
UPROOTING MARYTTS: AGILE PROCESSING AND VOICEBUILDING

Sébastien Le Maguer1, Ingmar Steiner1,2

1Saarland University, 2DFKI GmbH
{slemaguer, steiner}@coli.uni-saarland.de

Abstract: MaryTTS is a modular speech synthesis system whose development
started around 2003. The system is open-source and has grown significantly thanks
to the contribution of the community. However, the drawback is an increase in
the complexity of the system. This complexity has now reached a stage where the
system is complicated to analyze and maintain.
The current paper presents the new architecture of the MaryTTS system. This
architecture aims to simplify the maintenance but also to provide more flexibility
in the use of the system. To achieve this goal we have completely redesigned the
core of the system using the structure ROOTS. We also have changed the module
sequence logic to make the system more consistent with the designer. Finally, the
voicebuilding has been redesigned to follow a continuous delivery methodology.
All of these changes lead to more accurate development of the system and therefore
more consistent results in its use.

1 Introduction

MaryTTS is a modular text to speech (TTS) synthesis system whose development started around
2003 [1]. The system is open-source and has grown significantly thanks to the contribution of
the community.1 However, the drawback is an increase in the complexity of the system. This
complexity has now reached a stage where the system is complicated to analyze and maintain.

In this paper, we present the new architecture of the MaryTTS system. The main objective
of this new architecture is to simplify the extension and the maintaining of the system. To
achieve this goal, we need to solve three main problems. Firstly, we need to have a flexible
and uniform – but accurate – representation of the information inside the system. Secondly,
we need to extend the modularity of the system by making modules more independent and
flexible. Finally, we need to provide a refined process to add a new synthesis voice. To achieve
these goals, we mainly rely on the introduction of ROOTS into the MaryTTS system, as ROOTS

provides an easy way to extend and adapt the data representation.
This paper is structured as follows. First the current architecture and problems related to

it are described in Section 2. Then ROOTS and its integration into MaryTTS are presented in
Section 3. Section 4 focuses on the new module sequencing paradigm and Section 5 on the new
voicebuilding process.

2 Current architecture

2.1 Description of the current architecture

As described in Figure 1, the current architecture is relies mainly on four distinct concepts: the
data, the datatypes, the modules, and the targets.

1https://github.com/marytts/marytts

28. Konferenz Elektronische Sprachsignalverarbeitung 2017, Saarbrücken

152

mailto:\protect \T1\textbraceleft slemaguer, steiner\protect \T1\textbraceright @coli.uni-saarland.de
https://github.com/marytts/marytts

Text Module 1

tokenstext

Module 2

out-typetokens

...

out-typein-type

Data Module 1

out-typein-type

...

out-typein-type

Synthesizer

wavin-type

Signal

NLP

Acoustic

Figure 1 – Sequence of modules architecture of the MaryTTS system

The module is the key concept of the system. A module performs one operation in the
synthesis pipeline. It can be at any level, either linguistic (e.g., part of speech (POS) prediction),
prosodic (e.g., F0 prediction), or purely acoustic (e.g., unit selection). The goal of a module is
to enrich the representation of the utterance by adding some information. Therefore a module
takes a certain state of information as the input and produces another type of information as the
output.

The type of information is referred as “datatype”. A datatype is just a label which describes
the current state of the description of an utterance. For example, “PHONEME” indicates that
the utterance has been phonemized. This also means that all operations, and therefore all the
modules, needed to reach this state, have been processed. For example, for the English lan-
guage, the current sequence of modules leads to the “PHONEME” datatype.

To store the data, a custom XML format (“MaryXML”) is used; an utterance is represented
by an XML document. Therefore, the goal of the module is to enrich the document by adding
more nodes or adding more attributes. The datatype corresponds thereby to the labeling of
the current XML information; e.g, “PHONEME” implies the presence of “t” nodes with “ph”
attributes, which correspond to the phonemization description of the text tokens.

Finally, for the machine learning and the acoustic prediction modules, the targets are in-
troduced. For now, the target is a meta concept containing an XML element (for example, the
segment for the acoustic prediction modules) and a feature vector. The key idea behind the tar-
get is to link the information used to generate the feature vector and the vector itself. Features
are computed by processing the XML document from a specific segment (which is the baseline
for the target element). New features can be introduced by overriding the feature processor
class.

2.2 Drawbacks

The actual architecture leads to several drawbacks. First, the XML format is a documentation
representation standard but it is tree based. Therefore, a significant processing overhead is in-
troduced when the system needs to link two kinds of information widely spread across different
levels. Furthermore, the use of the same format makes it difficult to extend the information and
therefore limits the overall extensibility of the system. Indeed, the relation between elements is
not always an inclusion of multiple elements or a specification of one attribute. For example,
the word “it’s” is associated to two POS tags. For now a meta unit is created but this is more a
hack than a real extensible solution.

153

Secondly, the notion of datatype forces the user to know which type of information is
produced by each module. This also restricts the flexibility of the system as the developer of
a new module may have to define a new datatype. More generally, the user tends to define a
sequence of modules and might replace the use of one specific module by another. Therefore,
the way of defining a sequence of modules in MaryTTS is not natural.

Finally, the current voicebuilding framework relies on a GUI application whose drawbacks
include accessibility issues, as well as a lack of portability, explicit processing order, paralleliza-
tion, caching of completed steps, and various issues related to external program invocations.

For all these reasons and as a lot of developers participated to the evolution of MaryTTS,
the system has become complicated and difficult to maintain. Our goal is to simplify the system
and refactor the platform core to make it easier to maintain.

3 Introducing ROOTS

The first major change concerns the replacement of the data representation inside the system
itself to use a lightweight implementation of ROOTS [2, 3]. To describe this replacement, we
are first going to describe ROOTS and then explain how it is integrated in MaryTTS.

3.1 Description of ROOTS

The core of ROOTS is based on three essential concepts: the item which represents the actual
information; the sequence that contains items and the relation that enables linking of items in
two sequences.

An item is an instance of information. A word, a phoneme, a syllable are all examples of
items. In order to be the more flexible, the item definition relies heavily on the object program-
ming paradigm. Therefore, based on subclassing and polymorphism, it is possible to extend
easily available information in the system. For example, let’s consider a phone an extended
phoneme; it is extended by adding the start/end position in a corresponding signal. Therefore,
to define a phone, we simply subclass the phoneme and add the information {start, end,
signal_filename}.

A sequence contains items of a specific levels in sequential order. The generic aspect of
the representation enables us to keep a coherent semantic for sequences by guaranteeing the
homogeneity of items they contain. Consequently, we can talk about a sequence of words or a
sequence of phonemes. However, the use of subclassing allows us to diversify the content of
a sequence. Indeed, a sequence of phonemes can be composed also by phones. Consequently,
each level is represented by one or more sequences allowing for several representations.

If the sequence allows to link items from the same levels, the relation enables the linking
of items at different levels. A relation is represented in the form of a sparse matrix as shown in
Figure 2a. A relation is oriented and therefore has a source sequence and a target sequence. By
convention, the source sequence is represented by rows and the target by columns.

There are three main advantages of this representation. First, it is a natural way of reading
this information. Secondly, obtaining the reciprocal relation is achieved easily by transposing
the matrix representing the relation. Finally, let’s assume we have two relations Rb

a and Rc
b but

not Rc
a. We can obtain Rc

a easily by composing Rb
a and Rc

b using the matrix product Rb
aRc

b. An
example of this is illustrated in Figure 3.

There is one problematic case which is the composition which leads to an ambiguous rela-
tion like illustrated in Figure 4. The disambiguation is not solved by the system but it is assume
to be the responsibility of the user, or of the module developer in the MaryTTS case.

ROOTS is an elegant and flexible way of structuring the information in the MaryTTS context

154

w V n s @ p A n()syl1 1 1 1 1 0 0 0 0
syl2 0 0 0 0 1 0 0 0
syl3 0 0 0 0 0 1 1 1

(a) Example of relation Rphonemes
syl

syl1 syl2 syl3

w 1 0 0
V 1 0 0
n 1 0 0
s 1 0 0

@ 0 1 0
p 0 0 1
A 0 0 1
n 0 0 1

(b) Example of the reciprocal relation of Rphonemes
syl

Figure 2 – Relation example for the text “Once upon”

syl1 syl2 syl3

w 1 0 0
V 1 0 0
n 1 0 0
s 1 0 0

@ 0 1 0
p 0 0 1
A 0 0 1
n 0 0 1

*

Once upon()syl1 1 0
syl2 0 1
syl3 0 1

=

Once upon

w 1 0
V 1 0
n 1 0
s 1 0

@ 0 1
p 0 1
A 0 1
n 0 1

Figure 3 – Composition of a relation linking the phonemes to the syllables and a relation linking the
syllables to the words. The result relation is linking the phonemes to the words.

it’s()I 1
t 1
s 1

*
it is
()it’s 1 1 *

Noun Verb()
it 1 0
is 0 1

=

Noun Verb()I 1 1
t 1 1
s 1 1

Figure 4 – Problematic composition of relations: an ambiguity is introduced as the composition of
the relation Rit’s

I t s with the relation Rit is
it ′s leads to put everything in relation. This is correct for this

intermediate relation however, composing it to get the part of speech tag leads to a decision which needs
to be taken.

as the system is assumed to be modular. Furthermore, at the opposite of Heterogeneous Graph
Relation [4] (the structure implemented in Festival [5]), the redundancy of the information is
maintained to keep this information available at all times. This suits perfectly the modularity
design of MaryTTS, as it allows us to introduce a new module easily. Finally, the representation
is independent of the serialization format. Therefore, it is possible to export the data in any kind
of format, such as MaryXML.

3.2 Integration of ROOTS into MaryTTS

To integrate ROOTS into MaryTTS, a lightweight version of it has been implemented in java.
This leads to a distinction of the inner representation of the data in MaryTTS and the represen-
tation used to feed the system.

As mentioned before, internally all the references to the XML format have been stripped
out. This means that from one module to another, an utterance is passed in the form of a “plain

155

old java object”. This also means that the XML routines have been removed and replaced by
dedicated ROOTS routines.

Furthermore, the feature representation is also integrated into the ROOTS datastructure. This
means that the concepts of target, which currently encapsulates an XML element (representing
a segment) and feature vector are disappearing. Indeed, a target can be represented by a relation
between the sequence of segments and the sequence of feature vectors.

In order to be able to feed the system, it is necessary to implement serializers. Currently,
an XML serializer has been implemented to maintain backward compatibility with the previous
version of MaryTTS. However, the XML document is an under-specification of a ROOTS utter-
ance. This means that the compatibility is maintained with the standard modules of the systems
but might not be supported with new modules which require more complex informations.

Even if it seems to be a drawback at first, processing this way is actually more flexible.
Indeed once a proper serializer is developed, it is possible to plug in virtually any kind of
format into the systems (e.g., Praat TextGrids, JSON, . . .).

4 Module sequencing

Based on the new data representation paradigm, and for the previously mentioned reasons, the
concept of datatype is disappearing from MaryTTS.

Therefore, the goal of a module is to take an utterance and to enrich it. Of course, it is
possible that the information needed by a module is not available. However, we consider it the
responsibility of the module to check the availability of this information.

Consequently, the processing pipeline is now defined by a sequence of modules that needs
to be explicitly provided. Currently, we are considering three main checkpoints in the system:
the language package, the acoustic generation package (unit-selection, HSMM, . . .), and the
voice. Each language package defines a default process from the text to the phonemization
process. Each acoustic generation package defines a default process from the phonemization
to the acoustic signal. A voice is defined according to a language and an acoustic generation
method. For example, we can consider an English voice for unit selection. If nothing more is
defined, the pipeline will be composed by the default modules indicated in the language and
the acoustic generation packages. However, it is possible to define a new module sequence
specifically for this voice in its configuration.

The introduction of this change makes the MaryTTS system even more flexible and “plug
and play”, which is ideal for a research tool. For now, the sequence is defined offline, but the
core is present in the system. Once online sequencing is supported, MaryTTS will be ideal to
compare different ways of running one stage of the process, as the rest can be kept completely
constant.

5 A new voicebuilding process

We now rely on the Gradle build automation platform.2 This leads to the integration of a new
strategy in the voicebuilding process. We split the process into three main parts: descriptive
feature extraction, acoustic parameter extraction, model generation.

The old “VoiceImportTools” with their custom GUI and ad-hoc design patterns had the
right intuition to the process, but failed to provide a robust, efficient implementation of task-
based workflows. In no particular order, the process was missing,
portability all generated file paths were absolute, so voice project directories could not be

2https://gradle.org/

156

https://gradle.org/

moved without manual reconfiguration,
a task dependency graph components needed to be run in an implicit order by consulting the

documentation,
caching re-running a components processing method would always repeat previously success-

ful work,
logging messages were simply printed to standard output,
parallelism only one component could run at a time,
consistent subprocess management external tools could fail to run properly,
principled testing only some components contained inline assertions,
stable packaging resources were be copied into a new project structure, where Maven would

be invoked in a subprocess.
These shortcomings were clear, and some vague design notes formulated by Marc Schröder3 are
almost prophetic in the way the requirements are – nearly perfectly – met by Gradle’s features
and capabilities.

We have reimplemented the voicebuilding process as a collection of Gradle plugins which
can run the workflow end-to-end with maximal efficiency.4 By tapping into Gradle’s feature
set, we can benefit from,
• cross-platform builds with “lazy” path and property evaluation,
• a task dependency model based on a directed acyclic graph (cf. Figure 5)
• task output caching,
• a logging engine,
• parallel task execution,
• robust logic for external command execution and Java subprocess management,
• flexible testing and report aggregation,
• dependency resolution and artifact publishing engines,
• a powerful domain-specific language based on Groovy,
• extensibility and customization via plugins.

This also allows us to efficiently run validation experiments and deploy voices in a continuous
delivery paradigm.

The benefits of Gradle have also been introduced for the primary build platform of MaryTTS,
as well as other custom build tasks, such as letter-to-sound resource and source generation for
new language support [6].

3In June 2012, shortly after MaryTTS development had moved to GitHub, Marc Schröder wrote into the newly-
created wiki at https://github.com/marytts/marytts/wiki/Ideas-for-future-work:

Voicebuilding
aim: introduce robustness, transparency (so you know what’s going on) and the ability to parallelize
into the process.
idea: insert the concept of a “data item” which knows its current status.
A data item object represents the output or input of a processing step. For example, a data item
can represent a wav file, or a pitchmark file, i.e. a certain processing result for an individual base-
name; but it can also represent an agglomerative output, such as a waveform timeline or a duration
prediction tree.
Each component has a list of required data items and a list of produced data items.
This means for the data item “unit selection voice” we can look backwards how we can build this.
For simplicity, our data item sequence is predefined, not “emerging” as in MARY TTS. That is, the
sequence of steps is clear; the components implementing the steps can be exchanged or selected
(e.g., several possible pitchmarkers).
At startup, the database layout checks which data items are up to date.

4https://github.com/marytts/gradle-marytts-voicebuilding-plugin

157

https://github.com/marytts/marytts/wiki/Ideas-for-future-work
https://github.com/marytts/gradle-marytts-voicebuilding-plugin

6 Conclusion

In conclusion, we have presented the new architecture of the MaryTTS system. This archi-
tecture revitalizes the idea that MaryTTS is a TTS system designed with modularity in mind.
Therefore, the new architecture aims to extend this idea and make the system more flexible.

To this end, we have integrated a lightweight implementation of ROOTS, a flexible represen-
tation framework for speech and linguistic data. We have also redesigned the module sequenc-
ing in order to make it more natural to use. Finally, we have developed a new voicebuilding
process which adopts the paradigm of continuous delivery.

To extend the work presented here, some improvements of the system are currently under-
way. First, we are currently integrating the latest version of the statistical parametric synthesis
methodologies into the system. We may then integrate a hybrid methodology. We also plan to
add an online module integration support. This will lead to a full plug and play TTS system.
Finally, we are considering to replace the default phone representation, based on X-SAMPA, by
an internal IPA representation. Similarly to the data serialization, a phonetic alphabet converter
will be provided, which can also be extended. This change will also facilitate the integration of
a new language in the system.

References

[1] SCHRÖDER, M. and J. TROUVAIN: The German text-to-speech synthesis system MARY: A
tool for research, development and teaching. International Journal of Speech Technology,
6(4), pp. 365–377, 2003. doi:10.1023/A:1025708916924.

[2] CHEVELU, J., G. LECORVÉ, and D. LOLIVE: ROOTS: a toolkit for easy, fast and consis-
tent processing of large sequential annotated data collections. In International Conference
on Language Resources and Evaluation (LREC). 2014. URL http://www.lrec-conf.
org/proceedings/lrec2014/summaries/338.html.

[3] BARBOT, N., V. BARREAUD, O. BOEFFARD, L. CHARONNAT, A. DELHAY, S. LE MA-
GUER, and D. LOLIVE: Towards a versatile multi-layered description of speech corpora
using algebraic relations. In Interspeech, pp. 1501–1504. 2011.

[4] TAYLOR, P., A. W. BLACK, and R. CALEY: Heterogeneous relation graphs as a formal-
ism for representing linguistic information. Speech Communication, 33(1-2), pp. 153–174,
2001. doi:10.1016/S0167-6393(00)00074-1.

[5] BLACK, A., P. TAYLOR, R. CALEY, R. CLARK, K. RICHMOND, S. KING, V. STROM,
and H. ZEN: The Festival speech synthesis system, version 1.4.2. 2001. URL http:
//www.cstr.ed.ac.uk/projects/festival/.

[6] STEINER, I., S. LE MAGUER, J. MANZONI, P. GILLES, and J. TROUVAIN: Develop-
ing new language tools for MaryTTS: the case of Luxembourgish. In 28th Conference on
Electronic Speech Signal Processing (ESSV), pp. 186–192. Saaarbrücken, Germany, 2017.

158

http://dx.doi.org/10.1023/A:1025708916924
http://www.lrec-conf.org/proceedings/lrec2014/summaries/338.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/338.html
http://dx.doi.org/10.1016/S0167-6393(00)00074-1
http://www.cstr.ed.ac.uk/projects/festival/
http://www.cstr.ed.ac.uk/projects/festival/

:assemble

:build

:check

:jar

:legacyZip

:legacyDescriptor

:integrationTest

:test

:classes

:compileIntegrationTestGroovy

:compileIntegrationTestJava

:compileTestGroovy

:compileTestJava

:generatePom :generatePomProperties

:integrationTestClasses

:processLegacyResources

:testClasses

:compileGroovy

:compileJava

:processResources

:processIntegrationTestResources

:legacyAcousticFeatureFileWriter

:legacyJoinCostFileMaker :legacyCARTBuilder

:legacyBasenameTimelineMaker

:legacyHalfPhoneUnitfileWriter

:legacyF0PolynomialFeatureFileWriter

:legacyHalfPhoneFeatureFileWriter :legacyWaveTimelineMaker

:legacyDurationCARTTrainer :legacyF0CARTTrainer

:processTestResources

:generateSource

:compileMaryttsJava

:generateServiceLoader :generateVoiceConfig

:legacyPraatPitchmarker

:legacyPhoneUnitfileWriter:legacyMCEPMaker

:legacyHalfPhoneLabelFeatureAligner

:legacyHalfPhoneUnitLabelComputer

:legacyMCepTimelineMaker

:legacyPhoneFeatureFileWriter

:halfPhoneUnitFeatureComputer

:legacyInit

:legacyPhoneUnitLabelComputer :phoneUnitFeatureComputer

:legacyPhoneLabelFeatureAligner

:featureLister:legacyTranscriptionAligner

:generateBasenamesList

:lab

:templates :text:wav

:maryttsClasses

:generateAllophones

:data:lab

:data:text:processDataResources:data:wav

:compileMaryttsGroovy :processMaryttsResources:data:downloadAudio

Figure 5 – Task execution graph using the Gradle-based voicebuilding plugin to create a new MaryTTS
synthesis voice. Tasks with names starting with “legacy-” wrap the corresponding old components.

159

