construct an LSTM as com-
pared to an HMM where some prior experiments are required to
identify the number of states. The LSTM has been shown to outper-
form the traditional RNN and has been extensively used for hand-
writing and speech recognition tasks recently [6], [7]. In [23] it
has been shown that LSTM performs better than HMM and SVM
for gesture identification. Location, orientation and velocity of the
palm have been used as features for gesture recognition problem in
[29]. The union of these features have been used as input to RNN
or HMM.
The performance of the image and vector input multi model system
has been very encouraging. However, the end to end learning of
multimodal networks remains a hard task. The large datasets are
required for training complex models with gesture sequences be-
cause the hand gestures are complex, the high degree of freedom
motion. It is hard to label and train gesture sequences of varying
lengths, this is because the segmentation of the sequences is time-
consuming with labelling the sequences. Some of the common so-
lutions for training with unlabeled data in an unsupervised manner
or by simplifying the learning model being used.

2 CONTRIBUTIONS AND STRUCTURE

2.1 Contributions

Rather than learning an end-to-end multimodal system because of
the above-mentioned constraints, we propose to combine separately
trained networks. An LSTM based on a vector with motion and
shape features and a CNN learnt on the image input. The output
class probabilities are used in a prediction correction scheme us-
ing a state probability model learnt statistically. The hand gestures
can be defined as series of hand motions with changing or static
hand poses. In this work, it is argued that the nine gestures we
classify can be weakly modelled by transition probabilities of five
hand poses. Using this assumption for the definition of gestures we
describe a method to correct the gesture estimate provided by the
trained LSTM model simultaneously with pose estimate from the
CNN model.
Thus we use a smaller model that can be trained with lesser labelled
data. We train an LSTM for gesture classification on features ex-
tracted from frame sequences. This model was earlier used to make
early predictions of hand gestures in [27]. The contributions of this
work are:

• A CNN model is used for class probability estimation. We use
a novel PCA projection based initialisation for the CNN. This
allows us to use the larger dataset of unlabeled hand shapes
collected from gesture sequence recordings to initialise the
CNN correctly. The initialised CNN is then fine tuned with
the labelled hand pose frames.

• Transition probability models describing the pose transition
for each gesture are constructed.

• The LSTM prediction is corrected by the CNN pose probabil-
ity estimate using the pose transition models. We demonstrate
that the LSTM predictions for short gesture sequences can be
improved by including pose estimation while making a final
gesture estimate.

Figure 2: The camera (shown in red box) in the car.

The LSTM architecture is based on a combination of two phase
learning and a cumulative probability addition at the output. The
work demonstrates improved gesture classification results. The
pose accuracy is also improved by using the proposed initialisation
scheme.

2.2 Structure of the Paper
The Section 3 introduces the gestures used for the experiments and
describes the data collection process. The next section describes
two separate training data for the CNN and LSTM and the test data
for the entire system. The LSTM and the CNN architectures are de-
scribed in Section 4. In the same section, the PCA based initialisa-
tion of the CNN pose classifier is discussed. The Section 5 explains
the correction of gesture probability estimates from the LSTM us-
ing the pose probabilities and the probability models. The results
of the gesture recognition system on a test data are reported in Sec-
tion 6, here we compare the results with the original LSTM and
demonstrate an improvement in performance. A brief discussion
about convolution based recurrent networks and 3D-Convolutional
Neural Network(3DCNN) is presented in the Section 7. Finally,
we conclude with the limitations and the direction of the work in
Section 8.

3 POSE AND GESTURE DATA AND FEATURES

Handling the consistently and rapidly changing global illumination
and defining an optimal location for the camera to minimise the
palm occlusion needs both algorithmic solution and planning on
location and choice of the sensor. It has been observed that an
overhead location is best suited for such problems [2]. While this
location of the camera removes the occlusion due to objects inside
the car, the self-occlusion of the hand remains a problem. The
illumination variance is handled by using a PMD Nano Time of
Flight(ToF) camera based on the Photonic Mixer device(PMD)
which records the scene independent of the illumination of the
environment. The camera is fixed to the region behind the rear
view mirror, Figure 2.
Nine hand gestures are recorded. Of these nine gestures ’Accept’,

’Decline’, ’Drop’, ’Grab’, ’Click’ are labelled with a single



integer. These gestures include a change of hand poses during their
completion. The ’Swipe’ in Left and Right, ’Up’ and ’Down’ have
two labels one to identify the ’Horizontal’ or ’Vertical’ motion and
the other to mark the direction of motion.
Five poses ’Fist’, ’Flat’, ’Join’, ’Point’, and ’Open’ are recorded
separately. These poses are chosen because the transition between
these poses can define our gesture set. The process of describing
the gesture is described in Section 5.
Both the hand-pose and hand-gesture datasets are recorded within
a cuboidal space with varying heights. The ToF camera is mounted
vertically above the recording region. A PMD Nano sensor has a
resolution of 120x165 pixels. The output frame has two channels,
the depth channel and the amplitude channel. The data is recorded
with a frame rate of 25 frames per second. The palm region is
segmented by creating a virtual cuboidal space in the region where
we wish to observe the hand-gesture.

3.1 Feature Extraction for Gesture Estimation by LSTM

For gesture recognition, various features that capture information
of the hand-motion and hand-shape are extracted from the sequence
of frames. Motion descriptor features include velocities of the
foremost finger and the hand centroid in all three dimensions.
The palm-center coordinates, the azimuth and polar angle of the
extended finger, the active pixels of the segmented-palm to indicate
shape, the convex hull and concave depth of the palm are calculated
at every frame.
Overall, a 17 dimension vector is used to describe the palm shape
and motion. This input vector sequence is input to the LSTM.
These features are centred and normalised such that the mean of
each feature element over the training data is zero and the variance
is unity. The start and the end of the frame in the input stream is
marked both in the test and train data.

3.2 Training and Test Data

60000 sample of labelled images of five pose classes are recorded.
The pose classification model is tested on 12000 test samples.
Gesture sequences from 12 subjects are recorded. Each subject
is recorded for multiple sequences. Each of the nine gestures is
recorded for two to three minutes. The recordings of 10 people were
used to train the LSTM system for gesture-recognition. Recordings
from two subjects of the 12 recorded are used for testing and report-
ing the results for the full system. The LSTM gestures are reported
for the same two subjects, which are used for the full system.
The gesture sequences are normalised to the length of 30 frames.
Shorter and longer gesture sequences are upsampled and downsam-
pled respectively to create equal length sequences for the experi-
ments.

4 CNN AND LSTM CLASSIFIERS

4.1 A Two Phase LSTM System

We employ the two phase system described in [27]. It uses two
LSTM networks such that the classification task is distributed into
a classification based on direction and a classification based on hand
shape during the completion of the gesture. One LSTM identifies
the primary class of the gesture. Two other, smaller LSTMs are
trained to learn the intended direction of motion for the gestures
whose identificaiton requires the understanding of the direction of
motion Figure 3.
These three LSTM networks are trained independently with the
same training dataset by sampling with respective labels. These
networks are trained with the resilient backpropagation algorithm
[26].
The LSTM combination based system provides an estimate of the

Figure 3: Two phase LSTM architecture.

Figure 4: The output strategies.

probability that the frame belongs to a gesture sequence. The out-
put probability values are a cumulative addition of the probabilities
from the beginning of the gesture sequence, see Figure 4. The cu-
mulative addition scheme allows continuous estimation of the prob-
ability vector. This system provides a continuous gesture probabil-
ity vector for the ongoing sequence. The LSTM probability ad-
dition smoothens the LSTM estimates and suppresses the output
during the period of short context.

4.2 CNN Pose Classifier

After experimenting with various three convolutional layer CNN
models for hand-pose classification the sequential CNN shown in
Figure 5 is identified as the best performing network. This network
does pose classification by forcing the outermost layer before out-
put softmax layer to be a 22 node layer which equals the degree of
freedom of the hand. The selected architecture has four convolution
layers followed by four fully connected layers which calculate the
inner product. To add non-linearity to the network each convolu-
tional and fully connected layer before the layer is connected to a
ReLu (Rectified linear unit).

The neural network is trained to optimise the performance with
the limited labelled hand pose frames. The network with the con-
volutional layers is trained to learn a twenty-two dimension low
dimensional representation of the hand pose images. The frames
from hand gesture sequences are used to learn a PCA low dimen-
sional representation. Ten-thousand frames are used to learn a PCA
decomposition. Further, the network is trained as a regressor with
sixty-five thousand image frames. The low dimension representa-
tion is calculated by the learnt PCA embedding. These projections
are the labels to be learnt by the algorithm. The PCA-embedding
network is trained using a batch learning scheme with a batch size
of 64. The PCA embedding is tested on six thousand frames from
the same gesture dataset.
Finally, a five node softmax layer is added to the PCA-embedding
network and is fine tuned to learn a classifier. The model initialized
by this procedure learns the classification task faster. The accuracy
gain is demonstrated in the section on results, while the loss pro-
gression in PCA initialised and the original model is shown in Fig-
ure 8 and Figure 7, respectively. Lesser iteration over the batches



Figure 5: The neural network model for pose recognition.
Conv:convolutional, FC:fully connected.

Figure 6: Test loss progression on PCA embedding network.

of data produces better loss performance in case of the initialized
network.

5 CORRECTION ESTIMATION

The gesture estimates for the LSTM are made for every frame.
Similarly, the pose class estimates are available for every frame of
the gesture. Let ρG and ρP be the respective output probability
vectors for the gesture=classes and pose-classes.

5.1 Gesture models
A small dataset with twenty gestures from each class is created.
The dataset has a gesture label for the full sequence. Apart from
the gesture label, each frame of the normalised gesture sequence is
labelled with the closest hand pose. This dataset is used to create
a probability model ρP|(G=g)t

, to be read as probability of a pose
occurring during the tth part of the sequence given gesture g.
Each gesture is modelled as a sequence of five pose probabilities
over a time frames of six frame each.
The pose appearing over each time frame in the samples of each
dataset are counted and a probability estimate is made. To avoid
zero-probability situations a value ε is added to each probability
value in the models. The probabilities are renormalised after
this addition. The sample probability calculated model of ges-
tures ’accept’ and ’decline’ are shown in Figure 10a and Figure 10b.

Figure 7: Classification model initialised from PCA

Figure 8: Classification without initialization

5.2 Correction
We have a probability vector estimate of the gestures from the
LSTM output ( ρG). Another estimate for the gesture probability
vector ρ

′

G is made using the conditional probability ρP|(G=g) and
the pose probability output ρP of the CNN.
Further, we construct a ρG|(P=p)t

and use the gesture estimate from

the LSTM ρP to make a new pose estimate ρ
′
P.

A deviation measure for ρ
′
P and ρP is defined to measure the diver-

gence of the pose estimate by the gesture model from the trained
CNN. The pose probability divergence is used for the online re-
weighting of the iterative weighting factor. The weighted gesture
probabilities at each frame are then calculated as,

ρ(Gcomb) f = ρG +(ψ(δ (ρP,ρ
′
P))ρ

′
G, (1)

where ψ(x) = 1− x and,

δ = max(ρP)−ρ
′
P[argmaxρP]. (2)

This is done to give high weighting to the LSTM estimates if the
strong classifier, based on CNN, is more certain about a class as



Figure 9: The combined system for gesture sstimation.

(a) Pose probability model for ”Accept” (b) Pose probability model for ”Decline”

compared to the weak model. This corrects for unintended, short
change of pose while completing a gesture. The weighted gesture
probability is renormalised.

6 RESULTS

The LSTM model for gesture recognition and the CNN model for
the pose recognition were trained and tested separately. Further,
the probability output of these models was combined to create a
better estimate of the sequence. The results on both training modes
for CNN classifier from two separate gesture and pose dataset are
listed. The corrected estimation for the gesture after combining the
probabilities from the two models are also reported in this section.
The results obtained from our method were compared against the
2-phase LSTM system that was used for making a gesture estimate.
The gesture classification accuracies were also compared with a
single all class LSTM which was trained and tested on the same
dataset.
The accuracy performance improved when the CNN for pose clas-
sification is trained with the proposed initialization based on first
training the network with the PCA embedding. The initialized
network was trained for 5200 batch iterations as compared to the
Xavier initialised network which was trained for 12700 batch iter-
ations. The modified training procedure improves the classification
accuracy for all classes of hand poses. This demonstrated a suitable
solution for better classification when the labelled data is scarce or
expensive. The new training procedure improved the average clas-

Table 1: Accuracy for classification of five poses with two initiali-
sations.

Accu % Fist Flat Open Point Join
Xavier Init 87 89 91 91 93
PCA Init 89 90 94 91 93

Table 2: Accuracy for nine gesture classification based on three
methods.
U:Up, D:Down, L:Left, R:Right, C:Click, A:Accept, De: Decline, G:Grab,
Dr:Drop.

% Accu U D L R C A De G Dr
Static gestures Dynamic Getsures

LSTM 77 78 88 89 96 78 80 91 91
2 Phase LSTM 84 85 92 93 96 82 84 89 91
Proposed 81 86 89 93 95 85 87 92 92

sification accuracy of the full test dataset from 90.5% to 91.5%. The
class-wise accuracy for both initializations are shown in Table 1.

The two-phase LSTM described earlier, is trained for 200
epochs, the classification decisions are made only after the first
10 frames (one third of the normalised gesture length) of the ges-
ture. The accuracy percentages are reported as percentage of cor-
rect predictions after the first 10 frames. It is observed that the
short or rapid change of gestures were missed because of the LSTM
learning procedure. This problem was solved with the correc-
tion scheme. The results from a single phase LSTM were com-
pared with the LSTM combination explained earlier and finally
with the probability correction paradigm that has been proposed in
this work.
The proposed solution outperformed a large single LSTM consis-
tently. On comparison with the 2-phase LSTM the solutions pro-
vided better accuracy in six of the nine classes, see Table 2. The
proposed solutions consistently performed better on the dynamic
gestures. The overall accuracy on the test dataset increased from
88.50% on the 2 phase system to 89.50% on the proposed solution.

7 DISCUSSION

The experiments on the same dataset were also conducted by the
combination of image inputs into two parallel networks on 3DCNN
and LSTM models like those proposed in [22]. The networks per-
form well on RGBD datsets [1] collected from Kinect. We could
not reproduce similar results when testing on the relatively smaller
amount of labelled data recorded from the ToF camera. In the test
that we conducted with 4500 sequences, the average classification
performance on the nine class problem was 64%. This can both be
attributed to the low resolution of the input images and the smaller
size of the dataset.

8 CONCLUSION

We tried to improve the solution for HCI inside car with focus on
low latency and low data requirement. A gesture recogntion system
that returns gesture estimation on the completion of one-third of
the geture is tested and presented. It is expected that a low latency
solution for gesture identification is more compatible for use in a
car, especially because it is less obtrusive for the driver to use.
This work classified top-view hand gestures observed by a ToF
camera using a probabilistic combination of gesture and pose
estimates. The work demonstrated the possible starategies for
obtaining better classification accuracies with smaller labelled and



unlabelled datasets. We could show an average 1% improvement
of performance over multi-phase LSTM based system and over 5%
improvement over one LSTM based classifier. The performance
improvement is significantly higher for gesture sequences in which
the hand pose modifies during completion. The identification
accuracy for ”Accept”, ”Decline”, ”Grab” and ”Drop” increase
substantially. The dynamic gestures as defined earlier, thus perform
considerably better in the new proposed setup.
Further, multiple hand frames in each gesture are unlabelled for
pose. It has been demonstrated that learning a PCA embedding
of these hand frames through a neural network helps in a better
initialisation of the network. It has been demonstrated that the
network trained on PCA embedding based initialisation improves
the accuracy for the pose classification problem when trained for
half the original iterations.
One of the constraints of the solution is the normalisation of
the sequence length. This is done to design a constant length
state transition model. Additions to this work will work towards
handling this constraint by attempting to learn the transition
models using belief networks. The PCA embedding based learning
also enforces a linear mapping between the input and output. It
is planned to experiment further with projections like with local
linear embedding and isomap projections.
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