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Abstract. In this applied research paper, we describe an architecture
for seamlessly integrating factory workers in industrial cyber-physical
production environments. Our human-in-the-loop control process uses
novel input techniques and relies on state-of-the-art industry standards.
Our architecture allows for real-time processing of semantically anno-
tated data from multiple sources (e.g., machine sensors, user input de-
vices) and real-time analysis of data for anomaly detection and recov-
ery. We use a semantic knowledge base for storing and querying data
(http://www.metaphacts.com) and the Business Process Model and No-
tation (BPMN) for modelling and controlling the process. We exemplify
our industrial solution in the use case of the maintenance of a Siemens
gas turbine. We report on this case study and show the advantages of our
approach for smart factories. An informal evaluation in the gas turbine
maintenance use case shows the utility of automated anomaly detection
and handling: workers can fill in paper-based incident reports by using
a digital pen; the digitised version is stored in metaphacts and linked
to semantic knowledge sources such as process models, structure mod-
els, business process models, and user models. Subsequently, automatic
maintenance and recovery processes that involve human experts are trig-
gered.

Keywords: Cyber Physical System (CPS), Human-in-the-loop, Indus-
try 4.0, Smart Factory, Case Study, Handwriting Recognition, Gesture
Recognition, Anomaly Handling, Business Process Model and Notation
(BPMN), Anomaly Detection, Semantic Knowledge Base

1 Introduction

Human-computer interaction for control processes is one of the key develop-
ment issues in cyber-physical systems (CPS) [6]. Especially in industrial set-
tings, incorporating workers in the manufacturing process as humans-in-the-loop
is promising for decision-making [5,27]. Further, e�cient and secure manufac-
turing requires the standardisation of business processes [13].



In this paper, we propose a cyber-physical system (CPS) architecture for
smart factories enabling a real-time semantic data analysis from multiple sources,
which is controlled by a standardised BPMN model (see also [16]). We evaluate
our method in the use case of gas turbine maintenance. Maintaining industrial
facilities is of high relevance—it helps to significantly reduce operating costs and
to improve productivity of the plant operations and the quality of the prod-
uct [1]. However, as of today, the integration of production and maintenance
processes is only realised and implemented in a very limited way. With the in-
crease in automation, electrification, and digitalisation of plants, more and more
monitoring and maintenance devices and applications in cyber-physical environ-
ments are emerging. In this way, single parts or components of plants are serviced
by dedicated predictive maintenance applications. In general, those techniques
should complement preventive maintenance strategies (i.e., strategies including
predetermined periodic basis components of the plant that are taken o↵-line for
inspection.) In addition, due to the complexity of the underlying processes and
operations, employees that are most experienced with handling the machines and
plant components are no longer actively involved in the maintenance process. In
summary, the following shortcomings in maintenance applications on plants at
various levels can be observed3:

– The knowledge and expertise of production employees is no longer
integrated in an e↵ective manner in the maintenance process.

– Many separate monitoring applications provide important insights about
plant components. However, often they do not include a comprehensive view
on the plant performance.

– The semantic knowledge about the plant structure and its basic principles
are not incorporated into the maintenance processes.

With our CPS architecture, we provide an approach to overcome these lim-
itations. It supports a seamless alignment of human-generated expert know-
how with machine-generated maintenance know-how in a semantically consistent
manner for improving the analytic-based maintenance application. In particular
our system enables: (1) a seamless integration and processing of expert knowl-
edge by smart pen technology (directly transferred from [23,21,22]); (2) mod-
elling and executing of workflow knowledge in form of BPMN [15] models; (3)
incorporating structural knowledge about the plant and its operations by means
of a semantic model (semantic modelling/storage of components, products, and
reports in metaphacts); and (4) usage of this integrated data source as input for
analytical applications aiming to produce new valuable insights and to trigger
automatically recommended actions.

2 Related Work

A general overview for the current status and the latest advancement of CPS
in manufacturing is given in Wang et al. [26] and Sonntag et al. [24]. Herman

3 We extracted these shortcomings from interviews with domain experts.



et al. [7] analysed literature on Industry 4.0 scenarios, which include CPS, and
extracted essential design principles for such systems. Our system complies with
Interoperability by incorporating humans-in-the-loop, Virtualisation by mod-
elling processes with BPMN and with Decentralisation, Real-time capabilities,
Service orientation and Modularity given by our flexible smart factories server
infrastructure. Wang et al. [25] introduce an Intelligent Predictive Maintenance
(IPdM) system targeting zero-defect manufacturing in smart factories. They
include preventive and predictive maintenance approaches [1], but lack from in-
corporating the workers that can provide valuable inputs. Zamfirescu et al. [27]
introduce a reference model for anthropocentric cyber-physical systems (ACPS).
They consider the worker as a composite factor of a general hybrid manufacturing
system (“human-in-the-loop”). We adhere to the “human-in-the-loop” principle
and build the platform for a holistic IPdM system in our maintenance scenario.

Petersen et al. [17] present a semantic model for representing smart factories
as ontology instances. However, their system is limited to monitoring applica-
tions. In contrast, our system allows us to trigger relevant actions upon monitor-
ing events. Mayer et al. [14] propose the Open Semantic Framework and show
its utility for increasing worker safety in industrial settings. Both publications
rely on standards concerning the semantic knowledge representation, but lack a
standardisation for the business processes in which they are integrated. A very
good and comprehensive overview for industrial standards mapped to the ISA95
model4 is given in Lu et al. [13]. Furthermore, Lee et al. [12] propose a guide-
line for implementing Industry 4.0-based manufacturing systems similar to the
ISA95 model and defined a sequential workflow order of implementation for two
major functional components of a CPS. Our case study is an ISA95 model level
3, similar to Panfilenko et al. [16].

3 Technical Architecture

Our goal is to implement a system architecture that allows us to integrate, align,
analyse, and manage machine and human generated data to produce faster re-
sponse times for anomaly recovery. The most important aspect of our archi-
tecture is its flexibility with respect to the attached software components and
hardware devices facilitating fast adoption to di↵erent industrial use cases. We
developed a decentralised service-oriented architecture with the Smart Facto-
ries Server at its core (see figure 1). It serves as request proxy (services can
sign up; client requests are processed accordingly) and event broadcasting node
(data publisher and subscriber can register). The communication is based on
XML-RPC [11]. This approach enables an easy integration of a BPMN engine
managing the business processes and a semantic knowledge base providing the
necessary concepts of the domain. We use the Camunda5 BPMN workflow server
and the metaphactory platform of metaphacts6. Further, it allows for a seamless

4 www.isa.org
5 Camunda, https://camunda.org/
6 Metaphacts, http://www.metaphacts.com
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integration of any user input device and machine sensor streams as data pub-
lisher. In particular, we integrated smart pens with networking capabilities and
machine sensors. The following section provides further details about a concrete
use case implementation.

Digital Manufacturing Architecture

Metaphacts Server
Domain model &

Instance base

Smart Factories
Server

SmartPen Server
HWR & Gesture Analysis

BPMN Server
Maintenance process

model

paper form

Fig. 1. Smart factories server architecture, see the use case video on the GALLERY
tab: http://dfki.de/smartfactories

4 Use Case

Anomaly detection and recovery is of high relevance in manufacturing as failures
lead to high cost. In industrial environments, anomalies are usually detected by
workers or technicians that are familiar with the production facility; this includes
visitors from other organisational units with technical knowledge. Another ap-
proach is the automated detection of anomalies through automatic analysis of
data from sensors monitoring the production processes. However, such systems
are often constrained to a single component whereas a failure would propagate
to interconnected components, for example in a production line. Due to the high
flexibility end extensibility of our CPS architecture, it can be applied for im-
proving these and multiple other scenarios. In this section, we describe the use
case of gas turbine maintenance and emphasise the potential of our architecture
with a focus on human-in-the-loop error recovery.

4.1 Gas Turbine Maintenance

This business scenario focuses on the operation and maintenance of gas turbines,
in particular, we considered the Siemens gas turbine (SGT-750) as reference ob-
ject. We focussed on seamlessly incorporating workers in the maintenance process



(human-in-the-loop) without the need for workers to change their daily practice.
The maintenance processes, which were elaborated in extensive expert inter-
views, are modelled with BPMN (see figure 2). This standardisation is central
to our approach. To this end, a BPMN engine manages all incidents based on
this model as indicated in figure 1. The model further includes the integration of
humans into the workflow. The human-in-the-loop functionality allows a worker
to fill in paper-based incident reports with a smart pen, or to call a technician
in the case of high risk incidents. A detailed description of all components is
provided next.

4.2 Implementation

In this section we describe the core aspects, major components and function-
alities of our implementations for the gas turbine maintenance use case. These
include the standardised BPMN workflow models, the pen-based incident report-
ing for integrating humans-in-the-loop and the underlying semantic modelling
and knowledge representation (see figure 1). The target is to automatically pro-
cess incident reports and, depending on how critical the case is, to intervene
in real-time by alerting experts. The individual software components were de-
signed and implemented in close cooperation with domain experts, especially
concerning the BPMN-based workflow and the semantic models. We illustrate
one possible implementation of our general CPS architecture.

Gas Turbine Maintenance BPMN 2.0 Model The maintenance processes
including the handling of incident reports are realised as BPMN process models,
which were elaborated in expert interviews. We use the Camunda BPM server
for automatically mapping reported incidents to maintenance steps of the gas
turbine in real-time (see figure 2). The process can be explained as follows: first,
an incident is observed in a facility, which yields a filled report modelled as a
BPMN event. It is evaluated by our classification components, and a report page
is inserted into the metaphacts knowledge base. Further, “proceed to further
processing” keeps record and passes the incident on to the next decision point.
Eventually, “compute risk” calls a risk level assessment (in the current model
high and low). Depending on the risk level, user tasks (human-in-the-loop) and
automated activities are initiated. If the risk is low, the Remote Diagnostic
Center (RDC) shall be notified via email and the production technician, who
can manually adjust the configuration, is informed. In case of a high risk, a
service expert is called and the RDC department receives an alert. A use case
video helps to understand this process of anomaly detection within a distributed
digital manufacturing architecture.7

Smart Pen Technology In the industrial context, the interaction with pen
and paper forms is well known to the users and fits into established business pro-
cesses, e.g., documentation, maintenance, repair, or reporting processes. Thus,

7 Smart Factories, http://dfki.de/smartfactories/?page_id=82
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Fig. 2. Gas Turbine Workflow Model in BPMN 2.0

introducing the digital pen technology for these tasks requires only low training
e↵ort and cost. The major advantage of smart pens is that the acquired data
can be processed and integrated in real-time into corresponding software systems
which enables continuous knowledge acquisition with worst-case execution time
(WCET) capabilities. We use the highly innovative and networked Neo Smartpen
N2 facilitating digital user interaction on specially prepared papers [20]. These
special paper forms contain an almost invisible grid structure for identification
of the form and localisation of the pen strokes. A filled paper form is immedi-
ately synchronised via Bluetooth or Wifi with the screen of an iPhone or tablet
computer (DFKI provides additional streaming technology). On confirmation
by the user, the raw data is sent to the SmartPen Server which is responsible
for detecting the form and for managing the handwriting and stroke gesture
analysis. The handwriting recognition and gesture/shape analysis is performed
by using a commercial software library integrated into our system architecture
(myscript.com).

Preparation of Domain Specific Paper Sheets The individual data fields
have been derived by intensive discussion with our technology partner Siemens
and can be described as follows: author and company name are important data
for further incident tracing and recommendation for task assignments; the iden-
tity of the author influences the reliability of provided risk estimates, e.g., tech-
nicians know the production line from daily work while service experts possess a
much deeper knowledge of the technology; incident type and description provides
a simple classification; potential risk gives subjective user risk assessment. The
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Fig. 3. Specification of the semantics of the gas turbine maintenance report



graphical sketch representation is used to enable the workers to easily locate the
incident by marking it on the printed illustration of the machine. The layout of
the sheet has been determined in close cooperation with layout designers and
experts of the application domain. We identified checkboxes, handwritten text,
and encircling or marking components on a symbolic sketch with a pen gesture
as e�cient input methods. Figure 3 shows the gas turbine maintenance sheet and
the individual regions for handwriting input on it. The semantics of the form
is defined by the geometric location, the input type and the underlying domain
and report model of all fields (highlighted in red). The gas turbine maintenance
report includes the following semantic regions:

– TEXT: ”plant identifier”, ”author”, ”company”, ”incident-description”,
”potential-cause”, ”signature”

– CHECKBOX: ”job-technician”, ”job-expert”, ”job-other”,
”incident-noise”, ”incident-observation”, ”incident-smell”, ”incident-other”,
”risk-high”, ”risk-low”, ”risk-unknown”,

– GESTURE: ”auxiliary systems”, ”gas turbine - compressor”, ”gas turbine -
combustion chamber”, ”gas turbine - turbine”, ”gear box”, ”generator”

Semantic Knowledge Base—Metaphacts We use metaphacts as underlying
semantic knowledge base which is based on the standards OWL for modelling
and HTML5 for visualisation. It incorporates a semantic database Blazegraph8

for storing data in terms of the Resource Description Framework (RDF)[9] triples
(triplestore). A wiki that presents data to end users (e.g., incident reports) is con-
nected to the database by the SPARQL Protocol and the RDF Query Language
(SPARQL) [19]. A core advantage of metaphacts is this semantic representation
of data and the presentation that is based on the underlying concept models.
This allows for a more e�cient development of semantic applications compared
to similar products, e.g., to the Semantic MediaWiki (SMW) [10] that was used
by Panfilenko et al. [16]. The SMW extends MediaWiki with simple semantic
capabilities, but remains a wiki which focusses on web pages.

We semantically defined our maintenance architecture in metaphacts with
a specific procedure model for anomaly detection and incident reporting. It is
integrated into all related plant structures and I2MSteel9 knowledge models.
There are generic templates for anomaly instances and incident reports specify-
ing generic concepts without defining the details. The specification of the details
(e.g., presentation type, form structure, relevant properties) is done for the con-
crete subtypes, e.g., a company, a specific plant or production components and
machines.

In metaphacts, existing OWL models (created with Protégé for example)
can be uploaded to the metaphactory and templates can be developed via a
browser interface. For uploading instances to the knowledge base (i.e., the seman-
tic data from a digitised paper report) we use the corresponding RDF SPARQL

8 Blazegraph, https://www.blazegraph.com/
9 I2MSteel, https://www.cetic.be/I2MSTEEL
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commands transmitted via metaphacts’ REST interface and the standard tur-
tle/TTL syntax (see the example below). The ttl description includes a header
defining the namespace prefixes and the semantic data triples that were ex-
tracted from the incident report. The corresponding PDF document is uploaded
to the knowledge base as reference and integrated into the resulting incident
report page (see figure 4). Here’s an Turtle/TTL example:

@prefix: <http://siemens.com/energy/vocab/gasTurbineExample#>.

@prefix gtd: <http://siemens.com/energy/schemas/gasturbineDomain#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix xml: <http://www.w3.org/XML/1998/namespace#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix ppex: <http://siemens.com/energy/vocab/gasTurbineExample#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix report: <http://siemens.com/reporting/schemas/generic#>.

@base <http://siemens.com/energy/vocab/gasTurbineExample>.

### http://siemens.com/energy/vocab/gasTurbineExample#TestReport_02:TestReport_02

rdf:type report:IncidentReport, owl:NamedIndividual;

rdfs:label "Gas Turbine Report Incident 170314_100508";

report:incidentType "Noise";

report:hasDate "2017-03-14 10:05:08";

report:authorsCompany "Siemens AG";

report:potentialRisk "unknown";

report:authorType "Other";

report:potentialCause "bearings worn out?";

report:author "Schneider";

rdfs:comment "rumbles very much";

report:locatedAtComponent:Generator01;

report:pdflink "/assets/reports/gasturbine/form-44f106ed-f262-4122-941c-b0173160ca8b.pdf".

5 Maintenance Case Study

One case study with domain experts is presented to illustrate the usefulness of
our service-oriented CPS architecture for industrial applications. In this case
study we explore the impact of our approach on the e�ciency of maintenance
processes in the gas turbine use case. Through interviews and case studies with
domain experts, we iteratively designed and realised a seamless integration of
workers in the model-driven and standardised workflow using smart pen technol-
ogy. Incident reports are automatically analysed in real-time based on semantic
domain knowledge which initiated proper prevention or recovery activities. We
investigate the strengths and limitations of our architecture.

Maintaining industrial facilities is of great importance for reducing cost and
for improving product quality. In contrast, state-of-the-art processes in many
factories include simple pen and paper forms for incident reporting inducing long
processing and thus reaction times. In addition, these reports cannot be used
for analysing failures and for extracting their causes. This case study is based
on a qualitative assessment of our system extracted from interviews with expert
users that tested it in the gas turbine maintenance use case. Key advantages
that were reported are:

– Incident reports are immediately digitised, aligned and integrated into the
semantic knowledge base (digitalisation) within a few seconds which enables:



Fig. 4. Incident Report in Metaphacts



• Immediate data analysis (WCET) and over time, e.g., augmented with
sensor data

• Very fast response times
• Intuitive and clear visualisation by filtering/searching for incidents with
certain criteria (e.g., component, time interval, incident type or keywords
within comments)

– Easy alignment to other business processes due to standardisation with
BPMN (well established in the industrial domain)

– Low overhead concerning change management as workers are already familiar
with pen and paper

Interestingly, in comparison to tablet-based applications, the pen based ap-
plication was preferred as it was easier to handle and use in the working envi-
ronment. The experts also mentioned the potential for other industries, such as
automotive, that are still relying on analog paper-based reporting. In general, we
can state that the future potential of these applications has been recognised by
our expert partners in a very positive manner and in nearly all discussions, they
mentioned further scenarios and processes that could benefit from this technol-
ogy.

6 Conclusion and Outlook

We proposed a service-oriented architecture for seamlessly integrating workers
in industrial cyber-physical production environments. This enables automatic
data processing based on standardised models (BPMN and semantic concepts).
A case study with domain experts (maintenance processes for a gas turbine)
has shown the usefulness of our approach. It also demonstrated the flexibility
of our architecture and thus its potential for improving e�ciency in many other
Industry 4.0 use cases (such as the hot rolling mill). The tools (Camunda BPM
server and metaphacts) and hand writing input modes used for implementing
this use case turned out to be suitable candidates for further developments in
similar domains.

The second use case is about the hot rolling mill plant in Eisenhüttenstadt [8].
The I2MSteel10 project (intelligent and integrated manufacturing in steel pro-
duction) has set up a comprehensive knowledge base for this kind of facility.
It contains a broad model library for steel manufacturing processes including
product models, process models, structure models, measurement models, or-
der models, and storage models. This practical application scenario for the hot
rolling mill in Eisenhüttenstadt combines two anomaly treatment approaches:
(1) the manual (human-in-the-loop) incident reporting by using a smart pen,
and (2) the automatic processing of a Semantic Sensor Network (SSN) compli-
ant to W3C SSN Ontology [4]. The approach for pen-based incident reporting
will be similar to the gas turbine use case. The automated anomaly detection

10 I2MSteel, https://www.cetic.be/I2MSTEEL
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relies on a collection of smart sensors that are placed in the production environ-
ment, e.g., attached to machines, products, or the production environment. All
sensors are represented in a semantically modelled sensor network (SSN), which
describes the sensor capabilities, their measurement processes, and typical ob-
servations. Based on a corresponding reasoning mechanism, inconsistent sensor
values, broken sensors, or sensor values exceeding predefined limits are immedi-
ately detected as anomalies. These can then be integrated into the database and
immediately processed at detection time. Depending on the underlying anomaly
model, recovery actions can be triggered automatically.

Our extensible CPS platform suggests the integration of further input chan-
nels. Prange et al. proposed pen-based form filling using tablet computers in
the medical domain [18]. It would be interesting to transfer their approach and
evaluate the utility and usability in the industrial context. Further, we would
like to investigate speech dialogues with gaze-based deictic reference resolution
similar to [3] and combine speech with gaze-guided object classification [2] to
map gaze to semantic concepts. Another promising direction is the integration
of smart environmental sensors (SSN) for predictive maintenance. Multimodal
multisensor input channels and corresponding recovery actions could be used
to train deep networks for holistic and automatic business process modelling as
suggested in [24].
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