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Abstract
We present an end-to-end text-to-speech (TTS) synthesis sys-
tem that generates audio and synchronized tongue motion di-
rectly from text. This is achieved by adapting a statistical shape
space model of the tongue surface to an articulatory speech
corpus and training a speech synthesis system directly on the
tongue model parameter weights. We focus our analysis on the
application of two standard methodologies, based on Hidden
Markov Models (HMMs) and Deep Neural Networks (DNNs),
respectively, to train both acoustic models and the tongue model
parameter weights. We evaluate both methodologies at every
step by comparing the predicted articulatory movements against
the reference data. The results show that even with less than 2h
of data, DNNs already outperform HMMs.

Index Terms: Text-to-speech, multimodal synthesis, tongue
modeling, articulatory animation

1. Introduction
Multimodal speech synthesis which integrates intra-oral articu-
latory movements has been investigated for several years. These
movements are particularly useful for computer-assisted pro-
nunciation training (CAPT) applications and articulatory visu-
alization. Previous studies [e.g., 1, 2], combined intra-oral mo-
tion capture data obtained from electromagnetic articulography
(EMA) [3] with concatenative speech synthesis to animate a ge-
ometric tongue model simultaneously with synthesized audio.
Among more recent implementations, the statistical parametric
speech synthesis paradigm introduces greater flexibility in the
modeling and therefore in the combination of multiple modal-
ities. Consequently, several studies [4, 5, 6] have successfully
used hidden Markov model (HMM) based multimodal speech
synthesis with EMA data.

In this paper, we present an approach to multimodal text-to-
speech (TTS) synthesis that generates the fully animated, three-
dimensional (3D) surface of the tongue, synchronized with syn-
thetic audio. This is achieved using data from a single-speaker,
articulatory corpus that includes EMA motion capture of three
tongue fleshpoints [7]. In contrast to other work, our approach
employs a tongue model which can easily be adapted to differ-
ent speakers.

Such geometrical tongue models have been successfully
used in previous work to generate animations from provided
articulatory data: Katz et al. [8] presented a real-time visual
feedback system that deforms a generic tongue model by using
EMA data. However, due to the generic model, their approach
did not take anatomical differences into account. A statistical
model was used in the approach by Badin et al. [9]. They used
the data of one speaker to derive the tongue model and used

the EMA data of the same speaker to animate it. Engwall [10]
followed a similar approach.

Our own previous work utilized a multilinear statistical
model to visualize EMA data, which allowed it to be adapted
to different speakers [11]. This work was extended into a full
TTS system, where the audio and articulatory motion are syn-
thesized using an HMM based TTS framework [12], while the
surface restoration is performed by means of a multilinear sta-
tistical tongue model [13] trained on a multi-speaker, volumet-
ric magnetic resonance imaging (MRI) dataset [14].

Advancing statistical parametric TTS synthesis, Deep Neu-
ral Networks (DNNs) have been applied with great success [15].
However, the amount of data needed to train a DNN model is
quite significant.

Therefore, the present study focuses on the comparison of
HMM and DNN modeling to achieve a multimodal speech syn-
thesis system. We are also focusing on the fact that the same
amount of data, which is less than 2 h of speech, is used to train
the models. Therefore, we also want to compare the behav-
ior of DNN models with HMM based on this relatively limited
amount of data.

This paper is organized as followed. First, in Section 2, the
architecture of the proposed framework is described. Then, in
Section 3, we focus the experiment description and the results
analysis. Finally we will conclude this paper.

2. Method
2.1. Multilinear shape space model

In our framework, we employ a multilinear model to generate
tongue shapes. Specifically, we use this model to construct a
function f : Rm×Rn →M that maps the parameters s ∈ Rm

and p ∈ Rn to a polygon mesh M = (V,F) ∈M . Here, the
set V := {vi} is called the vertex set of the mesh with vi ∈ R3

and F is the face set that uses these vertices to describe the
represented surface. We note that meshes M have the same face
set and only differ in the positional data of their vertices. In our
case, the speaker parameter s represents the anatomical features
of the generated tongue while the pose parameter p determines
its articulation-related shape.

To summarize our previous approach [13], we derive this
model in the following manner. We first use image segmenta-
tion and template matching methods to extract tongue meshes
M from a database that contains MRI recordings of m speakers
showing the vocal tract configuration for n different phonemes.
Thus, in the end, we have for each speaker one tongue mesh
for each considered phoneme available, which we use to derive
the degrees of freedom (DoF) of the anatomy and speech re-
lated variations as follows: we center the meshes and turn the



them into feature vectors by serializing the positional data of
their vertices. These feature vectors are then arranged in a third
order tensor A, such that its first mode corresponds to the speak-
ers, the second to the considered phonemes, and the third to the
positional data. Finally, we use higher order singular value de-
composition (HOSVD) [16] to get access to the following ten-
sor decomposition:

A =C×1 U1×2 U2 (1)

Here, C is a third order tensor that represents our multilinear
model. The operation C×n U is the n-th mode multiplication of
the tensor C with the matrix U . The rows of U1 ∈ Rm×m cor-
respond to the parameters of the original speakers, the ones of
U2 ∈ Rn×n to the parameters of the considered phonemes. We
note that in contrast to a principal component analysis (PCA)
model, the multilinear model captures anatomical and articula-
tion related shape variations separately. We can use C to gener-
ate new positional data for provided weights s and p:

v(s, p) = µ +C×1 s×2 p (2)

where µ is a feature vector consisting of the positional data
corresponding to the mean mesh of the tongue shape collection.
Finally, we reconstruct the vertex set by using the generated
positional data and combine it with the face set to obtain our
mesh.

In order to fit the model to a speaker of an EMA corpus
and to obtain the associated weights, we apply the following
approach. First, we manually align the EMA data to the model
space by using a provided reference coil. Then, we find cor-
respondences between the considered tongue coils and vertices
on the model mesh in a semi-supervised way: we start with ran-
dom parameters and generate the associated mesh. Afterwards,
we find for each coil the nearest vertex of the mesh. These cor-
respondences are then iteratively refined by fitting the model
and updating the nearest vertices. The mentioned three steps
are repeated multiple times and those correspondences are kept
which result in the smallest average distance between coils and
vertices. In the end, the final correspondences are manually in-
spected and the experiment is repeated if they are deemed to be
incorrect. After the correspondences have been obtained, we fit
the model to each EMA data frame of the corpus by minimizing
the following energy:

E(s, p) = EData(s, p)+ESmooth(a, p) (3)

The data term EData(·) measures the distances between the
coil positions and the corresponding mesh vertices of the gen-
erated mesh f (s, p). The smoothness term ESmooth(·) penalizes
differences between the current parameters and the ones of the
previous time step. We note that the fitting can also be per-
formed while only optimizing for one weight and leaving the
other one fixed.

2.2. Multimodal statistical parametric speech synthesis

In this study, we plan to analyze the influence of the Feed For-
ward Deep Neural Network (FF-DNN) modeling compared to
Gaussian Mixture Model (GMM)/decision tree modeling used
in the default HMM based synthesis (HTS) system, focusing on
the accuracy of the obtained synthesis. To simplify the nota-
tions, we use the term DNN to refer to the FF-DNN modeling
and the term HMM for the GMM/decision tree modeling. Fur-
thermore, to achieve the comparison, we have adapted the stan-
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Figure 1: Adapted architecture for multimodal synthesis.

dard architecture of the HTS framework [17] to obtain the one
shown in Figure 1.

The architecture consists of the following main parts:
the parameterization of the signal, the training of the mod-
els (acoustic/articulatory), the parameter generation (acous-
tic/articulatory), and the rendering (acoustic/articulatory).

Considering the parameterization of the acoustic signal, we
used the standard configuration described by Zen and Toda [17]
based on STRAIGHT [18] and the mel log spectrum approxi-
mation (MLSA) filter [19]. First, STRAIGHT is used to extract
the spectrum, the fundamental frequency (F0), and the aperiod-
icity. The F0 values are transformed into the logarithmic do-
main, to be more consistent with human hearing. The F0 tra-
jectory is interpolated and the voiced/unvoiced property is ex-
tracted in order to respect the standard DNN training proposed
by Zen et al. [15]. Finally, the MLSA filter is used to parame-
terize these coefficients and to obtain the mel-generalized cep-
stral coefficients (MGC) and the aperiodicity per band (BAP),
respectively.

In addition to the acoustic signal, we introduced the artic-
ulatory trajectory parameterization part. In the present study,
we work towards replacing the EMA data by the tongue model
parameters. Therefore, our goal is to train our models on the tra-
jectories of the tongue model parameters using both modeling
methodologies.

To increase flexibility, we separated the training of the
acoustic and articulatory models. However, the training stages
are either based on the the standard HTS training stage pro-
posed by Zen and Toda [17], or on the standard DNN training
proposed by Zen et al. [15].

The standard parameter generation algorithms (described
by Tokuda et al. [20]) are then used to obtain the trajectories.
More importantly, we want to retain the synchronization be-
tween the acoustic and the articulatory trajectories. To do so,
the durations produced by the acoustic generation stage are im-
posed onto the articulatory generation stage at the phone level.

3. Experiments
3.1. Experimental setup

The data used for the experiments in this study is taken from
the mngu0 corpus. Specifically, we used the “day 1” EMA sub-
set [7], which contains acoustic recordings, time-aligned pho-



label location

T1 tongue tip
T2 tongue body
T3 tongue dorsum
ulip upper lip
llip lower lip
ref upper incisor
jaw lower incisor

Table 1: EMA coil labels and locations of the mngu0 corpus.

netic transcriptions, and EMA motion capture data (sampled at
200 Hz using a Carstens AG500 articulograph).

We selected the “basic” (as opposed to the “normalized”)
release variant of the EMA data. It also preserves the silent
(i.e., non-speech) intervals, as well as the 3D nature and true
spatial coordinates of the sensor data (after head motion com-
pensation). The EMA coils are listed in Table 1.

From the provided acoustic data, signal parameters were
extracted using STRAIGHT [18] with a frame rate of 200 Hz,
matching that of the EMA data. As we follow the standard HTS
methodology, we also kept the same parameters. Therefore, our
signal parameters are 50 MGC, 25 BAP and one F0 coefficient.

To derive the multilinear model, we used the whole Ultrax
dataset [14] (11 speakers) enriched with the data of Baker [21]
(1 speaker). We then extracted the pose parameters from the
EMA training data as follows. First, we estimated the vertex-
coil correspondences by using the upper incisor coil as a refer-
ence. Afterwards, we fitted the model to all frames of the EMA
data to obtain the speaker and pose parameters and averaged the
resulting speaker parameters to estimate the subject’s anatom-
ical features. Finally, we again fitted the model to all frames
while fixing the speaker parameter to the obtained estimate.

From the 1354 utterances in the data, 152 (11.20 %) were
randomly selected and held back as a test set. The remaining
1202 utterances were used as the training set to build the syn-
thesis models.

Considering the training configurations, the default HTS
2.3 setup [22] was used for the HMM voice and the default HTS
2.3.1 setup1 for the DNN voice. Therefore, the DNN configu-
ration is implying 3 hidden layers containing 1024 nodes each.
For both configurations, we adapted the F0 limits to the interval
60 Hz to 300 Hz.

3.2. Discussion

To achieve the analysis, we have compared, for both conditions,
5 different setups:

straight-ema which is the joint modeling of the acoustic and
the EMA features in the same vector;

straight which predicts only the acoustic parameters;
ema which predicts only the articulatory parameters;
ema-tongue which predicts only the articulatory parameters as-

sociated with the tongue;
tm which predicts the tongue model parameters (p from Equa-

tion (2)).

To compare the different setups, we used the classical
acoustic objective distance evaluation composed by the mel
cepstral distortion (MCD) for the spectrum part, root mean
square error (RMSE) for duration at the phone level, and for

1http://hts.sp.nitech.ac.jp/?Download#f2602aa9

id mean std. dev. conf. int.

rms F0 (cent) 188.43 63.70 10.21
rms F0 (Hz) 10.66 4.91 0.79
vuv (%) 12.14 3.84 0.62
mcdist (dB) 2.45 0.23 0.04
rms dur. (ms) 41.93 19.04 3.05
eucdist T3 (mm) 2.14 1.47 8.57×10−3

eucdist T2 (mm) 2.10 1.54 9.00×10−3

eucdist T1 (mm) 2.17 1.62 9.44×10−3

eucdist ref (mm) 0.22 0.12 6.97×10−4

eucdist jaw (mm) 1.26 0.65 3.80×10−3

eucdist ulip (mm) 0.72 0.38 2.21×10−3

eucdist llip (mm) 1.45 0.93 5.45×10−3

Table 2: HMM synthesis evaluation results for straight-ema
(acoustic combined with EMA synthesis).

id mean std. dev. conf. int.

rms F0 (cent) 188.52 76.92 12.33
rms F0 (Hz) 10.77 5.47 0.88
vuv (%) 12.03 3.94 0.63
mcdist (dB) 2.45 0.22 0.04
rms dur. (ms) 42.00 18.29 2.93

Table 3: HMM synthesis evaluation results for straight (acoustic
synthesis).

F0 at the frame level, and finally the voiced-unvoiced (VUV)
error rate. Considering the articulatory features, we used the
Euclidean distance.

Tables 2, 3 and 4 present the results for the conditions
straight-ema, straight and tm, respectively, in the HMM setup.
By comparing the setup straight-ema and straight, we can con-
clude that the duration modeling is equivalent. Therefore, we
can separate the acoustic from the articulatory modeling. Fur-
thermore, the comparison of the Euclidean distances between
the tm and straight-ema setups shows a small degradation. We
assume that a combination of measurement noise and recon-
struction error (which is around 0.60 mm) lead to this result.

Tables 5, 6 and 7 present the results for the conditions
straight, ema-tongue and tm, respectively, in the DNN setup.
First of all, it becomes evident that DNN based modeling
outperforms the HMM modeling even with a relatively small
amount of data. The reason might by that the decision tree mod-
eling is not able to capture some important correlation inside the
data. Indeed, a decision tree clustering the space assumes that
there is no connection between the different clusters. Therefore,
we do not advise to use the default HMM configuration as the
flexibility of the DNN will increase its accuracy if more data is
added.

Therefore, it is more surprising that the configuration ema-
tongue in the DNN setup is significantly worse than the other
setup to predict the trajectories of the tongue coils. Our as-
sumption is that the DNN doesn’t have enough data to capture
the bio-mechanical constraints of the tongue. This seems to be
confirmed by the fact that using the parameters of the tongue
model in the tm setup, does produce results comparable to the
ema setup.

Comparing the distribution of distances across the setups
and the phone classes (Figure 2), we find that only the tongue
tip (coil T1) is more volatile and degrades the results. It is pos-

http://hts.sp.nitech.ac.jp/?Download#f2602aa9
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Figure 2: Distributions of Euclidean distances between observed and predicted tongue EMA coil positions by the DNN modeling for
each experimental TTS setup (“ema”: EMA synthesis, “ema-tongue”: EMA synthesis restricted to tongue coils, and “tm”: synthesis
of tongue model parameter), split by phone class and tongue EMA coil.

id mean std. dev. conf. int.

eucdist T3 (mm) 2.61 1.61 9.43×10−3

eucdist T2 (mm) 2.80 1.74 0.01
eucdist T1 (mm) 2.91 1.85 0.01

Table 4: HMM synthesis evaluation results for tm (synthesis of
tongue model parameter).

id mean std. dev. conf. int.

rms F0 (cent) 153.62 67.86 10.91
rms F0 (Hz) 8.57 5.06 0.81
vuv (%) 11.38 3.70 0.60
mcdist (dB) 2.13 0.20 0.03

Table 5: straight DNN synthesis evaluation results for straight
(acoustic synthesis).

sible that varying the smoothness term in the tongue model may
improve this.

4. Conclusion
In this study, we have presented an objective comparison be-
tween HMM and DNN based modeling to synthesize acoustic
speech and synchronized animation of a full 3D model of the
tongue surface. First, we demonstrated a conventional, fused
multimodal approach, then separated the two modalities while
ensuring that the objective evaluation measures remained com-
parable in both modeling. Finally, we compared the results
obtained by the HMM modeling to those obtained from the

id mean std. dev. conf. int.

eucdist T3 (mm) 3.84 2.08 0.01
eucdist T2 (mm) 3.97 2.07 0.01
eucdist T1 (mm) 3.75 2.41 0.01

Table 6: DNN synthesis evaluation results for ema-tongue
(EMA synthesis restricted to tongue coils).

id mean std. dev. conf. int.

eucdist T3 (mm) 2.07 1.35 7.92×10−3

eucdist T2 (mm) 2.33 1.48 8.66×10−3

eucdist T1 (mm) 2.22 1.49 8.74×10−3

Table 7: DNN synthesis evaluation results for tm (synthesis of
tongue model parameter).

DNN approach of the acoustic and the tongue parameters. This
demonstrates that even with a relatively small amount of data,
the DNN approach already outperforms the HMM based mod-
eling.

A number of synthesized utterances from the test set for
both approaches are provided in the form of example videos in
the multimedia supplement to this paper; no additional smooth-
ing has been applied.

In future work, we plan to assess the impact on perceived
naturalness by integrating the tongue model into a realistic talk-
ing avatar [e.g., 23, 24]. Regarding the tongue model integra-
tion, we plan to explore speaker adaptation using volumetric
data, such as the MRI subset of the mngu0 corpus [25].



5. References
[1] O. Engwall, “Evaluation of a system for concatenative articulatory

visual speech synthesis,” in International Conference on
Spoken Language Processing (ICSLP), Sep. 2002, pp. 665–
668. [Online]. Available: http://www.isca-speech.org/archive/
icslp 2002/i02 0665.html

[2] S. Fagel and C. Clemens, “An articulation model for audiovisual
speech synthesis – determination, adjustment, evaluation,” Speech
Communication, vol. 44, no. 1-4, pp. 141–154, Oct. 2004.
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