Trained 3D models for CNN based object recognition
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We present a method for 3D object recognition in 2D images which uses 3D models as the only source of

the training data. Our method is particularly useful when a 3D CAD object or a scan needs to be identified
in a catalogue form a given query image; where we significantly cut down the overhead of manual labeling.
We take virtual snapshots of the available 3D models by a computer graphics pipeline and fine-tune existing
pretrained CNN models for our object categories. Experiments show that our method performs better than the
existing local-feature based recognition system in terms of recognition recall.

1 INTRODUCTION

In this paper, we describe a method for automati-
cally identifying a 3D object from a data base given an
input image taken from close range. We specifically
address the application scenario where a machine part
or a museum object needs to be precisely identified in
a catalogue. The traditional approach for solving such
a problem is to build a content-based image retrieval
(CBIR) system that automatically recognizes a given
object. However, the task is challenging due to ob-
ject similarity, variations in appearance and lighting,
as well as perspective. Typically, the catalogue con-
tains only a 3D CAD model or 3D scan of the object.
Creating an image database from actual photographs
of each object in the catalogue is a significant over-
head which may be impractical. In this paper, we
assume that only the 3D model is available and au-
tomatically render a set of images using a synthetic
computer graphics pipeline.

A related but different problem is automatic la-
belling of object categories in an image - such as the
ImageNet challenge (Russakovsky et al., 2015). In
this problem, a significantly large data set of images is
collected that encapsulates the variation in object cat-
egories and labels: 15 million labelled high resolution
images in over 22,000 categories in ImageNet. The
top-performing methods for this challenge use deep
convolutional neural network (CNN) that are trained
on this large labelled data set (Krizhevsky et al., 2012;
Girshick et al.,, 2014; Girshick, 2015; Ren et al.,
2015). It is very hard to extend these methods to

our application scenario, as the size of the training set
is much smaller. However, the earlier neural layers
of the CNN models that are pretrained on this larger
training set learn generic image features that encode
variability in perspective and lighting. In this paper,
we extend these pretrained networks with a new learn-
ing mechanism that uses the rendered synthetic im-
ages of the 3D models in our catalogue. We show
that our novel method of training achieves a large im-
provement in recognition accuracy when precise 3D
models are available.

Also through this work, we want to make a con-
scious effort to shift our recognition system follow
human behaviour. This is due to the fact that human
beings do not need a lot of data to learn object cate-
gories. In fact, only a few examples per category are
needed to learn and deduce about the category(Fei-
Fei, 2006; Fei-Fei et al., 2006). It is estimated that a
child learns almost all of the 10 - 30 thousand object
categories in the world by the age of six (Biederman,
1987). These facts tells us that it is possible to achieve
high detection accuracy without the need of such a
large number of training examples. Second, human
beings ‘see’ objects in 3D. We infer 3D properties of
an object looking at the 2D image.

In this work, we make use of the 3D models by
taking their virtual snapshots from several perspec-
tives with different types of background. We use these
generated images to fine-tune existing trained CNN
model for our instances/categories.

Model based recognition techniques existed in
the topic of local-feature based detection system for



a long time - since the invention of SIFT (Lowe,
2004). Here, 3D models were augmented with 2D lo-
cal features computed as through Structure From Mo-
tion (SFM) algorithms (Snavely et al., 2006; Snavely
et al., 2008) performed on hundreds of images taken
of a real object. These feature-augmented 3D models
were used for object recognition in the test time (Col-
let Romea and Srinivasa, 2010; Collet Romea et al.,
2011). To avoid manual work of taking images and
with the availability of realistic 3D models, (Sarkar
et al., 2016) solved the same problem by using 3D
model as the only source of training data to create the
feature-augmented models. In this paper, we also con-
sider only 3D models as input. However in contrast to
(Sarkar et al., 2016), we train a CNN for the task of
object recognition.

Therefore, the main contributions of our paper are
as follows.

1. We create a training system for object recognition
in 2D images, which only uses 3D models as the
training data.

2. We show that in the presence of accurate 3D mod-
els, the recognition accuracy of our system is
better than the state-of-the-art local-feature based
recognition system.

3. We perform a systematic evaluation with render-
ing parameters of our method and show that back-
ground, texture and number of training images
have significant role in the training process in
terms of recognition accuracy.

It is to be noted that our recognition system pre-
sented in this paper performs extremely well in the
presence of accurate 3D models to be detected in the
scene. In the present scenario, due to the availabil-
ity of cheap and accurate 3D scanners in the robotics
and vision labs, it is possible to easily acquire accu-
rate 3D models; which makes our recognition system
quite effective. Also, other than the large variety of
easily available 3D scanning hardwares (D’ Apuzzo,
2006), simple software solutions for 3D acquisition
are available where 3D models can be acquired using
off-the-shelf hardware (3Digify, 2015).

2 RELATED WORK

We provide in this section the literature review
about topics which touches different aspects of our
work. We start by providing details of CNN based
classification systems followed by works which aug-
ment the existing dataset by the rendering of 3D mod-
els - the inspiration of our work. We then shortly
describe the classical work in the direction feature

based recognition. We finish by providing some de-
tails about systems which purely focus on shape clas-
sification. They are technically very similar to our
work, but instead of the recognition of 3D models in
2D images, they perform shape or 3D model classifi-
cation.

2.1 CNN based object classification

Convolutional neural networks (CNNs) are feedfor-
ward neural networks with convolutional layers (a
layer with a small filter sharing its weights throughout
its input volume), introduced in (Lecun et al., 1998).
With the availability of larger training data such as
ImageNet (Russakovsky et al., 2015), it became pos-
sible to train deeper networks. The first popular CNN
was the AlexNet (Krizhevsky et al., 2012) which won
the ImageNet challenge by a large margin inspiring a
large amount of work in this direction. For object de-
tection CNNs were applied to object regions for the
presence and absence of an object (Girshick et al.,
2014; Girshick, 2015; Ren et al., 2015). These CNN
based techniques remain the current state of the art
for object detection in 2D images and image classifi-
cation. Because of its high success in image classifi-
cation, we use deep CNN in our training architecture.
In particular, due to its simplicity, we use the config-
uration of AlexNet in our network and fine-tune the
weights based on our requirements.

2.2 Data augmentation for learning

These methods render 3D models using computer
graphics pipeline and uses the rendered images as
training data to 2D techniques. Popular work in
this direction is chair detection using exampler SVMs
(Aubry et al., 2014). The more recent works use this
rendering technique to augment existing 2D image
dataset and perform CNN based detection on the aug-
mented dataset. (Peng et al., 2014) used rendering
of similar looking 3D models of some of the cate-
gories of PASCAL VOC dataset (Everingham et al.,
2010) to augment the training dataset, and found it to
perform superior to training on only the given train-
ing set. (Su et al., 2015b) used image of rendered
3D models to augment PASCAL 3D+ dataset to im-
prove results on viewpoint detection. Our contribu-
tions here are deeply inspired by these works. But
instead of augmenting existing training dataset with
rendered images to improve accuracy, we create the
entire training dataset out of the rendered images and
perform training on them for the recognition task. We
show in the this paper that when the 3D models for
the recognition system is highly accurate resembling
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Figure 1: Summary of CNN based detection of CAD models in 2D images

the real object - which is the case for feature based ob-
ject recognition system, performing training only on
the synthetic images is sufficient for achieving a good
recognition accuracy.

2.3 Feature based object recognition

Feature-augmented 3D models are created by per-
forming Structure From Motion (SFM) on the training
images taken of the object to be recognized. This as-
sociation of 3D points - to - 2D descriptors, as a result
of SFM, forms the pillar of most of the feature based
detection, where the features extracted from a given
input image, are matched to that of the feature aug-
mented 3D models and subsequently, a 6 DOF recog-
nition is made (Skrypnyk and Lowe, 2004; Hao et al.,
2013; Collet Romea et al., 2011; Collet Romea and
Srinivasa, 2010; Irschara et al., 2009). (Sarkar et al.,
2016) provided a new method for creating feature-
augmented models in the presence of accurate 3D
models at the training time. They used the texture-
map of the 3D models to assign 2D features to the
3D points of the model, and in the second method,
took rendered virtual snapshots to group 2D features
assigning to the 3D points. Our method is logically
similar to this work, because of the fact that we only
use 3D models for training for the object recognition.
In contrast, we use CNN for our training and outper-
form the result of recognition accuracy of this work.

2.4 Shape classification using rendered
images

Shape classification is the problem of classifying
shapes (3D models) from a database of 3D mod-
els. MVCNN (Su et al., 2015a), the state-of-the-art
method for shape classification, renders 3D models or
shapes from different views, and performs training on
the rendered images for the task of classification. This
work demonstrated that training just on the rendered
images can be powerful. We use a similar training
technique, but instead of performing shape classifica-
tion, we solve the problem of object recognition in
given 2D images.

3 TRAINING 3D MODELS

We perform the task of object recognition in im-
ages. Given a dataset of 3D models representing the
object to be recognized, and an input query image
containing an instance of an object, the problem is to
find the correct 3D model present in the image. Here,
the input query images are available only during the
test time. We process on the database of 3D models,
perform training, and use the trained model for per-
forming recognition during the test time.

In summary, our procedure consists of taking vir-
tual snapshots of each object from different views
and using the snapshots to fine-tune an existing CNN
models. Figure 1 summarizes the procedure.
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Figure 2: Rendering technique used for generating virtual snapshots. An icosaheadron is recursively subdivided, virtual
cameras are placed in the center of its face and is pointed towards the 3D model placed at the center of the polyhendron to

take virtual snapshots. !

3.1 Rendering techniques

3.1.1 Rendering Views

Our CNN model trains on the virtual snapshots of
the 3D model. Therefore, the set of virtual snapshots
should cover a good variations in terms of viewpoints,
in order for the CNN to perform well on a real query
image during the test time. Thus, we intend to take
snapshots of the 3D model from all possible direc-
tions. This is unlike (Peng et al., 2014) where 4-
5 manually chosen views were used to augment the
training set. This is because, our training set is lim-
ited to the rendered images and we intend to capture
maximum information possible from this set.

To achieve this, we place the model in the ori-
gin and point the camera towards the model from a
set of uniformly discretized rotation angles. We do
this by placing the virtual camera at the faces (or ver-
tices) of a tesselated icosaheadron as icosaheadron is
the largest convex regular polyhedron with 20 faces.
Tesselation level of n which subdivides a triangle into
4 triangles recursively n times, providing us with the
parameter to control the number of views. We also
observed that rendering a model from the bottom of
its upright position does not provide us with useful
views of the object. In fact, many times the bottom of
the model do not resemble the actual object at all, giv-
ing rise to confusion to the learning algorithm. There-
fore, we only consider the top half of the tesselated
icosaheadron for taking the virtual snapshots. Note
that this assumes that the models are provided in their
upright position and are normalized in a unit cube.

Considering only the top half of the tesselated
icosaheadron for placing the virtual camera for gen-
erating the views, the tesselation levels of 0, 1 and 2
provide us with 10, 40 and 160 images respectively.
The procedure is summarized in Figure 2.

3.1.2 Background Images

It is observed that the system performs better in the
cluttered scene when some background is introduced
in the rendered images. The effect of the background
based on the dataset is more elaborated in the Results
section. In our rendering, we used both white back-
ground and real images as background. Because of
the fact that our models are indoor, we chose back-
grounds resembling indoor scene. We considered few
categories in the PASCAL dataset which are generally
present indoors (Example - Television), but do not re-
semble any of the categories of our 3D models to be
recognized to avoid conflicts. We then use the im-
ages in these categories to create background images
for our training set. To show the effect of the back-
ground we perform experiments with different combi-
nation of rendered and white background as explained
in Section 4.2.

3.1.3 Rendering scheme

We use the default rendering settings of Visualiza-
tion Toolkit (VTK) (VTK, ), which uses a directional
headlight located at the center of the camera and
Phong shading interpolation. We render the model
with and without texture to show that for highly ac-
curate models the presence of texture do not accuracy
significantly.

3.2 CNN framework

3.2.1 Framework

We use the eight layer ‘AlexNet’ ((Krizhevsky et al.,
2012)) as our neural network architecture for train-
ing and testing because of its popularity and simplic-
ity. Though recent deep networks like VGGNet (Si-
monyan and Zisserman, 2014), or more recent (He
etal., 2015) should work better. In our experiments on

Generated from https://www.openprocessing.org/
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Figure 3: AlexNet architecture, which is used for our evaluation. We fine-tune a pre-trained AlexNet model for our object
recognition problem by learning faster on the last fully connected layer while performing a slow weight update in the hidden
layers. The image of AlexNet is taken from (Krizhevsky et al., 2012) and is modified to show its use for the classification of
n number of object in our pipeline. Blue blocks show the additional layers.

the dataset by (Sarkar et al., 2016) with 7 categories,
we found AlexNet to be sufficient for the recognition
task.

The architecture of the network is shown in the
Figure 3. The network takes a fixed size 227 x 227
RGB images as input, feeds it through 5 convolu-
tional layers (with max-pool layers after first, second
and the last layers) followed by three fully connected
(FC) layers of 4096, 4096 and 1000 neurons respec-
tively, to produce a score for each of the 1000 class
it was originally intended to use. To use it for our
purpose for recognizing n objects, we change the last
layer to have only n neurons. To replace AlexNet with
another pre-trained network, one needs to follow the
same step of replacing the last layer to have the num-
ber of neurons same as the number of object. We keep
the SoftMax layer as used by AlexNet for classifica-
tion of the object. We optionally add another layer
before the last layer and call it fc_hidden as it shows
to increase the accuracy.

3.2.2 Training

For training, we essentially fine-tune a pre-trained
AlexNet model for the purpose of category detection.
More elaborately, we take a trained model of AlexNet,
replace the last fully connected (FC) layer to contain
the same number of neuron as the number of our cat-
egories, and initialize them with random weights. We
then learn the entire network end-to-end by backprop-
agation with SoftMax classification error, and update
the weights of the last fully connected layers 10 times
faster than the weights in the other layers. This causes
the last FC layer to learn and adapt to our categories
while enabling a slow adaptation of the hidden layers
towards the synthetic data.

Our experimentation shows that introduction of a

new FC layer (fc_hidden) before the final classifier
while doing a slow update throughout the network -
which is similar to learning of a fully connected neu-
ral network classifier on the FC7 features, increases
the accuracy compared to the one without the new
layer. This is due to the fact that the hidden layer
causes the network to have non-linearity than training
only the last layer. However, a fast update on FC7
without the addition of fc_hidden performs very simi-
lar. This is due to the fact that FC7 now introduces
the nonlinearity providing a fully connected neural
network working on the FC6 features. We chose this
setting for our experiments because of its simplicity.
The architecture is shown in Figure 3 where we in-
clude the hidden layer as it is a viable option. We also
found the method of fine-tuning all the layers perform
better than freezing all but the last one.

4 EXPERIMENTAL RESULTS

4.1 Dataset

We use the subset of the the dataset provided by
(Sarkar et al., 2016) to test our system. In brief the
dataset we considered contains 5 textured meshes -
Lion, Totem, Matriochka, Milk-carton and Whitener
and a set of test images. The test image set contains
in total around 3000 images of the real objects corre-
sponding to the provided meshes. The meshes repre-
sents accurate version of the real objects and has been
reconstructed by the scanner 3Digify (3Digify, 2015).



Table 1: Comparison of object recognition recall with our system, local feature based using MOPED (Collet Romea et al.,
2011) and local feature based using textured 3D models (Sarkar et al., 2016). Section 4.2 explains the settings used in our
methods. Note that we only show the results of recognition recall of these two objects while considering recognition between

5 models explained in 4.1

Milk-carton Lion

txtmap (Sarkar et al., 2016) +

MOPED (Collet Romea et al., 2011) 071 0.63
Manual SFM +

MOPED (Collet Romea et al., 2011) 0.86 070
tmap (Sarkar et al., 2016) +

PnP + RANSAC 055 072
ours - R-BG + W-BG + Full texture 098 0.76
ours - W-BG + Full texture 0.80 042
ours - C-BG + W-BG + Full texture 0.81 0.74
ours - C-BG + W-BG + WO texture 045 0.20
ours - C-BG + Full texture 0.80 0.67

4.2 Rendering settings

Background and texture We performed different
experiment which gives insight to the results of the
learning algorithm with respect to the rendering tech-
niques. The different methods considered are de-
scribed below:

e R-BG Rendered with random indoor background
taken from indoor categories of PASCAL dataset.

o W-BG Rendered with white background.

e R-BG + W+BG Rendered with random indoor
background and white background together.

e C-BG Rendered with chosen background similar
to that of test images. Here we took 10 - 15 images
of a table and used them as background.

e Full Texture Rendered with full texture.

o WO Texture Rendered without any texture.

Number of images We found that when the virtual
snapshots were are taken from varying distance from
the camera, the results were better. Therefore, we fol-
low the technique in Section 3.1.1 and took snapshots
at 7 different distances (radius of tesselated icosa-
headron) with the tesselation level of 1 - which gives a
total training image set of around 300 image per back-
ground settings. We found that increasing the tessela-
tion level to higher level do not improve the accuracy.

4.3 Comparing Algorithms

We use two models Lion and Milk-Bottle to compare
our results with local-feature based object recognition
results. For creating feature-augmented models, we
considered both the Structure From Motion approach

Table 2: Comparison of object recognition recall with our
system and local feature based using textured 3D models
(snap2 & tmap) (Sarkar et al., 2016). Here ours use the
settings C-BG + W-BG + Full texture

| Models | snap2  tmap our |
Milk-carton 0.88 0.71 0.81

Totem 0.83 021 0.98
Lion 089 063 0.74
Whitener 048 063 0.77

Matriochka 058 0.62 0.64

(Eg - (Collet Romea et al., 2011)) and Model based
approach from (Eg - (Sarkar et al., 2016)). We limited
to these two models as building feature-augmented
models from SFM has a large manual overhead. Also,
more images of these models in the test-image-set in
our dataset made it possible to create a robust feature-
augmented model from SFM.

For online phase or matching phase we considered
PNP + RANSAC (solution of Perspective-n-Points
problem under RANSAC iterations) and MOPED
(Collet Romea et al., 2011) framework.

4.4 Comparison

The detailed comparison of our approach to existing
approaches is shown in Table 1. The table shows the
advantages of our method over the existing texture
based recognition approaches. It is seen that the com-
bination C-BG + W-BG + Full texture works the best
in our case giving the best accuracy. Note the setting
R-BG + W-BG + Full texture is equally effective and
gives a better recall value for Lion and Milk-carton;
though the overall accuracy over the dataset of this
method is slightly less.

Table 2 shows the comparison of our approach to a
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Figure 4: Example recognition. (Top) Positive recognition of instances. (Bottom) Example erroneous detection. Note the

effect of the background affecting recognition.

previous model based approach which uses local fea-
tures. Here, we chose our best settings of C-BG +
W-BG + Full texture.

As seen from the experiments, texture seem to
have effect in our training - and so does the back-
ground. This is true specially for high textured mod-
els such as Lion and Matriochka. Figure 4 shows
some of the example recognition. The erroneous
cases show the contribution of the background for er-
ror. This and the quantitative analysis makes us con-
clude that for a cross domain learning scenario, it is
best to include maximum variations in the training im-
age set.

5 CONCLUSION

We have presented a method of using only 3D
models for learning CNN architecture for the purpose
of object detection. We showed that in case of accu-
rate models and uncluttered test images, our method
can be successfully applied with a very high accuracy
in results. The problem arises in the absence of ac-
curate 3D models, or in the case when the 3D model
covers a broad category instead of a single recogni-

tion instance. In those case there is a missing domain
gap which needs to be fulfilled. With this paper we
have identified the following promising set of future
work:

1. Identifying the domain gap between the features
in rendered images and real images with some of
the recent works, such as (Sun et al., 2015; Tzeng
et al., 2014; Long and Wang, 2015), and apply
domain transfer for improving the accuracy.

2. Use of photorealistic rendering to decrease the do-
main gap.

3. Finding camera viewpoint, or performing 6DOF
object recognition for accurate 3D models using
CNN, thereby creating a recognition system as
complete as the local feature based systems like
(Sarkar et al., 2016; Collet Romea et al., 2011)
enabling its usage in robotics application such as

grasping.
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