
SEAMLESS INTEGRATION OF RECONFIGURABLE HARDWARE INTO THE ROBOTIC
DEVELOPMENT PROCESS

Moritz Schilling

DFKI GmbH, Robert-Hooke-Str. 5, 28359 Bremen, Germany

TEC-MMA, ESTEC, 2200 AG Noordwijk, The Netherlands

ABSTRACT

Modern robotic development frameworks have agreed
upon the model-based, component-centric software de-
velopment approach. Composing robotic control soft-
ware has become an easier and less error-prone task.
While there is a model for the software architecture and
fairly recently a model for the kinematic structure of
robotic systems, models for other aspects are missing.
This paper will focus on the model of heterogeneous
computational resources and their interconnection within
a robot and outline how tools make use of the models
to generate code skeletons in different languages, find
compatible implementations of algorithms given a spe-
cific target and to map a network of software to a network
of hardware components.

1. INTRODUCTION

Robotic systems are becoming more and more complex
either in mechanical, electronic or software domain. Re-
garding electronic and software domain this complexity
mainly arises from the composition of different hetero-
geneous processing devices and their interconnections.
How this heterogeneity in hardware can be transformed
to homogeneity in the software domain has gained much
attention in research - but mostly outside of the robotics
community. As robotic systems are also distributed het-
erogeneous embedded systems the development of robot
control systems will benefit from these research efforts.
For example, the development process itself will be ac-
celerated, the usage of resources will be more efficient
and/or the robustness of the system against failure will
increase.

While there has been much progress in unifying the
programmability of networks of heterogeneous, conven-
tional computing devices, reconfigurable hardware de-
vices (e.g. Field Programmable Gate Arrays) still have
to be treated separately. How such devices can be seam-
lessly incorporated into robotic development frameworks
which have been developed to improve the re-usability
of software and to ease the programming of robotic sys-

tems is the main focus of this research. Such a frame-
work shall be enabled to make use of the advantages of
reconfigurable hardware, while maintaining system sta-
bility, integrity and predictability.

In the following a review of the state of the art with re-
spect to the programming of heterogeneous processing
devices in embedded systems like robots is presented.
Besides robotic development frameworks a look into
other related areas of research is taken as well.

The considered frameworks have been selected either be-
cause of their popularity amongst the robotics community
or because they exhibit an outstanding feature:

ROCK the Robot COnstruction Kit which is mostly
used by DFKI and ESTEC and runs on robots like
SpaceClimber, SpaceBot or Asguard[ROC15],

BG the Behaviour Graphs which have been recently de-
veloped at DFKI to model the reactive layer of
robots like SpaceClimber or Charlie[Lan12],

ADE a framework from the University of Notre Dame
which has been used to control the famous Nao
robots[Sch],

GenoM3 the Generator of Modules tool-set developed
at LAAS-CNRS and is used to design real-time
software architectures in the robotic and space
domain[LC15],

ROS the Robot Operating System which is one of
the most popular frameworks in the robotics
community[ROS15], and

LabView which is not a pure robot development frame-
work but has been used for this purpose[Mue11].

These frameworks are analysed with respect to their mod-
elling capabilities in the relevant domains of software and
computational hardware, the portability of the generated
deployments which affects heterogeneity and the levels
of transparency which affect the possibility to distribute
a given application throughout the system.

Modelling Capabilities The frameworks are analysed
with respect to their modelling capabilities of sensors,
actuators, computational resources and network topol-
ogy. These capabilities are essential for distributed sys-
tems support. Other important modelling capabilities like
mechanical structure, kinematics etc. are not considered
here.

Portability Because this project is about distributed,
heterogeneous systems, the frameworks have to be anal-
ysed with respect to their support of different processing
devices. Hereby, it is of special interest if the frameworks
not only support conventional processing devices - like
CPUs or µCs - but also support reconfigurable hardware,
namely FPGAs.

Transparency Transparency specifies which imple-
mentation details are hidden from the user such that
he/she doesn’t need to care about.

Communication transparency hides the details of data
transport from the user,

Transaction transparency hides the coordination of de-
pendent components from the user,

Location transparency hides the location of a compo-
nent in the system from the user,

Migration transparency hides the relocation of compo-
nents in execution from the user,

Replication transparency hides the cloning of compo-
nents from the user,

Ressource transparency hides the resource management
from the user,

Persistence transparency ensures that the cre-
ation/destruction of components do not affect
independent components, whereas

Failure transparency hides the failure and recovery of
components during execution.

A detailed and formal description of these transparency
concepts can be found at [RM-15].

Transaction transparency is investigated in more detail
with respect to the execution semantics which specifies
under what conditions a component is to be executed. At
the one extreme there are execution models which make
the constructable applications decidable and determinis-
tic while on the other end there are those which make
them undecidable and non-deterministic. To get a cate-
gorization, three well-known models have been chosen:

SDF Static Data Flow (decidable and deterministic)

KPN Kahn Process Networks (undecidable and deter-
ministic)

Figure 1. The relationship between verifiability and ex-
pressiveness for a selection of computational models.
BDF stands for Boolean Dataflow and extends the SDF
domain with data-dependent routing capabilities. Based
on [Bas].

CPN Coloured Petri Nets (undecidable and non-
deterministic)

The execution model directly influences the possibility
of verification and the expressiveness of the component
networks. The more expressive the less verifiable such a
network becomes. Figure 1 visualizes this relationship.

Evaluation ROCK components comprise an interface
consisting of inputs, outputs and parameters (proper-
ties) with data types derived from C++ types. Further-
more, components have a life-cycle which is realized by
a finite-state-machine whose state is published to the en-
vironment and can be controlled by the user. Therefore
there exist mechanisms to automatically recover from
failure by monitoring the state of components. Seman-
tics roughly follow the KPN model; components are con-
nected peer-to-peer through channels and are accessed
by read/write functions. However, the user can (but
shouldn’t) circumvent the KPN model because emptiness
of a channel can be tested. ROCK uses message queues
or CORBA for data transport dependent on the location
of the interacting components. Components can be de-
ployed to systems with conventional processing devices
capable of hosting a UNIX OS.

Behaviour Graph components (nodes) exhibit inputs and
outputs with C float type. The granularity of the atomic
components is fine-grained; they are pure mathematical
operators (like add, multiply etc.). As such, their seman-
tics follow the SDF model. Only if all of their operands
are available operations are executed. Currently, be-
haviour graphs can only be executed on CPUs or µCs and
only the coordination of the components is hidden from
the user.

ADE components have four types of interface links,

• activation links,

• observation links,

• process control links, and

• component links.

Activation links are used to exchange data between com-
ponents, observation links pass state information to other
components while process control links can change state,
and component links allow components to create new
components. Because of these dynamic properties, e.g.
the creation and interconnection of components during
run-time, the semantics of a component follow the CPN
model in which non-determinism is possible. Communi-
cation relies on registries, servers and clients and is im-
plemented in JAVA language as well as the components
itself. Therefore, an ADE component needs a JAVA vir-
tual machine on top of conventional processing device
(and possibly an OS). This virtualisation and the com-
ponent link mechanism provide replication transparency.
ADE also models computational structure of the system
in form of virtual machines connected by communication
links.

A GenoM3 component consists of inputs and outputs of
data types defined in the Interface Description Language
of CORBA. Additionally, it defines events which are used
e.g. to change state of the component. The component
behaviour is directly modeled as a Petri Net; so the se-
mantics is of the CPN domain. GenoM3 uses middleware
templates to specify the glue code necessary for com-
munication, distribution etc. Therefore, all other prop-
erties strongly depend on these templates. For example, a
VHDL template could be developed which would enable
GenoM to support reconfigurable hardware. However, to
the knowledge of the author such templates do not yet
exist.

ROS components do not have the notion of inputs and
outputs but use the concept of topics. Topics are anony-
mous channels to which a ROS component can subscribe
to or to which it can publish information. As such, com-
ponents are not directly coupled as in channel-based com-
ponent networks. Instead, they form a component net-
work at run-time. This process enables non-deterministic
behavior because it is not known which component is
connected to which of the others beforehand. The seman-
tics are therefore of the CPN domain. As most of the pre-
viously presented frameworks, ROS also provides glue
code for communication which is based on the TCP/IP
stack. The components are deployed and executed only
on CPUs hosting an OS.

Although LabView is not a robotic development frame-
work of its own, it has been used for this purpose. The
components of LabView follow the SDF semantics like
those of the Behaviour Graph framework. But the avail-
able components allow much more than purely mathe-
matical operators; there are also components which ex-
hibit data-dependent behaviour like loops and if-then-else
structures. LabView also provides the necessary glue
code to let the components interact and it is the only

framework considered here which is able to deploy them
to FPGAs. However it remains unclear if distributed
operation in heterogeneous processing networks is sup-
ported by the models and the tool-chain.

Table 1 summarizes the properties of the different frame-
works. Most frameworks exhibit a very powerful and ex-
pressive component model while only ROCK, Behaviour
Graphs and LabView use a more restrictive one. As has
been stated, more expressiveness comes at the price of
less verifiability. However, the necessary tools for veri-
fication are still missing in all of the frameworks. When
it comes to critical applications like space robotics this
aspect can not be neglected.

Only one framework supports different kinds of process-
ing devices and (therefore) different programming lan-
guages. Modern robots consist of various processing de-
vices hosting either a CPU, a microcontroller, an FPGA
or combination of them. It is therefore essential to allow
the programming of these devices and the data exchange
within the framework.

To be able to distribute a given application to more than
one target in a processing network the topology of it has
to be modeled as well. To the knowledge of the author
only ADE considers such a model for distributing appli-
cations. Furthermore, ADE allows dynamical redistribu-
tion during run-time which is a prerequisite to guarantee
robustness against failures and load balancing.

None of the frameworks exhibits all of the properties nec-
essary for the programming of heterogeneous and dis-
tributed robotic systems which are

• distributed computation

• verifiability

• heterogeneous processing networks

• dynamic reprogramming (not reconfiguration via
parameter updates)

2. DISTRIBUTED BEHAVIOR GRAPHS

The behavior graph formalism has been chosen as a first
candidate to show the feasibility of wholistic program-
ming of heterogeneous robots. Because of their sim-
plicity, the basic building blocks or atomic components
are easily transferable to the FPGA-domain. The atomic
components of the behavior graphs are

• N-ary reduction operations like Σ,Π, ||.||2
• Trigonometric operations ranging from sin(x) to
atan2(y, x)

• Other transcendental operations like log(x) and xy

• Ternary if operation (C-syntax: x == c ? a : b)

Framework Models Portability Transparency
ROCK Sensors, Actuators CPU & OS Communication, Transaction, Location, Resource

Persistence, Failure
Behavior Graphs CPU,µC Transaction
ADE Sensors, Actuators CPU & JVM Communication, Transaction, Location, Resource

Resources, Topology Persistence, Failure, Replication
GenoM3 Depends Depends
ROS Sensors, Actuators CPU & OS Communication, Transaction, Location, Resource
LabView Sensors, Actuators CPU, FPGA Communication, Transaction

Table 1. Evaluation of the different frameworks.

(a) ... as a CAD model

(b) ... and a possible model of its computational infrastructure

Figure 2. A rover ...

Through composition, more complex mathematical oper-
ators can be formed from the basic operations. However,
the formalism is not Turing-complete, because WHILE
loops can not be constructed given the synchronous
dataflow like semantics.

To model the robot hardware, a library called hwgraph for
constructing and representing computational hardware as
graphs has been developed. These hardware graphs cur-
rently support hierarchy, heterogeneity of processing ele-
ments and interfaces and point-to-point connections. It
has been designed such that other topologies, process-
ing elements and interfaces can be added to the model
easily. Figure 2 shows a rover as a CAD model and a
possible computational infrastructure modelled with this
library. There is a central node Control of type CPU and
four joints of type FPGA, each connected to the central
node via a point-to-point connection of NDLCom inter-
faces (for details refer to [MZS16]).

Let the left part of figure 3 be a behavior graph modelling
the desired control of the presented rover. In order to
exploit all computational resources and to keep latencies
of control loops as short as possible, the constituents of
the control have to be assigned to the processing units
such that

• inputs and outputs in software match data sources
and sinks in the hardware model,

• computational resources are shared suitably
amongst the parts of the software, and

• communication between processing units is kept at
a minimum.

These constraints are modeled by cost functions which

1. have to be positive semi-definite,

2. are target dependent in general, and

3. must not be dependent on the order in which opera-
tions have been assigned to targets.

Figure 3 shows how a partition/sub-graph (a group of
software parts) is formed and mapped to an execution
target. In this example only target-independent cost func-
tions have been used. One cost function increases with
the number of entering or leaving edges to/from a sub-
graph, one increases with the total number of software
nodes a sub-graph contains. Partitioning and mapping is
performed in two steps: the first is to find a good ini-
tial mapping, the second is to optimize this mapping if
desired. The greedy k-way graph partitioning algorithm
presented in [JSB00] has been used to find such an ini-
tial mapping. Afterwards optimization algorithms can be
applied which check if either the re-assignment of sin-
gle nodes or the permutation of whole partitions lead to
global cost reduction.

Given a behavior graph and a hardware graph the men-
tioned algorithm produces a sub-graph for each execution
unit - these contain all the nodes which are about to be ex-
ecuted on the same device. The resulting mapping and the
different types of the execution units are then used by a
code generator to either produce C code for conventional
targets or VHDL code for FPGAs. The generated code
as well as routing tables for the communication layer are
stored in a dictionary. Source code templates for differ-
ent devices are then filled with the information from the
dictionary. These templates cover the instantiation of the
behavior graph itself (most inner layer), the separation of
internal and external data sources, the de-serialization of
incoming data packets and the serialization of outgoing
packets, the triggering of the execution/evaluation of the

Figure 3. The behavior graph on the left is partitioned (Nodes 1,2,3 to Node 2) to a graph of sub-graphs in the upper right.
One of these sub-graphs has been formed for and mapped to an FPGA (Node FLJoint in the lower right). Partitioning
and mapping are dependent because the cost functions are target dependent in general.

graph (middle layer), the setup of all external interfaces
according to the hardware model, the initialisation of the
routing layer, and the reception/transmission of behavior
graph data packets.

3. PRELIMINARY RESULTS

The first experiments have been performed using a con-
ventional x86-based personal computer (PC), a Xilinx
Spartan6 based and a ARM7 based printed circuit board
(PCB) which are interconnected in a chain. Figure 5
shows photographs of the PCBs and the device intercon-
nection. The edges denote communication links for data
exchange via the NDLCom protocol which has been de-
veloped by DFKI and is used in various robotic systems.

The software which has been used for testing is the be-
havior graph shown on the left of figure 4. It resembles an
audio processing network which implements the famous
phaser effect used by C3PO in the Star Wars movies. It
mainly consists of an eight stage allpass filter network
with feedback. The inner workings of the allpass filters
are shown on the right hand side of the figure; the audio
input is split into a lowpass (shown in the upper right) fil-
tered and a non-filtered stream which are then fed into an
(ideal) operational amplifier (shown in the lower right).

To find out about the transfer function of the network, a
signal with a uniform distribution of frequencies or white
noise respectively is streamed into it. The filtered signal
should exhibit three sharp peaks and four notches in the
spectrum. Figure 6 is showing, that this can be observed
in the frequency range below 5 kHz. The left figure rep-
resents the spectrum of the undistorted white noise, while
the right shows the filtered signal. The peaks have been
highlighted by red lines.

4. CONCLUSIONS & OUTLOOK

The distributed behavior graph framework is able to gen-
erate and distribute networks of simple, fixed mathemati-
cal operators to a network of distributed processing units.
But to be useful for general purpose application aside
from signal processing the instruction set itself should be
adaptable either to store already generated sub-graphs,
to allow more powerful, possibly non-deterministic op-
erators or multiple implementations for the same algo-
rithm/instruction.

The behavior graph model and the hardware model are
based on graphs but there is no underlying model (yet)
which allows both modelling domains to be easily incor-
porated into higher-level domains (such as the mapping
domain). A fundamental model would also enable the
possibility of extending the different views on a robotic
system by e.g. adding models of the electrical wiring or
the kinematic structure.

It is planned to utilize ontologies to serve as the basis for
the different domains. This will also enable the frame-
work to ensure certain constraints between e.g. the inter-
connection of devices or software components.

REFERENCES

[Bas] Twan Basten. Kahn process networks and a
reactive extension. Summer School on Models
for Embedded Signal Processing Systems.

[JSB00] Sachin Jain, Chaitanya Swamy, and K. Balaji.
Greedy algorithms for k-way graph partition-
ing, 2000.

[Lan12] Malte Langosz. A behavior-based library for
locomotion control of kinematically complex
robots. In Proceedings of the 16th Interna-
tional Conference on Climbing and Walking

(a) Behavior graph of a phaser. (b) The subgraphs are allpass
filters.

(c) The allpass filter
uses a lowpass ...

(d) ... and an ideal opamp.

Figure 4. Overview of the behavior graph used for test-
ing.

Robots and the Support Technologies for Mo-
bile Machines, 2012.

[LC15] LAAS-CNRS. Genom3, 2015.
[Mue11] Karl Muecke. A Distributed, Heteroge-

neous, Target-Optimized Operating System for
a Multi-robot Search and Rescue Application.
Springer Verlag Berlin Heidelberg, 2011.

[MZS16] Tobias Stark Martin Zenses, Peter Kampmann
and Moritz Schilling. Ndlcom: Simple proto-
col for heterogeneous embedded communica-
tion networks. In Proceedings of the Embed-
ded World Exhibition & Conference, 2016.

[RM-15] Reference model of open distributed process-
ing, 2015.

[ROC15] Robot construction kit, 2015.
[ROS15] Robot operating system, 2015.

[Sch] Matthias Scheutz. Ade - steps towards a dis-
tributed development and runtime environment

Figure 5. The hardware setup for the preliminary tests
consisting of a standard x86 PC (not shown explicitely),
an Xilinx Spartan6 based and an ARM7 based PCB con-
nected in series.

for complex robotic agent architectures. Uni-
versity of Notre Dame.

(a) Spectrum of original white noise test signal

(b) Spectrum of filtered signal

Figure 6. Spectra of original and filtered signal over time.
In the filtered signal the peaks of the transfer function can
be observed for signals below 5 kHz.

