
The Prague Bulletin of Mathematical Linguistics
NUMBER 109 OCTOBER 2017 51–60

QE::GUI – A Graphical User Interface for Quality Estimation

Eleftherios Avramidis
German Research Center for Artificial Intelligence (DFKI), Language Technology Lab, Berlin, Germany

Abstract
Despite its wide applicability, Quality Estimation (QE) of Machine Translation (MT) poses a

difficult entry barrier since there are no open source tools with a graphical user interface (GUI).
Here we present a tool in this direction by connecting the back-end of the QE decision-making
mechanism with a web-based GUI. The interface allows the user to post requests to the QE
engine and get a visual response with the results. Additionally we provide pre-trained QE
models for easier launching of the app. The tool is written in Python so that it can leverage the
rich natural language processing capabilities of the popular dynamic programming language,
which is at the same time supported by top web-server environments.

1. Introduction

Understanding the performance of Machine Translation (MT) is a necessary task
for the development of MT systems and assessing the usability of their output. A
wide variety of methods has given the possibility to analyze the results of the MT
output and provide useful insights about the quality of the results. Already from the
first years of MT, automatic evaluation metrics have provided scores representing the
quality of the translation by scoring the MT output against the references (Papineni
et al., 2002; Lavie and Agarwal, 2007). Recently, the efforts on MT evaluation have
been expanded to the field of Quality Estimation (QE) which is capable of provid-
ing numerical qualitative judgments on the MT output without access to reference
translations (Blatz et al., 2004; Specia et al., 2009). Being independent of reference
translations, QE can be useful in real-life applications. Additionally, its inherent di-
verse linguistic features, combined with machine learning, can provide deeper and
more specific qualitative indicators.

© 2017 PBML. Distributed under CC BY-NC-ND. Corresponding author: eleftherios.avramidis@dfki.de
Cite as: Eleftherios Avramidis. QE::GUI – A Graphical User Interface for Quality Estimation. The Prague Bulletin
of Mathematical Linguistics No. 109, 2017, pp. 51–60. doi: 10.1515/pralin-2017-0038.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 109 OCTOBER 2017

Whereas most methods for the development and evaluation of MT, including QE,
have been available through open-source tools, there has been little effort towards
making them easily applicable and user-friendly. Being oriented to researchers, most
software can only be executed in the commandline of Linux environments and the
installation effort can be non-trivial. Therefore, the use of these tools is confined to
a relatively small group of experienced developers, while the entry barrier for new-
comers is considerable. Additionally, despite the many levels of qualitative analysis,
most results are presented only on a high level, with limited options for visualization.
With QE::GUI, the software described in this paper, we attempt to solve some of these
issues. We focus on QE and we aim at providing a graphical user interface (GUI) on
top of common QE software. The GUI is offered via a web-based framework that can
be hosted in any web-server and can be operated with a common browser. It provides
the possibility for users to upload their data, have them analyzed with QE models and
have visualized statistics over the results.

It must be noted that instead of providing a full-flegded solution, here we mostly
aim at setting the standards for further development by suggesting a particular well-
structured framework. Therefore, the current functionality is limited to only a few
cases of QE analyses, that should nevertheless be easily extended to cover more sce-
narios depending on the needs of the research and potential end-users. Despite its
limited initial functionality, the software complies with several engineering princi-
ples that allow extensibility and easy addition of features and functionality. Addi-
tionally, the entire framework is built within a unified architecture, and the backbone
is written in a single programming language (Python), including the web interface,
the database layer and the computational back-end.1

This paper is accompanying the open-source code2 in order to provide more details
on the functionality of the software. After comparing our efforts with previous works
(Chapter 2), we outline the basic usage and the capabilities of the software (Chapter 3).
The architecture and the design is given in Chapter 4. Finally, ideas for further work
and conclusions are outlined in Chapters 5 and 6 respectively.

2. Related Work

Several tools related to MT evaluation provide graphical interfaces in order to aid
the understanding of the scored MT Quality. First, we shortly review some systems
which provide graphical user interfaces related to reference-based automatic metrics.

The Experiment Management System (EMS; Koehn, 2010) is a tool for organiz-
ing the training and testing of MT models based on the popular statistical system

1The web interface contains non-Python elements such as HTML templates and CSS stylesheets,
whereas embedded external tools also use other languages.

2Code: https://github.com/lefterav/qegui
Demo of basic interface: http://blade-3.sb.dfki.de:8100/qe/ username: admin ; password: pbml2017

52

https://github.com/lefterav/qegui
http://blade-3.sb.dfki.de:8100/qe/

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

Moses (Koehn et al., 2007). For the models tested on particular test-sets, it offers
a web-based interface that displays the BLEU score per test-set. The output for ev-
ery system can be further examined by displaying additional sentence-level statistics.
EMS is a pipeline that combines scripts in different programming languages and the
information is communicated with intermediate files. The web interface is written in
PHP (albeit with no database layer), whereas the back-end scripts are mostly written
in Perl and Bash. ComparEval (Klejch et al., 2015) is a tool that allows uploading files
with MT output and displays tables and graphs on the performance of the system.
Multiple MT systems can be compared in parallel with bar charts, while the progress
of consequent development versions of the same system can be visualized through
a linear chart. The tool also offers pairwise comparison between system pairs and
sentence-level analytics, including sentence-level scores, word-level error annotations
and n-gram scoring.

The only tool that offers some GUI for QE is a particular version of QuEst named
QuEst-Online, as presented by Shah et al. (2014). This version allows users to access
the tool remotely from a web browser. They can upload their source and translated
text, which are consequently analyzed to produce qualitative features. These features
are used with a pre-built QE model in order to predict an estimated quality score for
the translated sentence, including ranking of multiple translations. The entire system
combines three modules in several programming languages: PHP for the web inter-
face, Java for the feature generation and Python for the machine learning, as opposed
to our tool, which organizes all steps with the same programming language. Finally,
in contrast to QuEst-Online, our tool offers visualizations and graphs for the results,
an administration interface with configuration options for the models, whereas the
requests are stored in a database and organized in a hierarchical structure, allowing
future retrieval and examination of previous evaluations.

3. Usage

QE::GUI allows the users to submit documents translated by MT, including the
source text and the MT output. These documents are analyzed and as a response, the
user is given a set of statistics and graphs on the estimated quality of the translation.

3.1. Organization of evaluation tasks

The interface is capable of storing the evaluation results in the long term, so that
they can all be inspected in the future. Additionally, the user can apply hierarchical
categorization to their uploads in order to maintain a clean structure of the contents.

The document is the basic organizational unit of the translations. Every document
is a collection of source sentences with their respective MT outputs. The contents
of a document can be uploaded from text files or inserted manually. All translated
sentences in one document should be of the same language pair. The documents

53

PBML 109 OCTOBER 2017

(a) A gauge indicating the average score of all
sentences in the document (b) A linear area chart indicating mass distribu-

tion of the quality scores

Figure 1: Sample charts from the QE results

can be organized in evaluation tasks. Every task is effectively a folder which can
contain many documents of different language pairs and sizes. The organization of
documents into tasks is directly inflected on how the user can access the documents
through the interface. After the list of the documents, the user is given the option to
add an additional document.

3.2. Results and statistics

Once the document has been uploaded, a separate document page is created and
the system starts the necessary operations for analyzing the sentences and performing
the necessary calculations. When the calculations are finished, the document page
gets populated with statistics about the estimated translation quality.

We show here two basic statistics accompanied with charts. For every evaluated
document the page displays first the average predicted score, i.e. the mean score of
all MT outputs. This is presented with a gauge which indicates the estimated score,
as compared to the full range of the score. For instance, a predicted HTER score of
0.55 would be indicated by a gauge pointing a little more than half way in the range
between 0 and 1 (Figure 1a). The indicator of the gauge can change color, depending
on the level of quality.

Another possibly useful visual representation refers to the mass distribution of the
sentence quality scores (Figure 1b). A linear chart indicates the amount of sentences
that have been assigned to each possible quality score. This can be an indicator for
how the quality of the translations ranges within the document. The conclusions can
be complemented by observing a pie chart which indicated the distribution of the
sentences scores among the 4 quartiles.

54

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

Figure 2: Generic internal architecture

3.3. Administration interface

The basic user interface has been deliberately designed so that it only contains the
basic functionality for analyzing documents and observing the results of QE. Nev-
ertheless, there is the possibility for advanced parametrization that falls out of the
scope of simple usage. This is done through an advanced administration interface
which contains functionality such as adding tasks, manually adding document sen-
tences and translations, deleting tasks and documents and defining supported QE
models and translation systems.

3.4. Deployment

The software can be deployed as a Python package and requires the creation of a
Python virtual environment and the installation of some additional Python libraries.
The QE framework may also require the installation of external natural language pro-
cessing (NLP) required for the analysis of the text, prior to the application of machine
learning. In its easiest form, the software can be run from a Django-compatible com-
mandline bound on a SQLite database. For advanced scaling and better performance,
it can be served as a proper website through common web servers (Apache, Nginx)
with a more advanced database engine (MariaDB, PostgreSQL).3

4. Implementation

In this chapter we explain the main modules of the implementation. The generic
architecture of the internal functionality is shown in Figure 2.

3Apache: https://httpd.apache.org, MariaDB: https://mariadb.org, Nginx: https://nginx.org,
PostgreSQL: https://www.postgresql.org, SQLite: https://www.sqlite.org

55

https://httpd.apache.org
https://mariadb.org
https://nginx.org
https://www.postgresql.org
https://www.sqlite.org

PBML 109 OCTOBER 2017

4.1. Database structure

The implementation of the web-based interface and the underlying database struc-
ture is based on the latest version of the Django framework (ver. 1.11).4 This has been
chosen in order to take advantage of its powerful database modeling and its robust-
ness, given the support of a wide developer community. Additionally, a wide range
of libraries are easily available to extend the functionality. Last but not least, Django
is fully Python-based, which makes it compatible and integrable with other Python
applications. This is of a particular interest when it comes to QE, since several known
open-source QE toolkits use Python (e.g. SciKit-Learn; Pedregosa et al., 2011) for
their machine learning back-end.

As part of the Django framework, the web-based interface is built around a set of
models, which are high-level representations of relational database tables. A simpli-
fied graphical representation of the models can be seen in Figure 3. To store the docu-
ment structure presented above, we use the models Task and Document. A Sentence is
the model which stores every source sentence and is associated with one or more MT
outputs and reference translations through the models MachineTranslation and Ref-
erenceTranslation (the latter is optional) respectively. Predicted quality scores for
every MT output are stored in a MachineTranslationEvaluation model. The database
also offers support for different evaluations of the same document (e.g. by different
QE models),5 which are organized by pointing from the separate MachineTransla-
tionEvaluation instances to a DocumentEvaluation model.

4.2. Serving the data to the user

In order to allow access to the models, the framework employs a set of views
(roughly a view for every page), which send queries to the models to retrieve the
data and structure it as required for display. This data is then given to a set of tem-
plates, which take care of the setting text, objects, widgets and other elements in the
final page shown to the user. To ease the representation of the page we use the re-
sponsive template framework Bootstrap, that reorders page elements depending on
the screen size of the user’s device. For creating the graphs, the data is passed to the
open-source Javascript library JChart6 which renders them in the HTML code of the
page.

4Django :http://djangoproject.com
5The functionality of multiple evaluations is not available in the current preliminary version but is built

into the database so that it can be extended in a next version.
6https://django-jchart.matthisk.nl

56

http://djangoproject.com
https://django-jchart.matthisk.nl

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

 Task

 id AutoField

 description TextField

 name CharField

 Document

 id AutoField

 task ForeignKey (id)

 description TextField

 evaluated BooleanField

 imported BooleanField

 name CharField

 referencefile FileField

 source_language CharField

 sourcefile FileField

 target_language CharField

 targetfile FileField

task (document)

 Sentence
<AbstractSentence>

 id AutoField

 document ForeignKey (id)

 text TextField

document (sentence)

 MachineTranslation
<AbstractSentence>

 id AutoField

 source ForeignKey (id)

 system ForeignKey (id)

 text TextField

source (machinetranslation)

_

 ReferenceTranslation
<AbstractSentence>

 id AutoField

 source ForeignKey (id)

 text TextField

 translator CharField

source (referencetranslation)

 DocumentEvaluation

 id AutoField

 document ForeignKey (id)

 model ForeignKey (id)

document (documentevaluation)

 MachineTranslationEvaluation

 id AutoField

 evaluation ForeignKey (id)

 translation ForeignKey (id)

 score FloatField

translation (machinetranslationevaluation) evaluation (machinetranslationevaluation)

Figure 3: The structure of the Models that supports the web interface

4.3. Asynchronous data processing

A known issue for large NLP tasks is their scalability and low response times are
a requirement for real-use applications. In our case the user is expected to upload a
potentially large text file which contains source sentences and translations. The sys-
tem is expected to store the sentences into the respective models of the database and
then start processing them to estimate the quality scores. In order to avoid deadlocks
and timeouts, we draw a line between the front-end (i.e. the interaction with the user)
and the back-end (i.e. the processing of the data). The back-end tasks operate asyn-
chronously, so that the loading of the front-end is not disturbed by time-consuming
data-intensive processes. This way, the user can navigate away or close the document
page but the processing they have requested will keep running in the background.

57

PBML 109 OCTOBER 2017

The implementation of the asynchronous processing uses the Django library back-
ground tasks. The steps followed are:

1. Every time the user uploads a new document, the library background tasks is
instructed to create a new asynchronous data processing task.7 The task is
stored in a queue in the database, along with the parameters of the function
and how it should be executed.

2. Background tasks provides a background daemon, which is then launched as
a separated executable. The daemon regularly checks the queue and executes
the pending tasks.

3. Having access to the Django database schema, the asynchronous tasks can de-
liver their results by populating the same models.

4. When every background task is finished, it notifies the front-end by enabling a
boolean field in the relevant models.

5. The next time the front-end accesses the requested document evaluation, de-
pending on the flag, will either proceed with visualizing the results, or display
a message to the user to try again later.

It is also noteworthy that the daemon can run the queued tasks in parallel by launch-
ing several threads. The separate existence of the daemon also allows a distributed
server set-up, where one server is responsible for the front-end and another one takes
care of the back-end, but they both connect to the same database and use the same
codebase.

4.4. Quality Estimation

In the last phase, a QE pipeline is triggered in order to process the data and deliver
the estimation result. This pipeline consists of two major steps, that are accomplished
by the existing QE toolkit: the feature generation and the application of a machine-
learned model. During the feature generation, the quality estimation toolkit applies
many NLP processes (e.g. language model scoring, parsing) in order to deliver nu-
merical qualitative indicators (features). Then, these numbers are provided to a pre-
trained QE model that delivers a quality score, i.e. a numerical judgment about the
quality. The estimated quality score can then be stored in the model, associated with
the respective MT output(s).

For the QE part, QE::GUI integrates existing code from other state-of-the-art Python-
based tools. Qualitative (Avramidis, 2016) is used for the feature generation and pre-
diction of sentence-level ranking, whereas models produced by the popular state-of-
the-art QuEST (Shah et al., 2013) can be used for continuous score prediction. The
database structure allows for loading and storing other Python-based QE models,
provided that their usage is clearly documented.

7not to be confused with the task used for grouping documents in the part of the user interface

58

E. Avramidis QE::GUI – A Graphical User Interface for Quality Estimation (51–60)

5. Further work

The presented software can cover functionality related to some basic use of QE
and should still be considered as a preliminary version. Nevertheless, our aim is to
suggest a unified framework that makes good use of state-of-the-art tools and is easily
extensible to cover future needs. Further development can be directed towards cov-
ering more use-cases, including various types of QE (e.g. sentence binary filtering,
word/phrase-level scoring). The graphical representation can be extended to com-
pare the performance of different MT systems. Reference-based metrics can be inte-
grated so that their scores can be displayed alongside the ones by QE, when reference
translation are available. With the consideration of golden quality scores, this inter-
face could also be used for automatically evaluating different QE approaches with
correlation metrics. The principles of modularity and extensibility, along with the
Git repository allow for wider collaboration and expansion of the development in a
community scale.

6. Conclusion

We have introduced a new graphical user interface for Quality Estimation (QE)
that exceeds any previous tool in terms of functionality and extensibility. It relies on
a web-application built with Python Django. The user has the possibility to upload
new documents to be analyzed by QE. The documents can be browsed through a
user-friendly dashboard, categorized in tasks. For every document, the user can get
the estimations by the QE along with several informative graphs and charts

The web interface is supported by a database layer which can store the data and
its evaluation. Several state-of-the-art web libraries are seamlessly integrated to allow
responsive appearance and drawing of charts. All data-intensive tasks, including QE,
are executed asynchronously in a background queue by a separate daemon. Existing
QE tools are integrated in order to perform feature generation and prediction of qual-
ity scores.

Acknowledgment This work has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No 645452 (QT21).

Bibliography

Avramidis, Eleftherios. Qualitative: Python Tool for MT Quality Estimation Supporting Server
Mode and Hybrid MT. The Prague Bulletin of Mathematical Linguistics (PBML), 106:147–158,
2016.

Blatz, John, Erin Fitzgerald, George Foster, Simona Gandrabur, Cyril Goutte, Alex Kulesza, Al-
berto Sanchis, and Nicola Ueffing. Confidence estimation for machine translation. In Pro-
ceedings of the 20th international conference on Computational Linguistics (COLING 04), Strouds-
burg, PA, USA, 2004. Association for Computational Linguistics.

59

PBML 109 OCTOBER 2017

Klejch, Ondřej, Eleftherios Avramidis, Aljoscha Burchardt, and Martin Popel. MT-ComparEval:
Graphical evaluation interface for Machine Translation development. The Prague Bul-
letin of Mathematical Linguistics (PBML), 104:63–74, 2015. ISSN 0032-6585. doi: 10.1515/
pralin-2015-0014. URL https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf.

Koehn, Philipp. An Experimental Management System. The Prague Bulletin of Mathematical
Linguistics, 94:87–96, 2010. ISSN 1804-0462.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Chris Zens Richard a nd Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: open source toolkit for sta-
tistical machine translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, ACL ’07, pages 177–180, Stroudsburg, PA, USA, 2007. As-
sociation for Computational Linguistics.

Lavie, Alon and Abhaya Agarwal. METEOR: An Automatic Metric for MT Evaluation with
High Levels of Correlation with Human Judgments. In Proceedings of the Second Workshop on
Statistical Machine Translation, pages 228–231, Prague, Czech Republic, jun 2007. Association
for Computational Linguistics.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a Method for Auto-
matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA,
jul 2002. Association for Computational Linguistics.

Pedregosa, Fabian, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Van-
derplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learn-
ing Research, 12:2825–2830, 2011.

Shah, Kashif, Eleftherios Avramidis, Ergun Biçici, and Lucia Specia. QuEst: Design, Imple-
mentation and Extensions of a Framework for Machine Translation Quality Estimation. The
Prague Bulletin of Mathematical Linguistics, 100:19–30, 2013.

Shah, Kashif, Marco Turchi, and Lucia Specia. An efficient and user-friendly tool for machine
translation quality estimation. LREC 2014. Proceedings of the Ninth International Conference
on Language Resources and Evaluation, pages 3560–3564, August 2014.

Specia, Lucia, M. Turchi, N. Cancedda, M. Dymetman, and N. Cristianini. Estimating the
Sentence-Level Quality of Machine Translation Systems. In 13th Annual Meeting of the Euro-
pean Association for Machine Translation, pages 28–35, Barcelona, Spain., 2009.

Address for correspondence:
Eleftherios Avramidis
eleftherios.avramidis@dfki.de
German Research Center for Artificial Intelligence (DFKI GmbH)
Language Technology Lab
Alt Moabit 91c
10559, Berlin, Germany

60

https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf

	Introduction
	Related Work
	Usage
	Organization of evaluation tasks
	Results and statistics
	Administration interface
	Deployment

	Implementation
	Database structure
	Serving the data to the user
	Asynchronous data processing
	Quality Estimation

	Further work
	Conclusion

