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ABSTRACT
This paper presents the solution of the DFKI-team for the Multime-
dia Satellite Task at MediaEval 2017. In our approach, we strongly
relied on deep neural networks. The results show that the fusion of
visual and textual features extracted by deep networks can be effec-
tively used to retrieve social multimedia reports which provide a
directed evidence of flooding. Additionally, we extend existing net-
work architectures for semantic segmentation to incorporate RGB
and Infrared (IR) channels into the model. Our results show that
IR information is of vital importance for the detection of flooded
areas in satellite imagery.

1 INTRODUCTION
Satellite imagery is becoming more and more accessible in the re-
cent years. Programs such as Copernicus from ESA and LandSat
from NASA facilitate this development by providing a public and
free access to the data. Large-scale datasets such as the EuroSAT-
Dataset [9] or the ImageCLEFremote-Dataset [2] have emerged
from these programs and build the foundation for the deeper anal-
ysis of remotely sensed data. One major problem when analyzing
satellite imagery is the sparsity of data for particular locations over
time. Publicly available satellites are mostly non stationary and
require several days to revisit the same locations. To overcome
this problem, recent work leverages the advances of social multi-
media analysis and combines the two data sources [14]. Bischke
et. al. [3] demonstrated a system for the contextual enrichment of
remote-sensed events in satellite imagery by leveraging contem-
porary content from social media. Similarly, the work by Ahmad
et. al. [1] crawled and linked social media data about technological
and environmental disasters to satellite imagery.

Building upon these developments and putting a stronger focus
on flooding events, Bischke et. al. [4] released the Multimedia Satel-
lite Task at MediaEval 2017. The goal of this benchmarking task is
to augment events that are present in satellite images with social
media reports in order to provide a more comprehensive view of
the event. The task is divided into two subtasks: (1) The Disaster
Image Retrieval from Social Media Task has the goal to retrieve so-
cial media reports that provide direct evidence of a flooding event.
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(2) Flood-Detection in Satellite Images aims to identify regions in
satellite images which are affected by flooding.

1.1 Disaster Image Retrieval from Social Media
In this section, we present our solution for first subtask by con-
sidering visual, textual modalities as well as their fusion. For all
modalities, we train a Support Vector Machine (SVM) with a ra-
dial basis function (RBF) kernel on the two classes flooding and no
flooding. We obtain the ranked list of relevant social media reports
by computing the distance to the decision boundary of the SVM.
The features which we used for the classifier training are discussed
in detail in the following section.

1.1.1 Visual Features. Motivated by the recent advances of Con-
volutional Neural Networks (CNNs) to learn a high-level represen-
tation of image content, we apply a CNN to obtain the semantic
feature representation of images. In particular, we use a pre-trained
network DeepSentiBank [6] with the X-ResNet [10] architecture.
X-ResNet is an extension of ResNet [8] with cross-residual con-
nections to predict multiple related tasks. We extract the internal
representation of X-ResNet’s anptask_pool5 layer, resulting in 1000-
dimensional feature vector for each image. Compared to CNNs
pre-trained on ImageNet [7], this approach has two advantages: (1)
DeepSentiBank was trained to predict adjective noun pairs (ANPs).
Unlike ImageNet pre-trained models, this allows to not only rely
on information about objects-classes but additionally extract de-
tails about the image-scence with adjectives (e.g. wet road, damaged
building, stormy clouds). (2) The domain change of DeepSentiBank is
smaller compared to ImageNet pre-trained models. DeepSentiBank
was trained on the Visual Sentiment Ontology (VSO) dataset [5],
which contains Flickr images similar to the dataset provided by the
task organizers. Such images often include more scenic information
whereas images from ImageNet mainly contain objects.

1.1.2 Metadata Features. For the retrieval based on only meta-
data of social media reports, we relied on the tags given by users.
We observed that only relying on the presence of single words
such as ’flooding’ or ’flood’ is not sufficient and introduces a lot of
irrelevant social media reports. We therefore combine individual
tags to obtain a document representation for each report.

In the first preprocessing step, we remove numbers and convert
all tags to lowercase. We then train a Word2Vec model [12] (with
200 dimensions) on the user tags. For each social media report, we
average the word vectors and obtain a document representation. In
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order to incorporate the importance of eachword into the document
representation, we additionally weight each word embedding with
the term frequency-inverse document frequency (TF-IDF) of the
corresponding word. The intuition behind this approach is fairly
straightforward, i.e. document vectors containing semantically sim-
ilar concepts (’flood’, ’river’, ’damage’) should point to a similar
direction in the embedding space as compared to documents with
word-vectors of different concepts (’flood’, ’book’, ’desk’, ’drink’).

1.1.3 Visual-Textual Fused Features. We extract the visual and
textual feature representations using the two approaches as de-
scribed above. The two modalities are fused by concatenating the
feature vectors, resulting in a 1200-dimensional vector.

1.2 Flood Detection in Satellite Imagery
In this section, we explain our approach for the segmentation of
flooded areas in satellite images using deep neural networks.

1.2.1 Pre-Processing. Before feeding the satellite data to the
networks, we perform a location based normalization step. The
goal of this step is to remove a location bias due to local changes
in images caused by different vegetation, lightning conditions and
atmospheric distortions. For each location we compute the mean
pixel values of each RGB and IR channel and subtract this value
from the corresponding channels of images belonging to the same
location. The pixel values in original satellite images are encoded
in the 16-bit number format which turned out to be problematic for
many frameworks. To overcome this, we additionally scale the min
and max pixel-values channel-wise within the range of 0 and 255.

1.2.2 Network Architectures. We propose three different net-
work architectures for the segmentation problem. All networks use
the size of the original image patch (320 x 320 pixels) as input-size
and predict classification labels on a pixel-level.

In our first approach, we use a fully convolutional network (FCN)
[11] which has a similar architecture as VGG13 [13]. We remove
the fully connected layers and attach an up-sampling layer with
bilinear interpolation to scale the down-sampled feature maps to
the original image-size. An additional convolutional layer is used to
predict the class labels for each pixel and classification probabilities
are obtained by squashing the network output through a softmax
layer. Since the first input layer of VGG13 expects an input tensor
with dimension three, we only pass the RGB information of the
satellite data into the network. In the second network, we expand
our previous architecture by changing the input of the first layer to
four channels, allowing the network to incorporate IR information
into the prediction. We extend the previous two approaches by
investigating into more complex decoders. Therefore, we use the
second network as base-model and replace the up-sampling layer
with the reversed version of a VGG13 encoder as decoder.

1.2.3 Network Training. In order to train the above described
networks from scratch we extend the dataset using data augmenta-
tion. Every image patch is flipped (left to right and up down) and
rotated at 90 degree intervals, yielding 8 augmentations per image
patch. All networks are trained end-to-end with stochastic gradient
descend using the negative log likelihood loss, a learning rate of
0.01 and weight decay of 0.0005.

Table 1: Average Precision at 480 and the mean of Average
Precisions at different cutoffs for the first subtask (DIRSM).

Run 1 Run 2 Run 3 Run 4
AP@480 86.64 63.41 90.45 74.08

MAP@[50,100,150,240,480] 95.71 77.64 97.40 64.50

Table 2: Intersection over Union (IoU) for the second subtask
(FDSI). The results are listed for unseen patches covering (i)
same locations as in the dev-set and (ii) new locations.

Run 1 Run 2 Run 3
Same locations 73.56 84.27 84.36
New locations 69.32 70.87 74.13

2 EXPERIMENTS AND RESULTS
The results for the first subtask are shown in Table 1. Run 1 is
only based on visual information, Run 2 only on metadata and Run
3 on the fusion of both modalities as described in Section 1.1. It
can be seen that relying on visual information achieves a higher
Average Precision (AP) compared to metadata only. At the same
time, the fusion of both modalities further helps to improve the
retrieval accuracy by 1.7%. Run 4 uses only visual features from an
ImageNet pre-trained ResNet152 model [8]. Compared to Run 1,
DeepSentiBank (X-ResNet) features perform significantly better.

Table 2 contains the results of the second subtask for unseen
satellite images covering same and new locations as in the develop-
ment set. Each of the three runs corresponds to the three networks
as described in Section 1.2.2. Comparing the IoU of the last two net-
works to the first one (Run 1), shows that the IoU increases by more
than 10%. This illustrates the importance of the IR-channel for the
detection of flooded areas in satellite data. The comparison of the
last two networks against each other (Run 2 vs. Run 3) shows that
there is a minor improvement of the AP. (0.1% for same and 4% for
new locations). The AP’s of all runs on new locations demonstrate
that the networks generalize to new places.

3 CONCLUSION
In this paper, we presented our approach for the Multimedia Satel-
lite Task 2017 at MediaEval. One major insight is the importance
of a multi-modal fusion of text and visual content for the retrieval
of social multimedia. In our approach, we analyzed different CNN-
features and showed that DeepSentiBank X-ResNet can be used
to obtain a powerful image representation. In the second subtask
of the challenge, we applied segmentation networks on satellite
imagery to extract flooded regions. Our results show that incorpo-
rating IR-information is very important. For future work, we would
like to extend the satellite imagery to active radar data (Synthetic
Aperture Radar) which can "look" through the clouds. We plan to
use the results of this work in the future for the monitoring and
prediction of flooding events.
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