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Abstract. The analysis of manufacturing processes through process
mining requires meaningful log data. Regarding worker activities, this
data is either sparse or costly to gather. The primary objective of this
paper is the implementation and evaluation of a system that detects,
monitors and logs such worker activities and generates meaningful event
logs. The system is light-weight regarding its setup and convenient for
instrumenting assembly workstations in job shop manufacturing for tem-
porary observations. In a study, twelve participants assembled two dif-
ferent product variants in a laboratory setting. The sensor events were
compared to video annotations. The optical detection of grasping mate-
rial by RGB cameras delivered a Median F-score of 0.83. The RGB+D
depth camera delivered only a Median F-score of 0.56 due to occlusion.
The implemented activity detection proofs the concept of process elic-
itation and prepares process mining. In future studies we will optimize
the sensor setting and focus on anomaly detection.

Keywords: Process elicitation, activity recognition, manufacturing.

1 Introduction

Workers retain flexibility in semi-automated assembly systems becoming more
and more complex. Especially during unforeseen occurrences or incidents a large
degree of flexibility during assembly is required, e.g., for small and medium-sized
companies [5]. Production planners need accurate information about the assem-
bly process to make realistic assumptions during the plant design or in the oper-
ational phase balancing work load between production lines. The manual work
in manufacturing processes is analyzed using predetermined motion time sys-
tems, such as Methods-Time Measurement (MTM), cf. mtm-international.org,
and REFA, cf. refa.de. In MTM, a person documents all motions in assembly
tasks under different plant settings and looks up the standard time for relevant
motions in the MTM catalogue. In REFA, organization-specific catalogues are
created timing each motion with a stop watch.

Process mining from Business Process Management (BPM) bridges the gap
between data and process science [1]. Process mining is grounded on meaningful
log data. Especially regarding manual activities in BPM this data is sparse. Thus,
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we suggest a process elicitation system that tracks and pre-processes manual ac-
tivities during assembly processes at workstations in job shop manufacturing.
Today, the elicitation of worker motions in manufacturing requires an expensive
manual procedure. Activity recognition in combination with existing sensors has
the potential to increase efficiency and effectiveness during this process by deliv-
ering detailed information about manual activities. Sensor data is pre-processed
and filtered by applying Complex Event Processing (CEP), efficiently handling
huge amounts of heterogeneous data. Operative work steps are integrated into
process models in compliance with the standards of formal modeling and en-
abling process monitoring during execution time. This new knowledge helps to
understand how the work plans, process models defining assembly processes cre-
ated during the product’s industrial engineering, are executed on the shop floor.
It delivers input for process discovery, conformance checking and enhancement
to foster the detection of anomalies and to uncover optimization capabilities.

Following the design-science research approach, a light-weight artifact was
developed addressing the problem of process elicitation in manual assembly fac-
ing a heterogeneous sensor setting, which has not been addressed by current
work that is mainly focused on log data of existing software systems. The de-
sign’s efficacy was evaluated, which proofs that an easy and fast instrumentation
of common assembly workstations can be applied to enable temporary monitor-
ing tasks connecting the business process to an Internet-of-Things in Industrie
4.0 factories. To integrate the suggested sensors with existing software, machines
and sensors, an event-driven architecture couples state-of-the-art modules loosely
keeping the system extremely flexible. Raw events of multiple sensors are aggre-
gated and combined in event rules to detect patterns using CEP. The system was
set up in a laboratory setting and enables activity tracking during the assembly
of a realistic artificial product by fusing information from four sensor applications
together with events from a worker guidance system and mapping them to basic
motions to break down the underlying process activity. In an experiment with 12
participants the optical detection of grasping material was analyzed. Methods
and metrics from the activity recognition domain were applied to measure the
artifact’s performance proving the concept of sensor-driven process elicitation.

2 Problem Statement

In process engines, manual activities are usually black boxes documenting human
tasks which are beyond the process engine’s reach. A system that couples sensor
data with such activities would enable process monitoring and the following three
types of process mining. To position them, we use the BPM life cycle by [10]
who introduced a new and comprehensive life cycle concept partitioned into the
phases (1) strategy development, (2) definition/modeling, (3) implementation,
(4) execution, (5) monitoring/controlling, and (6) optimization/improvement.

Process discovery can be applied when no a-priori information is available,
typically during work plan creation in the definition and modeling phase (2).
Production engineers and workers test best practices to assemble a new product
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variant to create the work plan. An instrumented prototypical assembly work-
station, cf. Sect. 3, can deliver event logs during that test phase and supports
the discovery of detailed work plans/assembly processes. In manufacturing, dis-
covery would be applied during the elicitation of the process while conducting
observations, measurements and workshops with workers, team leaders and en-
gineers. Since the main high-level process is already known during the execution
phase (4), discovery could reveal hidden sub-processes.

Conformance checking compares an existing work plan/process model against
the generated event logs (5). It addresses the detection of anomalies and devia-
tions by matching reality against existing models. In manufacturing, the detec-
tion of assembly faults is one of the major applications. Assembly faults lead to
longer process execution times compared to the scheduled times or reduce the
number of accurate pieces compared to the output that was planned.

Process enhancement can be used to improve a work plan/process model
(6) using knowledge contained in event logs. If an optimization potential (best
practices or anti pattern) is mined, the work plan is adapted. For example, the
order or duration of assembly tasks is adjusted. In the worst case, a complete
redesign of the process model could become necessary.

To enable these three types of process mining the generation of meaningful
log data is essential. Thus, a system is needed that tracks progress of process
instances consisting of activity instances that occur during a concrete case. The
case id is equivalent to the product id that is read through automatic identifica-
tion and data capture. If no case id is available activities associated to resources
such as assembly workstations, tools, and materials are tracked. During the
product assembly a set of Activities is performed which are associated with
certain Resources observed by Sensors. Activities can be composed of multiple
sub-activities, e.g., start/stop and have additional properties, e.g., duration or
performed left/right handed. The sensing of worker activities, its domain spe-
cific requirements and the filtering of events with convenient rules enhances the
potential of process mining in manufacturing benefitting from new Internet-of-
Things infrastructures in Industrie 4.0 factories.

3 Solution within a Laboratory Setting

Within the BPM life cycle, our system is intended to run during execution (4)
as a monitoring application (5), when work plans are executed in assembly lines
connecting multiple assembly workstations on the shop floor. Additionally, it can
be applied in early prototypes during the design of assembly workstations and
work plans (2). During the monitoring of a work plan execution, the assembly of
a concrete product, the process instance, is observed. The outcome delivers input
for the design, optimization and improvement (6) of assembly workstations, work
plans and assembly processes in further life cycle iterations.

The suggested activity detection and event pre-processing is an event log
generating software system in process mining, cf. Fig. 1. It observes and senses
worker activities filtered by a CEP engine and generates new event logs. These



4 Sönke Knoch, Shreeraman Ponpathirkoottam, Peter Fettke, and Peter Loos

Fig. 1. Activity recognition in the context of process mining (extension of [1]).

events can be integrated in business processes executed in an engine running pro-
cesses defined a-priori and formally described in a standardized representation
such as the Business Process Model and Notation (BPMN).

3.1 Requirements and Setup

For the artifact, as stated in [11], a fast setup and the use of light hardware
was one aspect to enable a fast instrumentation of the assembly workstation
for temporary tracking. In addition, the worker’s degree of freedom during work
is not restricted, which excludes heavy sensor technology and on-body motion
sensors. To address medium-sized and small companies, the equipment costs
should be limited acquiring and operating such a system. Finally, only tracking
technology appropriate for manufacturing environments is considered.

Implementing the artifact, these basic aspects were addressed by using af-
fordable and light sensor hardware. These sensors (see below) do not afford any
direct contact with the worker (not restricting the degree of freedom) and work
appropriately for manufacturing (usually stable light conditions). Additionally,
a flexible event-based architecture was chosen, which allows a flexible integra-
tion and removal of sensor components depending on the desired tracking case.
Regarding the software that was developed to configure the sensor applications
a fast setup to run the optical tracking components even by non-experts is sup-
ported. A simple user interface allows the drawing, labeling and configuring of
activity zones to observe areas in the view of the respective camera, cf. [11].

The assembly workstation is made from carton prototyping material and
instrumented with low-cost sensors from the consumer electronics domain: 3
RGB (top: Logitech C920 HD Pro, bottom: 2x Creative Live! Cam Voice), 1
RGB+Depth (Microsoft Kinect 2), 1 infrared (Leap Motion) cameras and 2 ul-
trasonic (GHI HC-SR04) sensors (cf. Fig. 2). The event-bus was realized using
MQTT. All events are logged to a database for process elicitation and mining.
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In the current setting two product variants can be assembled: The bill of
material of variant “BG” and “BCD” consists of seven and six different ma-
terials, see table in Fig. 2. Three materials are variant-specific resulting in a
total number of ten materials available in small load carriers (SLC) at the as-
sembly workstation. Both products consist of two 3D-printed cases filled with
three interconnected printed circuit boards fixed with screws while the number
of screws varies per variant (“BG”: 8, “BCD”: 4). The only tool available during
assembly is a manual torsional screw driver. To assemble a product, the work-
piece holder in front of the worker is fed with the variant-specific Top Casing
part (Task 1). Next, the Mainboard is inserted into the Top Casing (2) and
fixed with two Small Screws (3). Afterwards, the Application Board is inserted
(4) and the Connecting Board that has to be connected to Mainboard and Ap-
plication Board (5). Once that is finished, the Application Board is fixed with
two Small Screws (6). Finally, the Bottom Casing is fastened together with the
Top Casing with clips (7) or four Big Screws in case of variant BG (7+8). The
products are artificial, meaning that they have no purpose or function.

3.2 Work Step Events: Composition, Format and Pattern Detection

Work Step Composition. A work step is split up into five fundamental mo-
tions that were adapted from the MTM used to analyze the performance of
manual operations. MTM is based on empirically gathered data aggregated in
time catalogues that focus on activities which are 100% influenceable. The mo-
tion cycle covers the five motions reach (move an empty hand to a thing), grasp
(bring a thing under control), move (move a thing by hand), position (fit things
into each other), and release (intended loose control of a thing).

Message Format. The event generating sensor applications are identified by
topics that clients can subscribe to communicating over a publish/subscribe
protocol, such as MQTT. Topics are simple text strings hierarchically struc-
tured with forward slashes, e.g., Sensor/Resource/Activity. The Sensor con-
tains the name of the data delivering sensor application, e.g., RGB+D, and the
Resource denotes the observed area at the assembly workstation containing a
tool or material, e.g., screws. The Activity indicates the actual action, e.g.,
In or Out, if someone reached in or out of the SLC with screws. This allows a
device independent subscription to sensor events using the single- or multi-level
wildcard character (+/#), e.g., subscribeTo( #/Screws). The event’s payload is
en-/decoded to/from an internal format within the processing engine.

Event Pattern. Two types of rules were applied to match event patterns:
patterns consisting of bounding events and patterns consisting of multiple events
from the same type. For the first, a rule waits for the start and end event limiting,
e.g. the grasping of the material screws. It checks if two events e1 and e2 arrive
in a successive order without any event e3 between and within a time window
of carefully defined T seconds (20 in our current setting). The exclusion of e3,
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having e3.topic=e2.topic, ensures accurate detection when the worker grasps
twice successively in the same SLC within T. The positioning of a material in
the assembly area represents the second type of patterns, since its boundaries
are not strict. An aggregation query processes a series of events and fires every
time an additional event from the same type occurs. Once a pattern has been
detected, each query calculates the time difference between relevant events and
sends a high-level event about the detected operation to the event bus.

3.3 Process Elicitation through Activity Detection

Four different sensor applications were implemented. The Local Activity Detec-
tion with RGB web cameras detects activities within activity zones defined by
the user. The competing Local Activity Detection and Skeleton Tracking with
RGB+D camera tracks the skeleton and activities in three-dimensional rectan-
gular areas wrapping SLCs on a digital representation of the assembly worksta-
tion. It delivers information about the body posture, location and the hand that
is used. The Hand Detection with IR camera senses whether a hand entered or
left an a-priori defined area. The Motion Detection recognizes motions based on
an ultrasonic distance measurement, similar to a light barrier. In the following,
we will focus on the Local Activity modules optically sensing material grasps.

Local Activity Detection with RGB Cameras. Activity detection can
be achieved by performing background subtraction and foreground extraction
using RGB web cameras. Therefore, the cameras are arranged so that their
field of view observes the SLCs. Usually, there is minimal/no motion in the
observation regions other than motion of hands during the assembly process.
However, the system is highly sensitive to changing background intensity and
effects of unavoidable artifacts like shadows and repeated adding/removing of
objects (material). The system should be robust against such effects and able
to adapt continuously and learn the presence or absence of objects in the scene
as a change in the background and not indicate activities in these regions. Here
we adopt a time tested method involving fast adapting mixture of Gaussians by
[14]. The values that each pixel can take is modelled as a mixture of Gaussians.
An advantage of the method is that it chooses the number of Gaussians for each
pixel automatically and independently of other pixels not wasting memory as
in the case of a pre-defined number of Gaussians. For each pixel, weights are
assigned to the Gaussians modelling it. In a particular pixel, if the weights are
concentrated in a few Gaussians, a stable state is achieved thereby indicating
inactivity. If the weights are distributed over a lot of Gaussians this indicates
activity in the specific pixel. The parameters of the algorithm are adjusted in
a way that the Gaussians modelling the background adapt quickly enough to
ignore the added/removed tool but slowly enough to detect the movement of
the hand in and out of the activity regions. The activity regions are rectangles
defined by the user. If more than half the pixels in this region has been identified
as foreground by the algorithm, an activity is detected.



Technology-Enhanced Process Elicitation 7

Front ViewRGB Cam Top*

RGB Cam Bottom 1* RGB Cam Bottom 2*

Back View

Material in SLC BG BCD Activity

BCD_Top_Casing - Task 1 Mount

BG_Top_Casing Task 1 - Mount

Mainboard Task 2 Task 2 Insert

Small_Screws (x2) Task 3 Task 3 Screw

BCD_Application_Board - Task 4 Insert

BG_Application_Board Task 4 - Insert

Connecting_Board Task 5 Task 5 Plug

Small_Screws (x2) Task 6 Task 6 Screw

BCD_Bottom_Casing - Task 7 Clip

BG_Bottom_Casing Task 7 - Fit

Big_Screws (x4) Task 8 - Screw

IR CamWorker Guidance

1

23

4

5

2 35

67

8

10

6 7

9

10

*RGB View **RGB+D View

RGB+Depth Cam**

Ultrasonic Sensor

Fig. 2. The instrumented assembly workstation made from carton prototyping material
in front and back view. Arrows indicate the sensor perspectives. Camera perspectives
are shown on the mid left. The numbers from 1 to 10 refer to the IDs of Tab. 1. On
the top left, the assembly tasks of both product variants are provided.

Local Activity Detection with RGB+D Cameras. The Kinect sensor per-
forms skeleton tracking as well as activity detection by forming a two and a half
dimensional (2.5D) model of the assembly workstation. The 2.5D model is ob-
tained by using the Kinect fusion functionality, which is a part of the Kinect
SDK. The model is shown from the camera’s perspective. Since a user’s per-
spective is more intuitive, during setup Kinect is positioned on the user side in
front of the workstation and moved and rotated through 180 degrees around the
workstation to its final position. This process is the geometric transformation
between the two diagonally opposite positions of the Kinect sensor (in front of
the assembly workstation and behind). Once the final position has been fixed,
the vectors normal to the worktop surface and two mutually orthogonal vectors
along the worktop surface are determined using three user-defined points on the
surface in the model. It is assumed that the Kinect’s X axis and the table sur-
face are in parallel. Kinect’s skeletal tracking provides a total of 25 joints which
delivers the necessary data for visualizing and analyzing motions of the worker.
The hand joints are used for testing the overlap with activity regions. To allow
tolerance to joint position accuracy as given by the Kinect, a sphere of a 25cm
radius (identified empirically) surrounds the hand position. The activity in an
activity region (cuboid in 3D space) is triggered when the sphere around a given
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hand joint overlaps with its cuboid, see Kinect view in Fig. 2. The condition
for overlap: the projection of the vector joining the centre of the sphere and the
centre of the cuboid along any of the three cuboid dimensions is less than the
sum of the radius of the sphere and half of the respective dimension.

4 Evaluation

In the following, we provide insights into a first study analyzing the performance
of the optical sensor applications using RGB and RGB+D cameras. The events
generated by these applications enable the use of CEP and the elicitation of
operative work steps mapped to activities in formal process models.

4.1 Experimental Setup and Data Analysis

The suggested system was evaluated with 12 participants consisting of students
and campus staff. To evaluate the system, an artificial but realistic chain of as-
sembly tasks had to be solved, cf. Sect. 3.1. Each participant had to assemble
four artificial products, two of each variant. The participants were split into two
counter-balanced groups. One group started with the variant “BG”, the other
with “BCD”. The four products were assembled in an alternating order. The
instructions about the assembly process were provided on a simple worker guid-
ance system (WGS), a web page shown on an eight inch tablet. Text, images
and videos were used to explain the different assembly steps. Difficulties in un-
derstanding were answered by a supervisor who was present during the whole
experiment. In addition, the WGS provided temporal boundaries for relevant
sensor events by delivering an event each time a new assembly step was started.
Therefore, the user had to confirm each step which is common practice in indus-
trial manufacturing. Regarding the assembly, apart from a correctly assembled
product, no limitations were given which lead to a large degree of freedom mak-
ing the recognition of activities more realistic while exacerbating it.

To measure the system’s precision, the ground truth (GT) was captured
filming the assembly process with the consent of the participant. Three persons
manually annotated all videos with a given set of tags. One tag represented
one GT activity and consisted of the name of the observed material in the
SLC and the start and stop time taken from the video. The timestamps of
video and sensor events had to be synchronized to allow a comparison of the
GT against the system’s event log. Each system event between two instructions
from the WGS was matched to a corresponding GT entry based on the material
referenced in event and GT. This lead to a bipartite graph with two independent
sets of vertices (GT entries and system events) such that every edge connects
a vertex in the one set (GT) to one in the other (system). To find the best
matching system event for a given GT entry, the optimum matching had to
be calculated. This represents the assignment problem of finding the minimum
weight matching in a weighted bipartite graph. The weight of an edge connecting
a vertex representing a GT entry and a vertex representing a system event is
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Table 1. Results of activity detection per SLC containing a certain material.

ID SLC/material (anomalies) Sensor TP FN FP Precision Recall F-score Clustered

1 BCD Application Board RGB 32 4 10 0.76 0.89 0.82 -
(50%) RGB+D 28 8 40 0.41 0.78 0.54 7

2 BCD Bottom Casing(37%) RGB 26 9 16 0.62 0.74 0.68 -

3 BCD Top Casing (39%) RGB 32 1 6 0.84 0.97 0.90 -

4 BG Application Board RGB 34 7 2 0.94 0.83 0.88 -
(54%) RGB+D 26 15 23 0.53 0.63 0.58 7

5 BG Bottom Casing (35%) RGB 24 2 9 0.72 0.92 0.81 -

6 BG Top Casing (29%) RGB 27 1 10 0.73 0.96 0.83 -

7 Big Screws (14%) RGB 131 40 24 0.85 0.77 0.80 -

8 Connecting Board (20%) RGB 46 4 10 0.82 0.92 0.87 -
RGB+D 30 20 39 0.44 0.6 0.50 8

9 Mainbaord (15%) RGB 54 0 26 0.68 1.00 0.81 -
RGB+D 45 9 14 0.76 0.83 0.80 27

10 Small Scres (12%) RGB 65 2 8 0.89 0.97 0.93 -

the time distance. After construction, we received a simple undirected weighted
bipartite graph. JGraphT, cf. jgrapht.org, was used to compute the maximum
weight matching in O(V |E|2), where E is the set of edges and V the set of
vertices.

4.2 Results

Tab. 1 shows the results of the experiment in numbers. For each SLC carrying
a certain material the results of the three RGB cameras observing all SLCs and
the results of the RGB+D camera observing the four upper SLCs true positives
(TP), false negatives (FN) and false positives (FP) in absolute numbers such as
precision, recall and the F-score are provided. In the last column the number of
events clustered when the material was equal within a time distance of T reducing
the number of insertions (FP) are listed. Anomalies (percentage provided in
brackets under the respective SLC/material name) represent a deviation from
the instructions, such as picking into the wrong SLC or moving the hand over
several SLCs while searching the correct material, e.g., when they look alike.

The RGB cam application delivered satisfying results with an F-score higher
than 0.8 for seven SLCs and higher than 0.9 for two. Only the observation of
the SLC containing the material “BCD Bottom Casing” was with F=0.68 low.
Having a look at the physical setup during the experiment as shown in Fig. 2,
it can be seen that the angle of the camera to the SLC is adverse. Another
restriction evolved by the chosen setup is the shock resistance. Physical shocks
caused by participants by bumping against a material box or the whole assembly
workstation led to FPs. A similar effect was discovered by arm/hand shadows
generating activities in adjacent SLCs. Although both did not occur very often,
it can be addressed in industrial settings by using a solid assembly workstation,
putting SLCs on tracks and illuminating the workplace from top. Finally, the
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precision can be improved by using industrial cameras where the area of interest
is observed with a fixed focus setting delivering a higher resolution.

Analyzing the results of the RGB+D camera, it was discovered that the
optical sensor delivered a large amount of insertions (FP). Compared to the web
cam which generates exactly two events per activity (hand in and hand out), a
strong flickering was discovered regarding the event generation of the RGB+D
sensor. Thus, we clustered sensor events by removing all events with a time
difference of T compared to a matching event of the same type (RGB+D sensor
and material) from the set of insertions (FP). We set T = D(Gv,a) where D is the
duration of the ath ground truth action in the vth video. Nevertheless, it can be
seen that the F-score of the RGB+D sensor is low. One reason is the high number
of anomalies for the SLCs “BCD ” (50%) and “BG Application Board” (54%).
The other reason is the position of the RGB+D sensor behind the assembly
workstation. Large parts of the worker’s body are covered by the workstation
which leads to a less accurate skeleton tracking that we are using to estimate the
hand position. This fact is generating a lot of flickering which is the reason for
a high number of insertions (FP) and failures (FN) during activity detection.

5 Related Work

In the pervasive computing community Funk et al. [7] suggest a cognitive assis-
tance system that aims to increase efficiency and assistance in manufacturing
processes based on motion detection with an RGB+D camera. A permanent and
calibration intensive integration of the sensor is necessary to provide feedback
in contrast to our approach that aims to provide a temporary and light-weight
sensor setup. Instead of using additional instrumentation, Bader et al. [3] use
existing sensors (RFIDs) to provide assistance on a display. RFID could be inte-
grated in our system through CEP but is alone insufficient to provide details on
worker activities. Quint et al. [13] suggest a system architecture for assistance in
manual tasks with the aim to combine components, such as visualization tech-
niques, interaction modalities and sensor technologies. Sensor events are matched
from RGB and RGB+D cameras to states in state machines. Compared to our
approach the emphasis lies on the information model and the architecture more
than on studying the artifact’s accuracy and application in BPM.

In the augmented reality domain several systems realize activity tracking to
provide assistance during assembly tasks in the psychomotor phase of a work-
flow. Henderson and Feiner’s prototype [8] provides several forms of assistance
visualizing arrows, labels, highlighting effects and motion paths using markers
attached to all tracked objects. In contrast, Peterson et al. [12] focus on the
technical realization of markerless spatiotemporal tracking with uncalibrated
cameras to automate the creation of augmented reality video manuals from a
single first-person view video example. Both papers feature a strong emphasis on
augmented reality and do not touch the BPM world. Nevertheless, the suggested
technologies provide the potential of analyzing worker activities.
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Data fusion, which is necessary to integrate heterogeneous sensor information
and application events, matches the concept of CEP and is supported by our
even-driven architecture, similar to Bruns et al. [4], who integrate CEP and finite
state machines fusing sensor data to determine the actual states of ambulance
vehicles and not the overall process. The interconnection between BPM and CEP
was introduced as event-driven BPM by von Ammon et al. [2] and demonstrated,
e.g., by Estruch et al. [6] who suggest an approach for CEP with BPMN 2.0 in
the manufacturing domain. They focus on the modelling aspects in a top-down
manner and leave out the sensor-level. Not tackling the manufacturing domain,
Herzberg et al. [9] provide a framework to correlate specific process instances by
enriching events already recorded with context data resulting in process events
and show its feasibility applying process mining in the logistics domain. They
focus on the event correlation and leave out the data elicitation.

Summarized, work on activity tracking is mainly focused on assistance using
existing or additional sensor technology. Work interconnecting BPM and CEP
is sparse in the manufacturing domain. The technology-enhanced process elic-
itation suggested here is related to both worlds and aims to deliver detailed
information about worker activities, which has not been addressed so far.

6 Conclusion

In this work, an artifact was implemented and evaluated that supports process
elicitation tasks in manual assembly systems. The system was set up in a labo-
ratory setting and showed a satisfying performance in activity tracking during
the assembly of an artificial product regarding the RGB camera application to
proof the concept of process elicitation. The competing RGB+D camera appli-
cation did not satisfy the performance criteria and will in future only be applied
to deliver additional information on the worker (e.g., left or right handed). The
experiment showed that the number of false negatives and false positives of the
RGB activity detection still needs to be reduced. The evaluation of relevant
factors was influenced by the high degree of freedom during product assembly
and the laboratory setting within the experiment. Especially carton prototyping
allows the construction of a testing environment very fast, but has the drawback
of being shock sensitive. Similarly, consumer electronics are low in price but less
stable regarding the result. In future, we plan additional experiments with more
participants in multiple scenarios controlling and analyzing these side effects to
increase the precision. It will be combined with the detection of material parts
completing the picture of tracking manual assembly tasks. To support process
enhancement and operational support, we will examine the anomalies detected
during the study and follow the question how the manufacturing process and its
model can be reflected and improved as a basis for a cyber-physical BPM.

Acknowledgments. This research was funded in part by the German Federal
Ministry of Education and Research (BMBF) under grant number 01IS16022E
(project BaSys4.0). The responsibility for this publication lies with the authors.



12 REFERENCES

References

[1] W. M. P. van der Aalst. Process Mining: Data Science in Action. 2nd ed.
Heidelberg: Springer, 2016.

[2] R. von Ammon et al. “Integrating Complex Events for Collaborating and
Dynamically Changing Business Processes”. In: 7th International Confer-
ence on Service-oriented Computing. ICSOC. Stockholm, Sweden: Springer,
2009, pp. 370–384.

[3] S. Bader et al. “Tracking Assembly Processes and Providing Assistance in
Smart Factories”. In: 6th International Conference on Agents and Artificial
Intelligence. Vol. 1. ICAART. Angers, France: SCITEPRESS, Science and
Technology Publications, Lda, 2014, pp. 161–168.

[4] R. Bruns et al. “Using Complex Event Processing to Support Data Fu-
sion for Ambulance Coordination”. In: 17th International Conference on
Information Fusion. FUSION. July 2014, pp. 1–7.

[5] K. Dencker et al. “Proactive Assembly Systems - Realising the Potential of
Human Collaboration with Automation”. In: Annual Reviews in Control
33 (2 2009), pp. 230–237.

[6] A. Estruch et al. “Event-Driven Manufacturing Process Management Ap-
proach”. In: 10th International Conference on Business Process Manage-
ment. BPM. Tallinn, Estonia: Springer, 2012, pp. 120–133.

[7] M. Funk et al. “Cognitive Assistance in the Workplace”. In: Pervasive
Computing 14.3 (July 2015), pp. 53–55.

[8] S. J. Henderson et al. “Augmented Reality in the Psychomotor Phase
of a Procedural Task”. In: 10th International Symposium on Mixed and
Augmented Reality. ISMAR. IEEE, Oct. 2011, pp. 191–200.

[9] N. Herzberg et al. “An Event Processing Platform for Business Process
Management”. In: 17th International Enterprise Distributed Object Com-
puting Conference. EDOC. IEEE, Sept. 2013, pp. 107–116.

[10] C. Houy et al. “Empirical Research in Business Process Management -
Analysis of an emerging field of research”. In: Business Process Manage-
ment Journal 16.4 (2010), pp. 619–661.

[11] S. Knoch et al. “Automatic Capturing and Analysis of Manual Manufac-
turing Processes with Minimal Setup Effort”. In: International Joint Con-
ference on Pervasive and Ubiquitous Computing. UbiComp. Heidelberg,
Germany: ACM, Sept. 2016, pp. 305–308.

[12] N. Petersen et al. “Real-Time Modeling and Tracking Manual Workflows
from First-Person Vision”. In: International Symposium on Mixed and
Augmented Reality. ISMAR. IEEE, Oct. 2013, pp. 117–124.

[13] F. Quint et al. “A System Architecture for Assistance in Manual Tasks”.
In: Intelligent Environments. IE. Vol. 21. Ambient Intelligence and Smart
Environments. IOS Press, 2016, pp. 43–52.

[14] Z. Zivkovic et al. “Efficient Adaptive Density Estimation Per Image Pixel
for the Task of Background Subtraction”. In: Pattern Recognition Letters
27.7 (May 2006), pp. 773–780.


