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ABSTRACT

In this paper we present a novel sensor fusion framework between
unsychronized optical tracking systems and inertial measurement
units based on an Extended Kalman Filter (EKF). The main benefit
from the fusion is taking advantage of the faster speed of measure-
ment availability of the inertial sensor in order to decrease the delay
of the system while maintaining the accuracy of the optical tracking
system. The tracking framework is applicable in a car cockpit Aug-
mented Reality system displaying augmentations using the tracked
6 Degree of Freedom pose of a head mounted display.

Index Terms: H.5.1 [Multimedia Information Systems]: Arti-
ficial, augmented, and virtual realities—; I.4.8 [Scene Analysis]:
Sensor Fusion—MotionTracking; I.2.9 [Robotics]: Sensors—

1 INTRODUCTION
Fusion between visual and inertial sensors is commonly used for

pose tracking applications and odometry because of the comple-
mentary nature of the sensors. Visual tracking is in general more
accurate than the high noise level inertial sensors, but is provided at
a lower frequency and is susceptible to errors when the input image
quality is compromised.

A number of different approaches for visual-inertial fusion have
been proposed over the years, including the use of statistical filter-
ing (Extended Kalman Filter, Particle Filter) [4, 3, 7], optimization
[6], or more recently learning approaches [12]. However, most ap-
proaches consider sensors that are synchronized on hardware level,
e.g. through a triggering signal.

Precise 6 Degree of Freedom (DoF) pose tracking is a crucial
prerequisite for any Augmented Reality (AR) application since it
allows for precise placement of 3D augmentations in the real world
without jittering or floating effects [8]. See-through head mounted
displays (HMD) provide the most immersive AR experience for the
user but have high requirements regarding the latency between the
user’s movement and the update of the pose of the rendered objects
[2].

For a constrained area AR application like in the inside of a ve-
hicle, it is reasonable to rely on the so called inside-out tracking for
the determination of the pose. To this extent, an optical tracking
system that consists of several cameras tracking reflective markers
can be used. This type of tracking systems can compute a pose
very accurately and robustly, however they induce some delay for
the computation of the pose from the marker positions and the trans-
mission of the pose to the HMD.
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Figure 1: The equipped AR headset The headset consists of a pair of
AR glasses (Epson Moverio BT-200), active LEDs used as markers
for the optical tracking system, and a rigidly fixed IMU (Epson M-
G350-PD11).

In [5] the requirement for exact synchronization of different sen-
sors for Mixed Reality applications is stressed and a calibration
and time delay estimation strategy is presented. In [10], an opti-
cal tracker is used inside a vehicle to track the head pose of the
driver from reflective markers without using additional sensor in-
put. Finally, in [9] it is attempted to solve the problem of tracking
inside a vehicle by deploying inside-out tracking, using cameras on
the HMD that localize a fiducial on the car console. An inertial sen-
sor is used for stabilization of the tracking and resilience to visual
target occlusion.

In this work we provide for the first time the Extended Kalman
Filter formulation to perform tightly coupled fusion of an optical
target with an attached inertial sensor. Furthermore, we present an
entire EKF-based formulation that deals with non-synchronized
optical and inertial measurements. Within this framework, the
faster availability of inertial measurements together with a motion
model is applied in order to predict the correct pose to be used for
displaying 3D augmentations on the HMD of the user.

2 PROBLEM DESCRIPTION

The main objective of this work is to track the 6 DoF pose of an
Augmented Reality headset inside a vehicle in order to be able to
display 3D information in the user’s field of view. An optical track-
ing system (OT) and an inertial measurement unit (IMU) consisting
of an accelerometer and a gyroscope are available for the localiza-
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Figure 2: The ART optical tracking system (a) One of the two ART
cameras and (b) calibration markers

tion. The data from the two systems are fused in order to combine
the accuracy of the optical tracker with the higher frequency and
speed of transmission of the inertial sensor.

2.1 Trackable AR headset
The AR headset used in this work consists of various components
and sensors rigidly attached (see Figure 1). The main device used
for displaying graphical information is an optical see-through HMD
of type Epson Moverio BT-200. The aim of an AR system is to
make the virtual objects rendered in the field of view of the user
and the real world coincide in a seamless way. In order to track the
HMD it is equipped with a plastic mount containing a number of
infrared LEDs that serve as markers for an external optical track-
ing system (OT). The optical tracking system used was an ART
TRACKPACK [1]. The relative positions between the LEDs are
calibrated once for all such that the whole headset can be tracked
as one rigid object with multiple markers by the OT system (see
Figure 2). An inertial sensor Epson M-G350-PD11 IMU is rigidly
attached on the HMD, on the left side of the user.

2.2 Notations
The notation used throughout the paper is introduced here. The
position of a point m in 3D space, expressed in coordinate system
A is defined as mmma = (X ,Y,Z)ᵀ and its velocity as ṁmma = (Ẋ ,Ẏ , Ż)ᵀ.

N (µµµ,ΣΣΣ) is a multidimensional Gaussian distribution of mean µµµ

and covariance ΣΣΣ.
Throughout this work three coordinate systems are used and de-

fined here, namely the world frame W defined by the optical track-
ing system during the area calibration, the optical frame O fixed
to the optical target and the inertial frame S is fixed to the inertial
system.

The 6 DoF conversion from one coordinate system A to a co-
ordinate B is described through a rotation matrix and a translation
vector. For the transformation from A to B, we use the following
notation: the rotation matrix is noted RRRba and the translation vector
is noted aaab, so that the transformation of a point mmm can be written

mmmb = RRRbammma +aaab (1)

Note that the translation vector aaab corresponds to the coordinates
of the center of the coordinate system A expressed in the coordinate
system B. Throughout the paper, the equivalent quaternion repre-
sentation of a rotation matrix RRRba , qqqba = [qw,qx,qy,qz] is often
used.

2.3 Delay definition
In practice, many steps are required between the time an image of
markers (LEDs) is acquired by the OT and the moment the corre-
sponding virtual view appears on the display in front of the user’s

eye, including detection of markers in the images of the infrared
tracking cameras, transmission of the positions of the markers from
the cameras to the OT controller, computation of a pose, transmis-
sion of the pose, computing of a virtual scene for this pose, trans-
mission of the virtual scene to the display and final rendering of the
scene on the display. This leads to a non-negligible delay between
user’s movement and update of the virtual object’s position. This
delay is inherent to any optical see-through system, and produces
a visual effect of virtual objects floating instead of being rigidly
positioned in the world.

The hardware setup used in the project has the constraint that the
diverse sensors (IMU, OT) are not synchronized on the hardware
level (e.g. by triggering), but in software, using the available APIs
in parallel after a calibration procedure. This software-based syn-
chronization induces a number of important consequences in terms
of parametrization and delay reduction strategies. Internally, the
synchronization module has interfaces to the two independent APIs,
implemented to run in parallel using multiple threads. The IMU
thread runs a loop that constantly seeks for new data from the IMU
sensor and stores the received values along with a timestamp ts

g in
a first FIFO-queue Queueimu. Similarly, the OT thread runs a loop
that constantly seeks for new data from the OT system and stores
the received values along with a timestamp to

g in a second FIFO-
queue Queueot. The subscripts g for the timestamps in the queues
refer to the fact that these are timestamps from the global system
clock of the application PC.

As can be expected, the software API of the sensors do not de-
liver data instantaneously, but naturally induce some delay that we
call signal delivery delay. This delay can be defined as the time re-
quired by the system between the moment a physical event is mea-
sured (activation event) and the time the measured data is available
in the application through the sensor’s API (time at which the event
can be timestamped in the application by the global clock).

Naturally, this delay is non-zero and differs from sensor to sen-
sor. We call ∆o

φ
the signal delivery delay of the OT system, where

the subscript φ stands for the difference between the time of the
physical event and the global clock. Similarly, we name ∆s

φ
the

signal delivery delay of the IMU sensor. As a consequence, if an
OT measurement has a timestamp to

g , then the measured pose was
actually observed at time to

φ
= to

g −∆o
φ

. Similarly, if the IMU mea-
surement has a timestamp ts

g, then the corresponding accelerations
and angular velocities have been observed at time ts

φ
= ts

g−∆s
φ

. In
other words, when using the global system clock in software syn-
chronization of two sensors, we are actually using two different
clocks that differ by a constant difference of ∆os = (∆o

φ
- ∆s

φ
).

Figure 3 shows the different delays we are considering in the
project. The two top timelines show the OT signal delay between
the physical events (called OT events) and the moment at which
the measured signal is available in the synchronization module (OT
delivery). Similarly the third and fourth timelines show the signal
delivery delay for the IMU sensor. If we consider a given time t0
(dashed line marked C in the middle), then the available OT data
dates back to time t0−∆o

φ
(A-mark), and the latest available IMU

data dates back to time t0−∆s
φ

(B-mark). The delay ∆os between
instants A and B is calibrated once during the IMU-OT calibration
(Section 2.4). In order to synchronize OT measurements with IMU
measurements, one has to shift the IMU measurements a number
of samples corresponding to the delay ∆os (called IMU shifts in the
figure). We call this synchronization of sensors time shift.

Figure 3 also shows the rendering delay ∆r, which is the time re-
quired to generate an image and to transmitted and get it physically
rendered on the screen of the glasses. This delay is unknown, but
we can try to find an estimate by eye inspection and adjusting pa-
rameters in our implementation. Note that we will rather estimate
the whole processing delay ∆p = ∆r +∆s

φ
, which is the sum of two



𝒕𝟎

𝒕𝟎

Δ𝜙
𝑠

Δ𝑟

OT events

OT delivery

IMU events

IMU delivery

Rendering on 
display

time

𝑡0 − Δ𝜙
𝑠𝑡0 − Δ𝜙

𝑜

Δ𝑜𝑠

Δ𝑝

𝑡0 + Δ𝑟
A B C D

Fusion 
EKF

Prediction 
EKF

Forward 
prediction

IMU shifts

Figure 3: Time shifts and delays between sensors Both OT and IMU sensors have a non-zero delivery time, which needs to be taken into account
in delay reduction strategies (see Section 3 for details)

unknown delays.

2.4 Calibration and time synchronization
For the calibration of the IMU and OT coordinate systems the trans-
lation and rotation between them has to be determined. We refer to
the calibration of the rigid transorfmation between the IMU coordi-
nate frame S and the OT coordinate frame O as hand-eye calibra-
tion. The output of the hand-eye calibration is the transformation
between S and O, described by a rotation matrix RRRos and a trans-
lation vector ssso. For determining this calibration, we use the ge-
netic algorithm approach introduced in [11], modified so that the
time shift ∆os between IMU and OT can be estimated as well. To
achieve this, a range of possible time shifts are tested and the time
shift giving the best result based on the overlap of the simulated to
the real IMU data as defined in [11] is output together with the cor-
responding translation and rotation calibration parameters. In our
experiments, this difference turned out to be positive, which means
that at any given point in time, the latest available OT data is older
than the latest available IMU data.

3 FUSION APPROACH
For robust fusion of IMU readings and OT pose measurements we
implemented a statistical filtering framework using an Extended
Kalman Filter (EKF) framework [4]. In such approaches for visual-
inertial fusion the higher frequency IMU readings are used to per-
form multiple prediction steps of the filter while the lower fre-
quency and lower noise level 2D-3D correspondences from match-
ing of visual features from a camera are used for the correction
step of the filter. Using an EKF is proven to be a well performing
and computationally efficient solution for the problem.

In this work there are two main differences concerning the sen-
sor fusion implementation. Primarily instead of the 2D-3D corre-

spondences from a camera the correction input is given as a 6 DoF
pose from the OT system, and secondly the two devices (OT and
IMU) are not synchronized on hardware level, e.g. through trig-
gering. Since the optical system provides very accurate poses, the
main gain from using the IMU measurements is dealing with the
delay of the OT system instead of an increase in accuracy.

3.1 Fusion Strategy
We will now describe the different fusion strategies depending on
the available data at different moments in time. Let us again con-
sider Figure 3 and consider a current time t0 (dashed line marked C
in the middle):

• For time instant AAA, which lies ∆o
φ

time units in the past, we
have access to all the previous OT poses and all the previ-
ous IMU signals until AAA. We can therefore apply a complete
Extended Kalman Filter where the OT poses serve as filter
measurements and the IMU signals as control input for the
prediction step. This EKF will also learn the possible biases
of the IMU. We name it fusion EKF.

• For time instant BBB, which lies ∆s
φ

time units in the past, we
have access to all the previous OT poses and IMU signals un-
til A, plus a number of IMU signals between AAA and BBB. Starting
from the filtered pose computed for AAA, we can continue to pre-
dict the pose using IMU signals only, by using the prediction
part of an EKF. We name it prediction EKF.

• After time instant BBB, no further data is available. Moreover
the exact duration of the delay ∆s

φ
between BBB and CCC and the

delay ∆r between CCC and DDD is not known. The only possi-
bility is to assume a certain motion model (such as constant
velocity, constant acceleration) and predict the pose after a



time ∆p = ∆r +∆s
φ

under this assumption. In order to esti-
mate the duration ∆p, we process the data in offline mode,
where we have access at each point in time to “future” OT
measurements. Thus, we can infer the pose of the glasses at
the expected instant DDD (instant where the rendered image ap-
pears on the screen), by using a motion-model-based forward
prediction.

3.2 Extended Kalman Filter
Extended Kalman Filters are commonly used for fusion of inertial
and visual sensors for tracking [4]. The general EKF equations are
given here. We denote xxxt the filter state, uuut the control input, vvvt
the process noise with vvvt ∼ N (000,QQQt) , yyyt a measurement and eeet
the measurement noise with eeet ∼N (000,RRRt). x̂xxt is the estimate of xxxt
at time t with xxxt ∼N (x̂xxt ,PPPt). The equations for the time update
(prediction step) of the state and state covariance of the EKF are

x̂xxt|t−T = f (x̂xxt|t−T ,uuut ,000), (2a)

PPPt|t−T = FFFtPPPt−T |t−T FFFᵀ
t +VVV tQQQtVVV

ᵀ
t , (2b)

with f being the non-linear state update function and FFFt and VVV t
being the Jacobians of f with respect to the state and the process
noise respectively

FFFt =
∂ f
∂xxx

(x̂xxt|t−T ,uuut ,000), (2c)

VVV t =
∂ f
∂vvv

(x̂xxt|t−T ,uuut ,000). (2d)

For the measurement update (correction step) the equations
are:

SSSt = HHHtPPPt|t−T HHHᵀ
t +EEEtRRRtEEE

ᵀ
t , (3a)

zzzt = yyyt −h(x̂xxt |t−T,000), (3b)

KKKt = PPPt|t−T HHHᵀ
t SSS−1

t , (3c)

x̂xxt|t = x̂xxt|t−T +KKKtzzzt , (3d)

PPPt|t = PPPt|t−T −KKKtHHHtPPPt−T (3e)

with h being the correction function, SSSt the innovation covariance,
zzzt the innovation, KKKt the Kalman Gain and HHHt , EEEt the Jacobians of
h with respect to the state and the measurement noise respectively,

HHHt =
∂h
∂xxx

(x̂xxt|t−T ,000), (3f)

EEEt =
∂h
∂eee

(x̂xxt|t−T ,000). (3g)

For the integration of inertial measurements we selected the con-
trol input model showing the best combination of good performance
during fast motion while still being reasonably computationally ex-
pensive [4]. In the control input model, the inertial measurements
are treated as control inputs uuuᵀt = [αααᵀ

t ,ωωω
ᵀ
t ] for the time update of

the filter, where αααt is the 3-dimensional acceleration and ωωωt is the
3-dimensional angular velocity input from the IMU.

The state of the filter xxx is defined as

xxxᵀ = [sssᵀw, ṡss
ᵀ
w,qqq

ᵀ
sw,bbb

αᵀ
s ,bbbωᵀ

s ], (4)

where sssw is the IMU sensor position and ṡssw the velocity, qqqᵀsw =
[qw,qx,qy,qz] is the sensor orientation in quaternion represenation,
bbbα

s the accelerometer bias and bbbω
s the gyroscope bias.

With this particular definition for the state, the equations for the
time update (prediction step) of the state are


sssw,t
ṡssw,t
qqqsw,t
bbbα

s,t
bbbω

s,t

=


sssw,t−T +T ṡssw,t−T + T 2

2 RRRws,t−T (ααα t −bbbα
s,t−T − vvvα

s,t)+
T 2

2 gggw
ṡssw,t−T +T RRRws,t−T (ααα t −bbbα

s,t−T − vvvα
s,t)+T gggw

exp
(
− T

2 (ωωω t −bbbω
s,t−T − vvvω

s,t)
)
�qqqsw,t−T

bbbα
s,t−T + vvvbbbα

s,t
bbbω

s,t−T + vvvbbbω
s,t


(5)

For the correction step we receive a 6 DoF pose directly from
the OT system to use as a measurement. Thus, this input can be
transformed to a measurement vector yyyᵀt = [sᵀw,t ,q

ᵀ
sw,t ]. Thus, the

measurement update (correction step) function becomes

[sᵀw,t ,q
ᵀ
sw,t ]

ᵀ = [sᵀw,t ,q
ᵀ
sw,t ]

ᵀ+ eeeᵀs,t . (6)

3.3 Fusion Algorithm
In this Section we describe the entire fusion algorithm used in our
approach. As previously explained and referring to Figure 3 the
purpose of the algorithm is to estimate as accurately as possible the
6 DoF pose at time point DDD when the available OT measurements
only reach time point AAA. At any time point corresponding to AAA we
have available a queue of IMU data Queueimu and a queue of OT
data Queueot. The timestamps of Queueimu are shifted by adding
the calibration delay ∆os to their timestamps (ts

g = ts
g+∆os). Further

we denote an OT pose as yyyt and an IMU measurement as uuut . The
procedure for processing the data is described in Algorithm 1.

Algorithm 1 Fusion process
if fusionEKF is not initialized then

yyyt = pop(Queueot)
Initialize fusionEKF with yyyt

else
while Queueot is not empty do

if head(Queueimu).ts
g < head(Queueot).to

g then
uuut = pop(Queueimu)
fusionEKF time update with uuut

else
yyyt = pop(Queueot)
fusionEKF correction with yyyt

end if
end while
if fusionEKF is diverged then

Set fusionEKF not initialized
end if
Set predictionEKF = fusionEKF
Set Queueimu = Queueimu
while Queueimu is not empty do

uuut = pop(Queueimu)
predictionEKF time update with uuut

end while
Apply forward prediction with MotionModel for ∆p
Output Pose estimate for time point D

end if

3.4 Forward prediction with Motion Model
As mentioned already, for dealing with the delay ∆p there is no
available data to use. For this reason the only possibility is to as-
sume that some of the parameters of the motion remain constant
and predict the future position based on that. In our implemen-
tation we used a constant velocity and constant angular velocity
model. Clearly, the constant velocity assumption becomes less ac-
curate as ∆p increases. Furthermore it is impossible to predict an
abrupt change of direction in the tracking. We obtain the velocity
value used from the state of the prediction EKF filter (ṡssw,t ) and



the angular velocity by calculating an average over a number of
past IMU angular velocity measurements(ωωωt ) to obtain a less noisy
value.

4 EVALUATION
In this section we present experimental results verifying that the
implemented fusion framework performs with the expected func-
tionality in a practical setup.

Table 1: EKF experiments noise levels
# variance σ2

acceleration noise vvvα
s,t 4×10−2

angular velocity noise vvvω
s,t 2×10−3

acceleration bias noise vvvbbbα
s,t 1×10−10

angular velocity bias noise vvvbbbω
s,t 1×10−10

OT position noise eees
s,t 1×10−8

OT rotation noise eeeq
s,t 1×10−9

Figure 4: OT measurements (blue squares) and fusion EKF mea-
surements (yellow triangles), entire graph and zoomed in for detail

4.1 Experimental Setup and calibration
We conducted our experiments for IMU frequencies of 250 Hz and
500 Hz of the IMU. Lower IMU frequencies are not of interest in
terms of fusion since only marginal benefit would be gained. Higher
frequencies produce more measurements and allow the EKFs to
learn the sensor biases and covariances faster and are be less af-
fected by noisy IMU data. The OT system frequency was 62,5 Hz.
From the calibration procedure a sample shift of 12 and 21 was es-
timated between IMU and OT at IMU frequencies of 250 and 500
Hz respectively corresponding to a time shift ∆os of 42 and 48 ms
between the IMU and OT. The time delay ∆p was empirically esti-
mated to be around 70 ms.

Figure 5: OT measurements (blue squares) and prediction EKF mea-
surements (red triangles), entire graph and zoomed in for detail

For the EKF to function properly the noise levels have to be
tuned accordingly. The determination of the noise levels is not a
straightforward task. For the IMU it has been previously proposed
to measure the noise from the variance of the measurements while
the device is stationary, however we observed that there is a large in-
crease of the noise levels, especially in acceleration measurements
when the device is moving. Thus we estimated the IMU noise lev-
els by inspection of sequences of the device in motion. For the OT,
the output of the system room calibration gives an indication on the
accuracy of the tracking. In Table 1 we present the noise variances
that we used for the EKF in our experiments.

4.2 Experimental Results

In Figure 4 we show the x-axis position track from the fusion EKF
(yellow triangles) compared to the x-axis position given by the OT
system (blue squares). We show the graph in 2 different zoom levels
to demonstrate both the robustness over time and the accuracy of
single EKF outputs. The EKF is able to follow the correct track
(given by the OT) at all times during the experiment. The EKF
filter is well tuned and practically follows the correct path at a a
higher frequency than the OT (frequency of the IMU, here 250 Hz).

In Figure 5 we show the x-position of the OT output (blue
squares) and the output given by the prediction EKF using only
the extra available IMU measurements (red triangles). We can see
that the prediction EKF output is accurately about 2 OT samples
ahead in time compared to the OT output, which corresponds ap-
proximately to the imu shift ∆os. We can thus show that we can
succesfully compensate for the delay ∆os using the additional avail-
able imu data in the prediction EKF.

In Figure 6 we show the OT output (blue squares) and the output
from the motion model forward prediction (green triangles). Sim-
ilarly to Figure 5 with the use of the motion model we are able to
predict more OT measurements ahead to additionally cover the de-
lay ∆p so that the entire delay ∆os +∆p is covered. However, since
the motion model prediction is done based on the filter state and



Figure 6: OT measurements (blue squares) and forward predictions
using a motion model (green triangles), entire graph and zoomed in
for detail

without having actual data available we are not able to correctly fol-
low abrupt direction changes. When the motion is linear (constant
velocity model is used) the forward predictions are very accurate.

Note that in the presented experimental results we only show the
estimated position instead of all 3 axes and the estimated orienta-
tion. However, in a tightly coupled visual-inertial fusion scheme as
the one applied here, showing the x-axis is sufficient since if one of
the pose parameters has errors, the entire filter will not function at
all.

5 CONCLUSION

We presented an EKF-based framework for fusion of unsychro-
nized optical trackers and inertial sensors, mainly aiming to reduce
the delay of correctly positioning 3D augmentations on a HMD
based on the computed 6 DoF pose. The experimental evaluation
shows that the approach is able to estimate the correct pose ahead
in time compared to the optical tracker with a slight reduction in
accuracy. This is inevitable since the estimation is based first on
noisy IMU data and then on a motion model without any available
data. The delay reduction achieved however, greatly improves the
user perception of the stability of the rendered scene. Future work
includes experimentation and comparison with other hardware se-
tups, as well as investigating methods to determine and measure the
delays in the system more accurately.
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